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SUMMARY 

 Technological advancement has thrust MEMS design and fabrication into the 

forefront of modern technologies.  It has become sufficiently self-sustained to allow mass 

production.  The limiting factor which is stalling commercialization of MEMS is the 

packaging and device reliability.  The challenging issues with MEMS packaging are 

application specific.   

 The function of the package is to give the MEMS device mechanical support, 

protection from the environment, and electrical connection to other devices in the system.  

The current state of the art in MEMS packaging transcends the various packaging 

techniques available in the integrated circuit (IC) industry.  At present the packaging of 

MEMS includes hermetic ceramic packaging and metal packaging with hermetic seals.  

For example the ADXL202 accelerometer from the Analog Devices.  Study of the 

packaging methods and costs show that both of these methods of packaging are 

expensive and not needed for majority of MEMS applications.  Due to this the cost of 

current MEMS packaging is relatively high, as much as 90% of the finished product.  

Reducing the cost is therefore of the prime concern.    

This Thesis explores the possibility of an inexpensive plastic package for MEMS 

sensors like accelerometers, optical MEMS, blood pressure sensors etc.  Due to their cost 

effective techniques, plastic packaging already dominates the IC industry.  They cost less, 

weigh less, and their size is small.  However, porous nature of molding materials allows 

penetration of moisture into the package.  The Thesis includes an extensive study of the 

plastic packaging and characterization of three different plastic package samples.  
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Polymeric materials warp upon absorbing moisture, generating hygroscopic stresses.  

Hygroscopic stresses in the package add to the thermal stress due to high reflow 

temperature.  Despite this, hygroscopic characteristics of the plastic package have been 

largely ignored.  To facilitate understanding of the moisture absorption, an analytical 

model is presented in this Thesis.  Also, an empirical model presents, in this Thesis, the 

parameters affecting moisture ingress.  This information is important to determine the 

moisture content at a specific time, which would help in assessing reliability of the 

package.  Moisture absorption is modeled using the single phase absorption theory, which 

assumes that moisture diffusion occurs freely without any bonding with the resin.  This 

theory is based on the Fick’s Law of diffusion, which considers that the driving force of 

diffusion is the water concentration gradient.   

 A finite difference simulation of one-dimensional moisture diffusion using the 

Crank-Nicolson implicit formula is presented.  Moisture retention causes swelling of 

compounds which, in turn, leads to warpage.  The warpage induces hygroscopic stresses.  

These stresses can further limit the performance of the MEMS sensors.  This Thesis also 

presents a non invasive methodology to characterize a plastic package.  The warpage 

deformations of the package are measured using Optoelectronic holography (OEH) 

methodology.  The OEH methodology is noninvasive, remote, and provides results in 

full-field-of-view.  Using the quantitative results of OEH measurements of deformations 

of a plastic package, pressure build up can be calculated and employed to assess the 

reliability of the package.  
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NOMENCLATURE 

 
C  concentration of the diffusing moisture 
D  diffusing coefficient 
Co  initial uniform concentration 
C1             constant surface concentration 
Mt  total amount of diffusing moisture at time t 
M∞  total amount of diffusing moisture at infinite time 
M∞%  percentage weight gain at saturation  
M%  percentage weight gain as function of time  
N  absorbed moisture content per unit time 
Do  diffusivity constant 
Ea  activation energy 
Ta  ambient temperature 
RH  relative humidity 
Psat  saturation vapor pressure at the ambient temperature 
Ssol  moisture solubility 
Tm  mold compound temperature 
So  solubility constant 
V  volume of the deformed package 
R  universal gas constant 
A  area of the package 
Pr  pressure developed in the package 
Ph  hydrostatic pressure 
E             Young’s modulus of elasticity 
X                      function of space coordinate x 
T                      function of time coordinate t 
A                      constant of integration 
B                      constant of integration 
K                      plate stiffness 
E                      modulus of elasticity 
Am, Bm, λm       constants determined by boundary conditions 
I (u,v)              speckle intensity patterns before event effect 
I’(u,v)              speckle intensity pattern after event effect 
IB(u,v)              background irradiance 
IM(u,v)              modulation irradiance 
Io(u,v)              object beam 
Ir(u,v)               reference beam 
h  thickness of the package till mid-plane 
2h  thickness of the package 
x,y,z  Cartesian coordinates 
t  time 
k  Boltzmann constant 
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m  accumulated moisture  
l  length of the package 
wi  width of the package 
p  load on the plate 
qy, qz,y  shear forces at infinitesimal element 
my, myz    moments at infinitesimal element 
(u,v)                 Cartesian coordinates of the image space 
r                       beam ratio 
λ   constant 
α   probability of a molecule of water passing from a combined state to free  
   phase 
 β   probability of a molecule of water passing from the free to the combined  
   phase,  
                         hygroscopic swelling coefficient 
δ   deformation obtained from the experiment 
κx κy κz   curvatures causing deformations 
κc                                curvature due to concentration 
ν   Poisson’s ratio 
∆Ω                   change in optical phase   
θn                    applied n-th phase step 
σl                              surface energy of the liquid 
σs                     surface energy of the solid 
σsl                          surface energy of the solid liquid interface 
θ                     contact angle in the Young’s equation, 
                          parameter for half point average 
CERDIP           ceramic dual in-line package 
CMOS    complementary metal oxide semiconductor 
CTE                  coefficient of thermal expansion 
DIP                   dual in-line package 
ICs    integrated ciruits   
MEMS               microelectromechanical systems 
MOSFET          metal-oxide semiconductor field-effect transistor 
NDT                  non-destructive testing 
PDIP                 plastic dual in-line package 
PEPs                  plastic encapsulated packages 
PEMs                plastic encapsulated microcircuits 
PLCC                plastic leaded chip carrier 
PPGA                plastic pin grid array 
PQFP                plastic quad flatpack package 
SIP                    single in-line package   
SOP                  small-outline package 
TSOP                thin small outline package 
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1.  INTRODUCTION 

1.1.  What is MEMS ? 

MicroElectroMechanical Systems is popularly known as MEMS.  MEMS is a 

diverse technology which is an amalgamation of all the faculties of engineering and 

science.  A few years ago it was a nascent technology stressing on the physics and 

chemistry of the silicon wafer and microfabrication.  Now is the actual boom time for this 

field which promises to make fully assembled  systems  that  can  do  what  large  scale  

systems  cannot  do  as affordably  as MEMS.  Things behave substantially different in 

micro domain.  Forces related to volume, like  weight  and  inertia,  tend  to  decrease in  

significance.  Forces related to the surface area, such as friction and electrostatics tend to 

be large.  Forces like surface tension that depend upon an edge become enormous 

(Madou, 1997).  MEMS devices are currently fabricated, integrated with controlling 

microelectronics on a single chip Fig. 1.1 (Baltes et al., 2002; Pryputniewicz, 2003a). 

