2,829 research outputs found

    Design and reliability of polymeric packages for high voltage power semiconductors

    Get PDF
    This thesis focuses on the development of a novel polymer based housing for power thyristor devices typically used in long distance high voltage direct current (HVDC) transmission. Power thyristor devices used in HVDC power conversion stations are typically packaged in a hermetically sealed ceramic housing and have demonstrated an excellent history of reliability and performance. However, to avoid increasing the number of thyristors in future higher powered HVDC schemes thyristors having higher power ratings at 8.5 kV and sizes at 125 mm and 150 mm diameters are sought for implementation to achieve higher transmission ratings of, for example, 4000 A at +/- 800 kV. The main disadvantages of such large ceramic-based packages are higher processing cost and weight whilst robustness is also a concern. To overcome these issues, replacing the current ceramic housing with a polymeric material has been investigated in this project. The advantages it is anticipated such packages will provide include lower cost, less weight, robustness, recyclability, etc. However, some challenges it will also offer are: non-hermeticity i.e. polymers are moisture and gas permeable, potentially more complex manufacturing routes, and different electrical, mechanical and thermal properties compared to ceramic materials. The work presented in this thesis was part of a larger project where these challenges have been addressed by developing and testing a prototype polymeric thyristor housing. The prototype is aimed at demonstrating that polymer packages can deliver performance and reliability comparable to, if not better than, current ceramic packages. In this thesis, it is the package development and reliability related studies that are discussed. Because the housings will experience severe electrical stresses and various thermal excursions during their service life, the electrical and thermo-mechanical behaviour of the polymer housing was studied using finite element analysis to gain an understanding of the effects of various design variables and materials properties on performance and the tradeoffs between performance and manufacturability. From these modelling studies, design guidelines have been established for the future development of polymer housings. On the other hand, to identify the physics-of-failure of the prototype that was manufactured as part of the project, accelerated life tests were performed to study its reliability. The knowledge gained from the polymer prototype development was then applied to the design of a larger 125 mm diameter housing using the Taguchi method of experimental design

    Material Selection for Interfacial Bond Layer in Electronic Packaging

    Get PDF
    In electronic packaging, typically two or more thin dissimilar plates or layers are bonded together by an extremely thin adhesive bond layer. Electronic assemblies are usually operated under high power conditions which predictably produces a high temperature environment in the electronic devices. Therefore, thermal mismatch shear and peeling stress inevitably arise at the interfaces of the bonded dissimilar materials due to differences in Coefficient of Thermal Expansion (CTE) typically during the high temperature change in the bond process. As a result, delamination failure may occur during manufacturing, machining, and field use. As such, these thermo-mechanical stresses play a very significant role in the design and reliability of the electronic packaging assembly. Consequently, critical investigations of interfacial stresses under variable load conditions in composite structure can result in a better design of electronic packaging with higher reliability and minimize or eliminate the risk of functional failure. In order to formulize bond material selection, analytical studies are carried out in order to study the influence of bond layer parameters on interfacial thermal stresses of a given package. These parameters include Coefficient of thermal expansion (CTE), poison's ratio, temperature, thickness, and stiffness (compliant and stiff) of the bond layer. From the study, stiffness and bond layer thickness are identified as the key parameters influencing interfacial shearing and peeling stresses. The other parameters namely CTE, poisons ratio has shown insignificant influence on interfacial stresses due to the very thin section of bond layer compared to the top and bottom layers. The results also show that the interfacial stresses increases proportionally with the increase of temperature in the layers. Therefore, it is very important that the temperature is maintained as low as possible during the chip manufacturing and operating stages. Since only two parameters namely stiffness and bond layer thickness are identified as the key parameters, the interface thermal mismatch stresses can be reduced or eliminated by controlling these two parameters only. Therefore the identification of suitable bond layer parameters selection with reasonable accuracy is possible even without performing optimization process. Finally, this paper proposes a Metal Matrix Composite (MMC) bond material selection approach using rule of mixture material design. The outcome of this research can be seen in the forms of practical and beneficial tools for interfacial stress evaluation and physical design and fabrication of layered assemblies. The Engineers can utilize this research outcome in conjunction with guidelines for electronic packaging under variable thermal properties of layered composites

    High Efficiency Polymer based Direct Multi-jet Impingement Cooling Solution for High Power Devices

    Full text link
    Liquid jet impingement cooling is an efficient cooling technique where the liquid coolant is directly ejected from nozzles on the chip backside resulting in a high cooling efficiency due to the absence of the TIM and the lateral temperature gradient. In literature, several Si-fabrication based impingement coolers with nozzle diameters of a few distributed returns or combination of micro-channels and impingement nozzles. The drawback of this Si processing of the cooler is the high fabrication cost. Other fabrication methods for nozzle diameters for ceramic and metal. Low cost fabrication methods, including injection molding and 3D printing have been introduced for much larger nozzle diameters (mm range) with larger cooler dimensions. These dimensions and processes are however not compatible with the chip packaging process flow. This PhD focuses on the modeling, design, fabrication and characterization of a micro-scale liquid impingement cooler using advanced, yet cost efficient, fabrication techniques. The main objectives are: (a) development of a modeling methodology to optimize the cooler geometry; (b) exploring low cost fabrication methods for the package level impingement jet cooler; (c) experimental thermal and hydraulic characterization and analysis of the fabricated coolers; (d) applying the direct impingement jet cooling solutions to different applications