 

 
Fig. 1.1.  CMOS and MEMS integration (Courtesy: Sandia National Laboratories). 
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MEMS consist of sensors, actuators, passive components, power management 

circuits, analog and digital integrated circuits.  These smart devices transduce physical 

parameters of the process environment to electrical signals and vice versa.     

MEMS design methodology can be summarizes with flow chart, Fig. 1.2. 

 

 
Fig. 1.2.  MEMS design methodology. 
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Using the fabrication techniques and materials of microelectronics as bases, 

MEMS processes construct both mechanical and electrical components.  MEMS are not 

about any one single fabrication or limited to a few materials.  It is a fabrication approach 

that conveys the advantage of miniaturization, multiple components, and 

microelectronics to the design and construction of integrated electromechanical systems.  

Regardless of what type of micromachining processes are used all MEMS fabrication 

share the following key characteristics: 

1) miniaturization: structures that are relatively small and light in weight lead to 

devices that have relatively high resonating frequencies.  These high resonant 

frequencies, in turn, mean higher operating frequencies and bandwidth for sensors 

and actuators.  Thermal time constants-the rates at which structures absorb and 

release heat are short for smaller, less massive structures.  But miniaturization is 

not the principal driving force for MEMS that it is for microelectronic devices 

such as IC’s.  Because MEMS devices are by definition interacting with some 

aspect of the physical world such as pressure, inertia, fluid flow, light etc.  There 

is a size below which further smallness is detrimental to the device and system 

operation.  The minimum size usually varies between one to two orders of 

magnitude larger than the smallest microelectronic device (Madou, 1997), 

2) multiplicity: it makes it possible to fabricate a million components easily and 

quickly in one fabrication process.  Such economics of costs and scale are critical 

for reducing unit costs.  Equally important advantage of multiplicity is the 
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additional flexibility in the design of massively parallel and interconnected 

systems. 

3) microelectronics: these integrated into the MEMS devices provide the latter with 

greater intelligence and allow closed loop feedback systems, localized signal 

conditioning, and control, for example control of parallel actuator arrays becomes 

possible with integrated circuitry, 

4) active surfaces: devices are attached to a surface so that there is a fixed topology. 

The devices are coupled primarily to the dynamics of the medium they are 

manipulating, leading to a movement in the degree of global as well as local 

coordinate systems. 

 

 

1.2.  Applications of MEMS 

MEMS devices can be used as miniature sensors, controllers or actuators.  They 

have become increasingly dominant in every aspect of commercial marketplace as the 

technologies for microfabrication continue to be developed.  World market projection for 

MEMS sensors is shown in Table 1.1 (Madou, 1997).  MEMS find applications in 

various fields.  But so far, very few commercial applications exist.  Some that are present 

in the commercial market are inertial sensors like accelerometers, gyroscopes, inkjet 

printers, video projection systems, gas and chemical sensors, and biomedical devices like 

muscle stimulation, blood monitors, etc (Camporesi, 2003).  Vast amount of research can 

help MEMS find place in the following field Table 1.2 (Madou, 1997). 
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Table 1.1.  World market projection for MEMS and sensors (in million of dollars). 
 1995 1997 1999 2000 
Si sensors in all 
applications 

1316 1858 2549 Not 
available

Si sensors in 
automobiles 
specifically 

414 621 884 Not 
available

Si sensors and Si 
Microsystems 

Not 
available 

Not 
available 

Not 
available 

3665 

Si bases MEMS 2700 Not 
available 

Not  
available 

11900 

All sensors 8500 Not 
available 

Not 
available 

13100 

All industries 
and scientific 
instruments 

5900 Not 
available 

Not 
available 

82000 

 

 

 

Table 1.2.  Applications of MEMS sensors. 
Area Application 

Automotive pressure sensors, flow sensor, accelerometer 
gyroscopes  

Aerospace industry tempertature sensors, chemical sensors, active 
flight control surfaces, microsatellites 

Healthcare and 
biomedical 

disposable blood pressure transducer (DPT), 
intrauterine pressure sensor, angioplasty 
pressure sensor, micronozzle injection systems 
microfluidic systems, hearing aids, DNA testing 
(gene probes) 

Information 
technology 

data storage (millipede), displays, video 
projectors, ink jet print heads 

Telecommunications RF switches, variable optical amplifier, tunable 
lasers, inductors 

Consumers products Bicycle computers, fitness gear using 
hydraulics, washers with water level controls in 
washing machines, smart toys 
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1.3. Fabrication of MEMS 

MEMS are incredibly small devices that are fabricated using state of the art 

integrated circuit (IC) batch processing technology (Pryputniewicz, 2003a).  

Microfabrication of MEMS can be divided into three types, surface micromachining and 

bulk micromachining and LIGA. 

 

 

1.3.1. Surface micromachining 

This technique deposits layers of sacrificial and structural material on the surface 

of a silicon wafer.  As each layer is deposited it is patterned and some of the material is 

removed by etching, leaving material only where the designer wishes.  When the 

sacrificial material is removed, completely formed and assembled mechanical devices are 

obtained (Trimmer, 1997).   