    Thermo-mechanical reliability studies of lead-free solder interconnects

    Get PDF
    N/ASolder interconnections, also known as solder joints, are the weakest link in electronics packaging. Reliability of these miniature joints is of utmost interest - especially in safety-critical applications in the automotive, medical, aerospace, power grid and oil and drilling sectors. Studies have shown that these joints' critical thermal and mechanical loading culminate in accelerated creep, fatigue, and a combination of these joints' induced failures. The ball grid array (BGA) components being an integral part of many electronic modules functioning in mission-critical systems. This study investigates the response of solder joints in BGA to crucial reliability influencing parameters derived from creep, visco-plastic and fatigue damage of the joints. These are the plastic strain, shear strain, plastic shear strain, creep energy density, strain energy density, deformation, equivalent (Von-Mises) stress etc. The parameters' obtained magnitudes are inputted into established life prediction models – Coffin-Manson, Engelmaier, Solomon (Low cycle fatigue) and Syed (Accumulated creep energy density) – to determine several BGA assemblies' fatigue lives. The joints are subjected to thermal, mechanical and random vibration loadings. The finite element analysis (FEA) is employed in a commercial software package to model and simulate the responses of the solder joints of the representative assemblies' finite element models. As the magnitude and rate of degradation of solder joints in the BGA significantly depend on the composition of the solder alloys used to assembly the BGA on the printed circuit board, this research studies the response of various mainstream lead-free Sn-Ag-Cu (SAC) solders (SAC305, SAC387, SAC396 and SAC405) and benchmarked those with lead-based eutectic solder (Sn63Pb37). In the creep response study, the effects of thermal ageing and temperature cycling on these solder alloys' behaviours are explored. The results show superior creep properties for SAC405 and SAC396 lead-free solder alloys. The lead-free SAC405 solder joint is the most effective solder under thermal cycling condition, and the SAC396 solder joint is the most effective solder under isothermal ageing operation. The finding shows that SAC405 and SAC396 solders accumulated the minimum magnitudes of stress, strain rate, deformation rate and strain energy density than any other solder considered in this study. The hysteresis loops show that lead-free SAC405 has the lowest dissipated energy per cycle. Thus the highest fatigue life, followed by eutectic lead-based Sn63Pb37 solder. The solder with the highest dissipated energy per cycle was lead-free SAC305, SAC387 and SAC396 solder alloys. In the thermal fatigue life prediction research, four different lead-free (SAC305, SAC387, SAC396 and SAC405) and one eutectic lead-based (Sn63Pb37) solder alloys are defined against their thermal fatigue lives (TFLs) to predict their mean-time-to-failure for preventive maintenance advice. Five finite elements (FE) models of the assemblies of the BGAs with the different solder alloy compositions and properties are created with SolidWorks. The models are subjected to standard IEC 60749-25 temperature cycling in ANSYS 19.0 mechanical package environment. SAC405 joints have the highest predicted TFL of circa 13.2 years, while SAC387 joints have the least life of circa 1.4 years. The predicted lives are inversely proportional to the magnitude of the areas of stress-strain hysteresis loops of the solder joints. The prediction models are significantly consistent in predicted magnitudes across the solder joints irrespective of the damage parameters used. Several failure modes drive solder joints and damage mechanics from the research and understand an essential variation in the models' predicted values. This investigation presents a method of managing preventive maintenance time of BGA electronic components in mission-critical systems. It recommends developing a novel life prediction model based on a combination of the damage parameters for enhanced prediction. The FEA random vibration simulation test results showed that different solder alloys have a comparable performance during random vibration testing. The fatigue life result shows that SAC405 and SAC396 have the highest fatigue lives before being prone to failure. As a result of the FEA simulation outcomes with the application of Coffin-Manson's empirical formula, the author can predict the fatigue life of solder joint alloys to a higher degree of accuracy of average ~93% in an actual service environment such as the one experienced under-the-hood of an automobile and aerospace. Therefore, it is concluded that the combination of FEA simulation and empirical formulas employed in this study could be used in the computation and prediction of the fatigue life of solder joint alloys when subjected to random vibration. Based on the thermal and mechanical responses of lead-free SAC405 and SAC396 solder alloys, they are recommended as a suitable replacement of lead-based eutectic Sn63Pb37 solder alloy for improved device thermo-mechanical operations when subjected to random vibration (non-deterministic vibration). The FEA simulation studies' outcomes are validated using experimental and analytical-based reviews in published and peer-reviewed literature.N/

    Study and characetrization of plastic encapsulated packages for MEMS

    Get PDF
    Technological advancement has thrust MEMS design and fabrication into the forefront of modern technologies. It has become sufficiently self-sustained to allow mass production. The limiting factor which is stalling commercialization of MEMS is the packaging and device reliability. The challenging issues with MEMS packaging are application specific. The function of the package is to give the MEMS device mechanical support, protection from the environment, and electrical connection to other devices in the system. The current state of the art in MEMS packaging transcends the various packaging techniques available in the integrated circuit (IC) industry. At present the packaging of MEMS includes hermetic ceramic packaging and metal packaging with hermetic seals. For example the ADXL202 accelerometer from the Analog Devices. Study of the packaging methods and costs show that both of these methods of packaging are expensive and not needed for majority of MEMS applications. Due to this the cost of current MEMS packaging is relatively high, as much as 90% of the finished product. Reducing the cost is therefore of the prime concern. This Thesis explores the possibility of an inexpensive plastic package for MEMS sensors like accelerometers, optical MEMS, blood pressure sensors etc. Due to their cost effective techniques, plastic packaging already dominates the IC industry. They cost less, weigh less, and their size is small. However, porous nature of molding materials allows penetration of moisture into the package. The Thesis includes an extensive study of the plastic packaging and characterization of three different plastic package samples. Polymeric materials warp upon absorbing moisture, generating hygroscopic stresses. Hygroscopic stresses in the package add to the thermal stress due to high reflow temperature. Despite this, hygroscopic characteristics of the plastic package have been largely ignored. To facilitate understanding of the moisture absorption, an analytical model is presented in this Thesis. Also, an empirical model presents, in this Thesis, the parameters affecting moisture ingress. This information is important to determine the moisture content at a specific time, which would help in assessing reliability of the package. Moisture absorption is modeled using the single phase absorption theory, which assumes that moisture diffusion occurs freely without any bonding with the resin. This theory is based on the Fick\u27s Law of diffusion, which considers that the driving force of diffusion is the water concentration gradient. A finite difference simulation of one-dimensional moisture diffusion using the Crank-Nicolson implicit formula is presented. Moisture retention causes swelling of compounds which, in turn, leads to warpage. The warpage induces hygroscopic stresses. These stresses can further limit the performance of the MEMS sensors. This Thesis also presents a non invasive methodology to characterize a plastic package. The warpage deformations of the package are measured using Optoelectronic holography (OEH) methodology. The OEH methodology is noninvasive, remote, and provides results in full-field-of-view. Using the quantitative results of OEH measurements of deformations of a plastic package, pressure build up can be calculated and employed to assess the reliability of the package

    Thermal Investigations Of Flip Chip Microelectronic Package With Non-Uniform Power Distribution [TK7874. G614 2004 f rb] [Microfiche 7607].

    Get PDF
    Arah aliran pempakejan sistem-sistem dan subsistem mikroelektronik adalah kearah pengurangan saiz dan peningkatan prestasi, di mana kedua-duanya menyumbang kepada peningkatan kadar penjanaan haba. The trend in packaging microelectronic systems and subsystems has been to reduce size and increase performance, both of which contribute to increase heat generation

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Lifetime Estimation of IGBTs in a Grid-connected STATCOM

    Get PDF
    Lifetime estimation of power semiconductor devices, and IGBT devices in particular, used in the power electronics integrated with power systems has gained technical importance in recent times with increased scope of distributed generation, renewable energy systems and FACTS. Since most of the common failures (wire bond and solder fatigue) are caused by thermo-mechanical stresses, the methodology of lifetime estimation starts with temperature estimation, cycle counting based on rainflow algorithm, and finally degradation calculation based on linear accumulation model. Different number of RC cells for each packaging layer in the module for the thermal model, including the influence of encapsulant is proposed for temperature estimation of IGBTs in power modules. A modified rainflow algorithm with faster execution time and time dependent temperature calculation is introduced for cycle counting. Finally, the lifetime of the IGBT is estimated during STATCOM operation using real-time load profiles for power factor variation. For a power factor variation data for a building, the lifetime is estimated to be about 3 years. Similarly, a month long arc furnace load data is considered to compare the equivalent temperature based calculation to conventional tests. 4% more degradation is observed in the equivalent temperature based calculation than compared with conventional rainflow algorithm. A simulation study on the operation parameter dependence on the stresses in a wire is considered to estimate lifetime from Finite Element Analysis (FEA) in COMSOL. Power cycling tests are conducted on two different modules (600 V, 50 A H-bridge module and a 1200 V, 150 A phase leg module) to validate the lifetime model for four months. The low power module was tested without any protection circuits and hence failed catastrophically. Wire melt-off or fusing failure was dominantly observed, following by dielectric based short circuit failure. The high power module was tested with protection circuits to prevent catastrophic damage for a maximum of 4 months. A maximum of 20% degradation in static characteristics, with decreased on state resistance was observed in the modules. The degradation is attributed to increased junction temperature as the thermal resistance increases owing to solder fatigue

    Impact of Short-Circuit Events on the Remaining Useful Life of SiC MOSFETs and Mitigation Strategy

    Get PDF
    corecore