SUMMiT VTM known as Sandia Ultra Planar, MEMS Technology using 5 

structural layers, is a state of the art fabrication technique (Pryputniewicz, 2002).  The 

fabrication process is a five-layer polycrystalline silicon surface micromachining process 

(one ground plane/electrical interconnect layer and four mechanical layers).  With this 

more advanced systems can be created on moveable platforms, Fig. 1.3a.  Much taller 

devices can be made (up to 12 microns high), making possible greater stiffness and 

mechanical robustness in the devices, Fig. 1.3b. The additional height can also be used to 

increase the force produced by actuators, Fig. 1.3c. The design flexibility in a five-layer 
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technology is truly enormous - devices for applications that have not yet been imagined 

are now a possibility. 

 

                           
                  (a)                                               (b)                                               (c) 

Fig 1.3.  Advanced MEMS systems (a) meshing gears on a movable platform,  
                  (b) laminated support springs,  (c)  a laminated comb (Courtesy: Sandia 

National Laboratories).  
 
 

The SUMMITTM-V is a batch fabrication process using conventional IC 

processing tools (Shepherd, 2002; Pryputniewicz et al., 2003d). Using this technology, 

high volume, low-cost production can be achieved. The processing challenges, including 

topography and film stress, are overcome using methods similar to those used in the 

SUMMiTTM Process: topography issues are mitigated by using Chemical-Mechanical 

Polishing (CMP) to achieve planarization, and stress is maintained at low levels using a 

proprietary process. 

MEMS are also produced in the SUMMiTTM-V Fabrication Process by alternately 

depositing a film, photo lithographically patterning the film, and then performing 

chemical etching. By repeating this process with layers of silicon dioxide and 

polycrystalline silicon, extremely complex, inter-connected three-dimensional shapes can 

be formed (Pryputniewicz et al., 2003d). The photolithographic patterning is achieved 
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with a series of two-dimensional "masks" that define the patterns to be etched. The 

SUMMiTTM-V process uses 14 individual masks in the process, approximately the same 

quantity as in many CMOS, IC processes. 

 

 
Fig. 1.4.  Five fabrication layers (Courtesy: Sandia National Laboratories). 

 

 

1.3.2. Bulk micromachining 

Silicon bulk micromachining means that three-dimensional features are etched 

into the bulk of crystalline and non-crystalline materials.  Dry etching defines the surface 

features in the x-y plane and wet etching releases them from the plane by undercutting. 

These sculpted-out cavities can then become the building blocks for cantilevers, 

diaphragms, or other structural elements needed to make devices such as pressure, or 

acceleration, sensors. This technique has come to be known as bulk micromachining 

because the chemicals that pit deeply into the silicon produce structures that use the entire 

mass of the chip (Tao and Bin, 2002). This process has the disadvantage that it uses 

alkaline chemicals to conventional chip processing (Camporesi, 2003). 
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 A surprising number of structures can be made using the etch stop planes in 

crystalline silicon, Fig. 1.5. 

 

 
Fig. 1.5.  Wet etching (Trimmer, 1997). 

 

 

1.3.3. LIGA 

 The acronym LIGA comes from the German name for the process (Lithographie, 

Galvanoformung, Abformung).  LIGA uses lithography, electroplating, and moulding 

processes to produce microstructures.  It is capable of creating very finely defined 

microstructures of up to 1000µm high.  In the process as originally developed, a special 

kind of photolithography using X-rays (X-ray lithography) is used to produce patterns in 

very thick layers of photoresist (Banks, 2002).  The X-rays from a synchrotron source are 

shone through a special mask onto a thick photoresist layer (sensitive to X-rays) which 

covers a conductive substrate, Fig. 1.6a.  This resist is then developed, Fig. 1.6b.  The 

pattern formed is then electroplated with metal, Fig. 1.6c.  The metal structures produced 

can be the final product, however it is common to produce a metal mould, Fig. 1.6d.  This 
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mould can then be filled with a suitable material, such as a plastic, Fig. 1.6e, to produce 

the finished product in that material, Fig. 1.6f.  

 

 

 

Fig. 1.6.  LIGA fabrication (Banks, 2002). 
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2.  PACKAGING OF MEMS 

With an in depth research and a multi-million dollar industrial growth, fabrication 

and testing of MEMS has been well established.  Most of the early packaging 

technologies of semiconductor microelectronics influence the choice of packaging of 

MEMS devices.  The Webster dictionary defines package as “a group or a number of 

things, boxed and offered as a unit” (Gerke, 2003).  The art of packaging manifests itself 

in novel and unique creations that ingeniously reconcile and satisfy what seems like 

mutually exclusive application requirements and constraints posed by the laws of nature 

and the properties of materials and processes. All application requirements can be 

summed up in three words: cost, performance, and reliability (Tummala, 1989). 

Packaging, as summarized in Table 2.1, involves many disciplines.  Skillful 

applications of these and other disciplines provide successful solutions to the driving 

forces of packaging applications.  The evolution of packaging is a response to the need to 

optimize for cost, performance and reliability, with the emphasis shifting according to 

application priorities. 

 

 

2.1. Overview of packaging for microelectronics 

In the state of the art, MEMS are fabricated using manufacturing processes and 

tools similar to those used in the microelectronics industry.  Many of these tools are 

directly used, while others are modified to meet the specific needs of MEMS (O’Neal et 

al., 1999). 
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Table 2.1.  Packaging disciplines (Tummala, 1989). 
Discipline To address 

Applied physics Stress analysis 
Ceramic engineering Ceramic materials and processes 
Chemical engineering Chemical process systems 

Chemistry Package process 
Electrical engineering Electrical design 
Industrial engineering Cost and production analysis 

Mechanical engineering Mechanical design tools 
Metallurgical 
engineering 

Metallization process, solder and braze 
connections 

Physics Electrical, thermal and mechanical 
characteristics 

Polymer chemistry Polymers and plastic materials and 
processes 

Thermal engineering Heat transfer 
 

 

It is necessary for this Thesis to study the packaging of microelectronics because 

MEMS packaging transcends and works on the rules of the IC industry.  There are 

generally four levels in the hierarchy of the microelectronics packaging structure 

(Tummala, 1989). 

Packaging has evolved as a physical hierarchy of interconnect structures that are 

delineated according to specific levels, Fig 2.1.  Although there are actually 4 levels, the 

number expands to 5 if integrated circuits are included.  The IC can be represented as 

level 0 because it involves the interconnection of numerous transistors, gates, or cells 

within the chip itself (Johnson, 1989).  Level 1 occurs when the individual circuit or chip 

is extracted from the wafer and placed into an individual carrier or container.  Several 

carriers are then mounted and interconnected on a printed circuit board (PCB), 
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representing level 2.  An array of boards, interconnected by means of a mother board and 

configured into a sub system, represent level 3, and the complete system, level 4.   

 
             Fig. 2.1.  Hierarchy of IC packaging (Johnson, 1989). 

 

In such a coordinated system, every level of packaging, must perform certain 

functions.  First the package must provide electrical connection for the transfer of power 

and information bearing signals between the semiconductor chip and the outside world.  

Second, the package must mechanically support the small, fragile chip for subsequent 

processing, handling, and performance. Third, it must protect the sensitive chip from 

atmospheric variables such as moisture, dust, and gases that may adversely influence its 

performance.  Fourth, because the chip converts most of the electrical power it consumes 

into heat, the package must dissipate the heat in order to prevent degradation in 

performance and a concomitant reduction in operational lifetime (Harper, 1969).  In 

fulfilling these functions the package imposes constraints on the chip.  It typically 

degrades the electrical performance of the device, substantially increases the effective 
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size and weight of the chip, encumbers testing, and introduces reliability problems.  The 

package also adds to the cost, that often exceeds that of the chip itself.  Hence packaging 

is a complex balance between the provision of desired functions and reduction of 

associated constraints, all at an affordable price (Johnson, 1989). 

 

 

2.1.1.  MEMS packaging vs IC packaging 

But MEMS packaging differs from IC packaging techniques.  Unlike the IC die 

packaging, MEMS dice need to interface with the environment for sensing, 

interconnections and actuation (Hsieh et al., 2002).  MEMS packaging is application 

specific and the package allows the physical interface of the MEMS device to the 

environment.  In the case of fluid mass flow control sensor, the medium flows into and 

out of the package.  This type of packaging is referred to as media compatible packaging.  

Harsh environments may create different challenges for the packaging of MEMS. 

Table 2.2 shows the comparison of MEMS packaging and IC packaging with reference to 

some processes (Hsieh et al., 2002). 

Packaging of MEMS is considerably more complex as they serve to protect from 

the environment, while somewhat in contradiction, enabling interaction with that 

environment in order to measure or affect the desired physical or chemical parameters 

(Ramesham, 2000).  The difference can be apparent as shown in Figs 2.2 and 2.3. 
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Table 2.2.  Comparison of MEMS packaging and IC packaging. 
 Item IC packaging MEMS packaging 

1 Capping    

2 Dicing     

3 Die Bonding     

4 Wire bonding     

5 Pre-molding    

6 Post molding    

7 Hermetic     

8 Wafer Bonding    

9 Testing     

10 Stiction     

11 Reliability     

12 Standard     

13 Cost     
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        Fig. 2.2.  Functionality of IC package.     

 

        
Fig. 2.3.  Functionality of MEMS package. 

 

The goal of IC packaging is to provide physical support and an electrical interface 

to the chip and to isolate it physically from adverse effects of its environment. MEMS 

devices, on the other hand, often are interfaced intimately with their environment and are 

less generic in nature. Consequently, MEMS packaging must address different and more 

diverse needs than IC packaging (Baert et al., 2004): 

1) MEMS do not obey scaling laws like IC’s do, 
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2) they consist of a larger variety of basic building blocks; sensors and actuators and 

are comprised of acoustic, chemical, magnetic, optical and pyroelectric, resistive 

and thermoelectric elements, 

3) MEMS packaging functionalities are inherently broader. IC packages must 

accommodate ever-denser electrical I/Os and increasing levels of electrical power 

and thermal dissipation. Ambient parameters such as moisture or pressure are 

treated as undesirable noise signals to be isolated from the IC by the package. In 

MEMS packaging, the electrical I/O typically is unidirectional and less dense. 

The electrical and thermal power handling is less demanding, but at least one of 

the non-electrical influences becomes a desired input. 

 

Due to additional packaging requirements for MEMS, the classification of 

traditional IC packaging into at least four hierarchical levels of packaging is less 

applicable to MEMS. While wafer-level packaging (also known as 0-level packaging) for 

ICs comprises the interconnection of numerous transistors, gates or cells within the chip 

itself, wafer-level packaging of MEMS encompasses all wafer-level operations. First-

level packaging is performed after individual MEMS devices have been extracted from 

the wafer (Baert et al., 2004). 
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2.2.  Requirements and functions of MEMS packages 

MEMS package requirements are different from those of the IC industry and 

extrapolating the philosophies of IC packaging to MEMS seems arguable.  All MEMS 

devices move, but the mode and the purpose of motion determine the packaging 

requirements.  The following list indicates some of the basic modes of motion (Gilleo, 

2002): 

1) deformation: no moving parts that touch, can be considered to be just bending or 

twisting, 

2) moving parts, but with no rubbing. 

3) moving parts with rubbing, no impact. 

4) motion with impact. 

5) moving parts with rubbing and impact. 

The package serves to integrate all of the components required for a system 

application in a manner that minimizes size, cost, mass, and complexity (Persson et al., 

2002).  The package provides the interface between the components and the overall 

system. On basis of this the various functions of a MEMS package can be enumerated as 

follows (Gerke, 2003): 

1) mechanical support: due to the presence of moving parts the very nature of 

MEMS is mechanical.  Hence there is a need to support and protect the device 

from thermal and mechanical shock, vibration, etc.  The mechanical stress 

endured depends on the final output of a specific application.  With respect to this 

understanding one consideration is that the coefficient of thermal expansion 



 37

(CTE) of the package should be equal to or slightly greater than the CTE of 

silicon for reliability, since thermal shock or thermal cycling may cause die 

cracking and de-lamination if the materials are unmatched. 

2) protection from environment: MEMS devices are used to measure something in 

the intermediate surrounding environment.  Hence the hermeticity may not apply 

to all MEMS devices.  These devices might be just encapsulated or housed to 

prevent damage.  Many elements in the environment can cause corrosion or 

physical damage to the metal lines of MEMS as well as other components.  Hence 

moisture is a major concern.  The susceptibility of the MEMS to moisture damage 

is dependent on the materials used in manufacture.  Moisture is readily absorbed 

by some materials used in the MEMS fabrication, die attachment, or within the 

package, this absorption causes swelling, stress, and possibly delamination, 

3) electrical connection to other system components: the package is the primary 

interface between the MEMS and the system, it must be capable of transferring 

DC power and in some designs, RF signals (Persson et al., 2002). 

4) thermal considerations: with the push to increase the integration of MEMS with 

power from other circuits such as amplifiers perhaps even within a single 

package, the temperature rise in the device junctions is substantial and may cause 

the circuits to operate in unsafe region. 
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2.3.  Packaging issues and challenges 

Packaging of MEMS has been and continues to be a major challenge. It costs 

about 50% to 90% of the total cost of the MEMS product (Deshpande and Pryputniewicz, 

2004a).  MEMS packaging encompasses three major tasks: assembly, packaging and 

testing.   

 

 

Fig. 2.4.  Percentage costs incurred in MEMS  
production. 

 

The challenges faced during the packaging of the MEMS are: 

1) media compatibility: MEMS devices need to operate in diverse environments 

such as under automobile hoods, intense vibrations, in salt water, strong acids or 

other chemicals, alkaline or organic solutions.  The package while performing 

detection or actuation must be able to withstand the environments (Ulvensoen, 

1999), 

2) the effect on reliability of the MEMS die, that packaging parameters induce: the 

package is a part of the complete system and should be designed as the MEMS 

chip is designed, with specific and many times custom package.  It is necessary 

for the chip, package and environment to function together and must be 
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compatible with each other (Senturia et al., 1988).  This determines which 

materials and what design considerations and limitations become important.  One 

of the major challenges is the issue of material properties.  The properties of 

materials depend on how they are used, processed, the heat treatments to which 

the materials are subjected.  One positive point is that the defect density decreases 

with the size for materials and MEMS devices are so small that the chance of a 

killer defect occurring in a device is reduced, 

3) packaging of MEMS dice is application specific and hence desired process steps 

vary significantly. It is important to classify MEMS dice from the packaging 

requirements and develop the packaging standards and related knowledge base 

(Pryputniewicz, 2003b). 

4) release and stiction: typically the polysilicon features are supported by silicon 

dioxide, which is used as a sacrificial layer (Gilleo, 2001).  The challenge in this 

is when the etching should be done to release the features.  Complementary to this 

is the issue of stiction.  The risk of stiction occurs during the release and after the 

release.  Stiction occurs from the capillary action of the evaporating rinse solution 

in the crevices between structural elements like cantilevers and the substrate. 

5) dicing: the challenge is in dicing of the wafer into the individual dice. It is 

typically done with a diamond saw a few mils thick.  This requires the coolant to 

flow over the surface of the very sensitive dice along with silicon and diamond 

particles.  These particles combined with the coolant can contaminate the devices 
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and get into the crevices of the features causing the device to fail (Persson et al., 

2002). 

6) die handling: in order to handle MEMS chips, die handling fixtures and methods 

that hold the chips by the edges are required.  These could be fingers or clamps 

that delicately handle these MEMS dice by their edges (Hsieh et al., 2002). 

7) stress: when polysilicon is deposited a great deal of stress is produced in the films.  

This stress can be annealed out at a temperature of around 1000°C. 

8) another source of stress results from the die attach materials at the interface 

between the MEMS die and the package substrate. 

9) outgassing: when epoxies are used as in the case of plastic encapsulation, the die 

attach compounds outgas as they cure.  These water and organic vapors redeposit 

on the features, in crevices and on bond pads (Hsieh et al., 2002). 

10)  moisture penetration: many MEMS chips are hermetically sealed to exclude 

oxygen and moisture that can cause wear, stiction, and friction problems.  Oxygen 

can degrade lasers and water can damage optics.  Hence the issue is to find a 

solution to eliminate the moisture penetration problem and answer the question 

whether the package needs to be a hermetic one or just dry (Gilleo, 2002), 

 

 

2.4.  Types of packaging 

Each MEMS application usually requires a specific package design to optimize its 

performance or to meet the needs of the system for the given application.  It is possible to 



 41

loosely group packages into the following several categories (Gerke, 2003).  These 

various types have been adpated from the ones available in the IC industry (Tummala, 

1989). 

 

 

2.4.1. Metal packages 

These are often used for microwave multichip modules and hybrid circuits 

because they provide excellent thermal dissipation and excellent electromagnetic 

shielding.  Usually the metal packages is the outer most layer of the packaging process 

(3rd level packaging), the ceramic substrate and the device holder are all included in the 

packaged device. The selection of proper metal can be critical.  Metal packages satisfy 

the pin count requirements and they can be prototyped in small volumes with rather short 

turnaround periods.  Also they are hermetic when sealed (Tummala, 2001).  They are 

more expensive than plastic package (Ramesham and Ghaffarian, 2000). 

                                 

Fig. 2.5. Metal wall packages (Courtesy: Kyocera). 
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2.4.2.  Ceramic packages 

 These packages have several features that make them suitable for MEMS. They 

provide low weight, are easily mass produced and can be low in cost.  They can be made 

hermetic and can more easily integrate signal distribution lines and feed-through.  The 

multilayer ceramic packages could reduce the size and the cost of the device.  These 

types of packages are generally referred to as co-fired multiplayer ceramic packages 

(Gerke, 2003).  Ceramics have dielectric constants from 4 to 10000, thermal expansion 

coefficients matching silicon 30×10-7/ºC or copper 170×10-7/ºC and thermal 

conductivities from one of the best insulators to better than aluminium metal 220 W/m-

°K (Holmes, 2000).  Dimensional stability as measured by shrinkage control has been 

achieved at better than ±0.1% of nominal shrinkage, allowing as many as 30 to 50 layers 

of ceramic to be metallized (Holmes, 2000).  Ceramic packages can be found in a variety 

of forms, such as DIP’s, chip carriers, flat packs, and pin grid arrays.  A ceramic dual in 

line package will cost approximately $0.82 and a 14 pin plastic package costs $0.063 

(Maluf, 2000). 

           

                    (a)                                              (b)                                            (c) 

Fig. 2.5.  Ceramic packages a) dual-inline package CerDIP, b) flat pack package,  
c) ball grid array (Courtesy: Amkor). 
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2.4.3. Thin film multilayer packages 

 Within the broad subject of thin-film multilayer packages, Fig 2.6a, two general 

technologies are used.  One method is using sheets of polyimide laminated together in a 

way similar to that used for the low-temperature co-fired ceramic (LTCC) packages. Its a 

three-dimensional (3D) ceramic technology. It utilizes the z-dimension for interconnect 

layers, embedded circuit elements, and integral features like shelves and cavities, Fig. 

2.6b.  Each individual sheet is typically 25µm and is processed separately using thin-film 

metal processing.  In another such technique polymer material is used (Harper, 1969). 

                                         

                               (a)                                                                             (b) 

Fig. 2.6.  Multilayer packages a) multilayer packages, b) LTCC package (Lawson, 2003) 
(Courtesy: Kyocera). 

 

 

2.4.4.   Plastic packages 

Plastic packages have been widely accepted by the electronics industry due to 

their attractive low prices and low manufacturing costs (Tummala, 1989).  This kind of 

packaging can be very attractive to the MEMS because they cost less, weigh less, and can 

be small.  Unfortunately they suffer from moisture absorption which decreases reliability 
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(Tummala, 1989).  Molded packages are not hermetic, unlike the metal and ceramic 

packages (Ramesham and Ghaffarian, 2000).  Polymer and metal are flesh and bones of a 

plastic package.  There are two main approaches to plastic packaging such as post-

molding and pre-molding.  The pre-molding packages separate into injection molding and 

transfer molding (Hsieh et al., 2002).  The molding process is a harsh process which 

involves melting the thermosetting plastic at 175ºC, then flowing it under relatively high 

pressure of about 6 MPa, into the mold cavity before it is allowed to cool.  The 

temperature cycle gives rise to sever thermal stresses, due to mismatch in coefficients of 

thermal expansion between plastic, lead frame, and die (Ramesham and Ghaffarian, 

2000).   
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3.  MATERIALS FOR MEMS AND PACKAGES 

3.1.  Materials used in making the micromechanical system 

The integrated MEMS comprise of the IC and the micromechanical device on the 

same die. The IC side generally comprises of the CMOS, MOSFET, etc.  Design of 

microsystems and their packaging however is different from that of microelectronics.  A 

checklist of factors that help the MEMS designer in selecting substrate materials for 

microsystems is summarized in Table 3.1 (Madou, 1997). 

 

Table 3.1. Typical electrical resistivity of insulators, semiconductors and conductors. 
 

Materials 
Approximate electrical 

resistivity ρ, Ω-cm 
 

Classification 
Silver 10-6 

Copper 10-5.8 

Aluminium 10-5.5 

Platinum 10-5 

 
Conductors  

Germanium 10-3-101.5 

Silicon 10-3-104.5 

Gallium arsenide 10-3-108 

Gallium phosphide 10-2-106.5 

 
Semiconductors 

Oxide 109 

Glass 1010.5 

Nickel 1013 

Diamond 1014 
Quartz 1018 

 
 

thermal insulators 

 
 
 

3.1.1.  Silicon as a substrate material for MEMS 

Silicon is the most abundant materials of earth.  Mostly it occurs in compounds 

with other elements.  Silicon is an extremely good mechanical material (Pryputniewicz, 

2003a).  The basis of micromechanics is that silicon in conjunction with its conventional 
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role as an electronic material that can take advantage of an advanced microfabrication 

technology, can be exploited as a high precision, high strength, high reliability 

mechanical material (Madou, 1997). 

The four factors that have made silicon important as a mechanical material are: 

1) available in abundance, inexpensive, can be produced and processed controllably 

to unparalleled standards of purity and perfection, 

2) silicon processing is based on very thin deposited films which are highly 

amenable to miniaturization, 

3) definition and reproduction of the device shapes and patterns are performed using 

lithographic techniques, 

4) it can be batch fabricated. 

Polysilicon is a polycrystalline compound of silicon which is popularly used.  

Polysilicon can be deposited onto silicon substrates by chemical vapor deposition as 

illustrated in Fig. 3.1.  

 

 
Fig. 3.1.  Polysilicon deposition on a silicon substrate. 
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 A comparison of some key properties of polysilicon and other materials is 

presented in Table 3.2 (Madou, 1997; Pryputniewicz, 2003a). 

Table 3.2.  Comparison of mechanical properties of polysilicon and other materials. 

 
 

Materials 

Modulus of 
elasticity 

GPa 

 
 

Poisson’s ratio 

Coefficient of 
thermal expansion 

ppm/°C 
As substrates 

Silicon 190 0.23 2.6 
Alumina 415  8.7 
Silica 73 0.17 0.4 

As thin films 
Polysilicon 160 0.23 2.8 
Thermal SiO2 70 0.2 0.35 
LPCVD SiO2 270 0.27 1.6 
PECVD SiO2 - - 2.3 
Aluminium 70 0.35 25 
Tungsten 410 0.28 4.3 
Polymide 3.2 0.42 20-70 

 
 
 
 
 

3.2.  Material requirements for MEMS packaging 
 

3.2.1.  Die attach materials 
 
 MEMS devices are diced from a wafer and mounted on a substrate which may be 

ceramic, metal, or plastic (Pryputniewicz, 2003a).  Some of the properties for choosing 

the die attach materials are: 

1) tensile strength, 

2) fatigue strength, 

3) coeffcient of thermal expansion (CTE),  

4) thermal conductivity, 
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5) outgassing, 

6) shear strength, 

7) fracture toughness, 

8) moisture absorption rate, 

9) cost. 

The die attach material should strongly adhere to the substrate so that the die does 

not move with respect to the substrate.  This kind of die movement can cause serious 

problems in all MEMS which require alignment.  Fracture toughness for materials such 

as glass, is very important because it determines the material resistance to failure 

(Dressendorfer et al., 2000).  The CTE mismatch between the die attach, silicon and 

substrate may result in undesirable stresses causing cracks in the bond.  Most of the times 

the attachment material must conduct heat from die to the substrate, thermal conductivity 

then becomes important.  Various die attach materials are enumerated below (Tummala, 

2001). 

1) soft materials: 

a)  lead based solders, 

b)  organics (epoxies and polyimides). 

 Thermal mismatch between the die and the heat sink, or board, is absorbed 

primarily by the bond itself, making it susceptible to fatigue fracture or disbanding, but 

transmitting little damage due to stress (Olsen and Berg, 1997). 

2)  hard materials: 

a)  gold based eutectics (AuSi, AuSn, AuGe), 
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b)  glass. 

 Bonds of these materials are highly resistant to fatigue, but transfer high 

mismatch stress to the device, which may lead to die cracking (Moghadam, 1983). 

 One way to reduce the stress induced to the die is to use organic rather than 

inorganic materials for the die attach (Dressendorfer et al., 2000).  Also organic adhesives 

are widely used due to their low cost and ease of rework.  Organic die attach materials are 

typically not used for ceramic packages because, the higher temperature needed to 

produce frit seal after the die attach process, may degrade the properties of the adhesive.  

Common organic die attach materials are epoxies, silicones, and polyimides, Table 3.3. 

 

Table 3.3.  Mechanical properties of die attach materials (Pecht et al., 1999). 
Material Tensile strength 

(MPa) 
Shear strength 

(MPa) 
Modulus of 

elasticity (GPa) 
Silicone 10.3 - 2.21 
Urethane 5.5-55 15.5 - 
Acrylic 12.4-13.8 - 0.69-10.3 

Epoxy silicone - 11.7 - 
Epoxy novolak 55-82.7 26.2 2.76-3.45 

Polyimide - 16.5 3.0 
Epoxy polyimide - 41 - 

Modified polyimide - - 0.275 
Epoxy bisphenol 43-85 - 2.7-3.3 

 

 Epoxies and polyimides are sometimes filled with precious metals such a silver 

(70% to 80%) which enhances electrical and thermal conductivity (Pecht et al., 1995).  

Example of a new epoxy used frequently in MEMS packaging is Ablefilm 5025 which is 

a silver filled epoxy adhesive film designed to provide good thermal and electrical 

conductivity when MEMS and ICs are integrated on a single die, Table 3.4. 
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Table 3.4.  Properties of Ablefilm 502E (Pecht et al., 1999). 
Property Unit 

Shear strength  17237 KPa-20684.4 KPa 
Glass transition temperature 90°C 

CTE below Tg 65 ppm/°C 
CTE below Tg 1.5 ppm/°C 

Thermal conductivity 3.462 W/m°C 
 

 

 

3.2.2. Substrate materials 

 The following factors determine the selection of a substrate material for MEMS 

packages: 

1) dielectric constant, 

2) loss tangent, 

3) CTE, 

4) elastic modulus, 

5) thermal conductivity, 

6) resistance to chemical., 

7) porosity and purity, 

8) cost. 

 High dielectric constant causes cross talk between “wires” or traces, because it is 

directly proportional to the capacitance.  High loss tangent (means a lot of dielectric 

absorption) causes the signals to lose their amplitude and frequency as they propagate 

through wires.  If the substrate has loss, the performance of MEMS devices are reduced 

significantly since many MEMS devices are sensitive to the frequency of the applied 
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signals (Feng et al., 2000).  An appropriate CTE is also required for substrates.  The CTE 

of the substrate must match the CTE of the die and die attach materials in order to 

minimize the thermal-mechanical stresses in package (Dressendrofer, 2000; 

Pryputniewicz, 2003b).  The commonly used substrates and some of their properties are 

summarized in Tables 3.5 and 3.6, while Table 3.7 lists common materials with respect to 

the various components of packaging. 

 

 

Table 3.5.  Mechanical properties of some common substrates (Pecht et al., 1999). 

Material Tensile strength 
(MPa) 

Modulus of 
elasticity (GPa) 

Flexural strength 
(MPa) 

BeO 230 345 250 
AIN - 310-343 360 
Si - 190 580 

Alumina (96%) 17.4 310.3 317 
Alumina (99%) 206.9 345 345 

Steatite 55.2-69 90-103 110 
Fosterite 55.2-69 90-103 124 
Quartz 48.5 71.7 - 
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Table 3.6.  Thermal properties of some common substrates (Pecht et al., 1999). 

Material Thermal conductivity 
(W/m°C) 

CTE (ppm/°C) 

BeO 150-300 6.3-7.5 
AIN 82-320 4.3-4.7 
Si 125-148 2.33 

Alumina (96%) 15-33 4.3-7.4 
Alumina (99%) 15-33 4.3-7.4 

Steatite 2.1-2.5 8.6-10.5 
Fosterite 2.1-4.2 11 
Quartz 43 1.0-5.5 

 

 

Table 3.7.  Common materials used in packaging, (Hsu, 2002). 

Components Available materials 
Die Silicon, polysilicon, GaAs, ceramics, 

quartz, polymers 
Insulators SiO2, Si3N4, quartz, polymers 

Constraint base Glass, quartz, alumina, silicon carbide 
Die bonding Solder alloys, epoxy resins, silicone rubber 
Wire bonds Gold, silver, copper, aluminium, tungsten 

Interconnect pins Copper, aluminium 
Headers and casings Plastic, aluminium, and stainless steel 
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4.  Packaging methods and processes  

 Packaging of MEMS, similar to IC technologies, need environmental protection, 

electrical signal conduit, mechanical support, and thermal management paths.  Packaging 

of MEMS is considerably complex as they serve to protect from the environment, while 

somewhat in contradiction, enabling interaction with that environment in order to 

measure or affect the desired physical or chemical parameters (Ramesham and 

Ghaffarian et al., 2000; Pryputniewicz, 2003b). 

 

 

4.1.  Basic elements of a package 

 Four basic elements can be defined in a functional package, Fig 4.1 (Gilleo, 

2001). 

1) device: the device can be a surface micromachined cantilever beam, or a 

diaphragm. It can also be a microchannel die.  Device is the die that is diced from 

a silicon wafer. 

2) wiring or routing: the next part of the system is some form of wiring structure that 

creates the pathway between the device and the bottom of the package that will 

ultimately connect to the printed wiring board (PWB).   

3) packaging enclosure: the package must have some form of enclosure to protect 

the device, wiring structure, and chip level interconnects.  The enclosure also has 

other applications of handling, board level assemblies and heat management. 
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4) board level joining system: metal leads, ball grid array, flip chip, etc., are some 

methods utilized for the board level joining system. 

 

 
Fig. 4.1.  Elements of the package (Liu, 2002).  

 

 
4.2. Packaging hierarchy 

 The MEMS packaging can be categorized into three levels, unlike the electronic 

packaging with a hierarchy of four levels (Hsu, 2002), Fig 4.2. 

1) Level 1: die level 

2) Level 2: device level 

3) Level 3: system level 

 
Fig. 4.2.  Three levels of packaging (Hsu, 2002). 
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4.2.1. Die-level packaging 

 This level of packaging involves the assembly and protection of many delicate 

components formed on the silicon wafer.  These delicate structures are, e.g., diaphragm, 

cantilever, microvalves, micropumps, etc.  The primary objectives of this level packaging 

are (Hsu, 2002): 

1) to protect the die or other core elements from plastic deformation and cracking, 

2) to provide necessary electrical and mechanical isolation of these elements, 

3) to ensure that the system functions at both normal operating and overload 

conditions. 

 

  

4.2.2. Device level packaging 

 This level of packaging requires the inclusion of proper signal conditioning and 

processing, which in most cases involves electric bridges and signal conditioning 

circuitry for sensors and actuators (Hsu, 2002). 

 

 

4.2.3. System-level packaging 

 System level packaging involves the packaging of primary signal circuitry with 

the die, or core element unit.  System packaging requires proper mechanical and thermal 

isolation as well as electromagnetic shielding of the circuitry (Hsu, 2002).  
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4.3. Basic packaging operations 

 The basic packaging operations can be enumerated as follows: 

1) die preparation: is the process by which the wafer is singulated into individual 

dice in preparation for assembly.   Die preparation consists of two major steps, 

namely, wafer mounting and wafer sawing.  Wafer mounting is the process of 

providing support for the wafer, to facilitate the processing of the wafer from 

Wafer Saw through Die Attach. During wafer mounting, the wafer and a wafer 

frame are simultaneously attached on a wafer, or dicing tape. The wafer frame 

may be made of plastic or metal., but it should be resistant to warping, bending, 

corrosion, and heat.  The dicing tape (also referred to as a wafer film) is just a 

PVC sheet with synthetic adhesive on one side to hold both the wafer frame and 

the wafer. Typically measuring 3 mils thick, it should be flexible yet tough and 

strong, and with low impurity levels as well.  Wafer saw follows wafer mounting 

and is the step that actually cuts the wafer into individual dice for assembly in 

MEMS/IC packages.  

                              
 
                          (a)                                                                             (b) 
Fig. 4.3. a) Wafer mounts (Courtesy: Semicon) b) Dicing saws (Courtesy: Semicon). 
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2) die attach: is the process of attaching the silicon chip to the die pad or die cavity 

of the support structure (e.g., the leadframe) of the package, Fig. 4. 4. There are 

two common die attach processes, i.e., adhesive die attach and eutectic die attach. 

Adhesive die attach uses adhesives such as polyimide, epoxy and silver-filled 

glass to mount the die on the die pad or cavity. The adhesive is first dispensed in 

controlled amounts on the die pad or cavity. The die for mounting is then ejected 

from the wafer by one or more ejector needles. While being ejected, a pick-and-

place tool commonly known as a 'collet' then retrieves the die from the wafer tape 

and positions it on the adhesive.  Eutectic die attach, which is commonly 

employed in hermetic packages, uses a eutectic alloy to attach the die to the 

cavity. A eutectic alloy is an alloy with the lowest melting point possible for the 

metals combined in the alloy. The Au-Sn eutectic alloy is the most commonly 

used die attach alloy in semiconductor packaging.  

 

 
Fig. 4.4.  Die attachment on substrate. 

 

3) wirebonding:  it is the most widely used method of chip interconnection in the 

microelectronics industry.  The wirebonding begins by firmly attaching back side 
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of a chip to the appropriate substrate location, or package bottom, Fig 4.5.  The 

wires are then bonded or welded, one at a time, using a special tool, wedge or 

capillary and a combination of heat, pressure and/or ultrasonic energy.  Types of 

wirebonding are (Charles, 1989): 

a) thermocompression bonding: results when two metal surfaces are brought 

in intimate contact during a controlled time, temperature, and pressure 

cycle.  During this cycle, the wire and, to some extent, the underlying 

metallization, undergo plastic deformation and atomic interdiffusion 

between the wire and bonding pad. 

b) ultrasonic bonding: is a low temperature process in which the source of 

energy for the metal welding is a transducer vibrating the bonding tool in a 

frequency range from 20 kHz to 60 kHz.   

c) thermosonic bonding: combines ultrasonic energy with the ball bonding 

capillary technique of thermocompression bonding. 

 

 
Fig. 4.5.  Circuit with its wire bonds (Charles, 1989).  



 59

4) testing: testing is performed to allow any necessary rework to be accomplished 

judiciously and at the same quality level as the initial manufacturing process 

(Grzelak, 2000).  Testing can be classified into three parts: 

a) wafer level testing: the internal microstructure of materials exerts a greater 

influence on properties of materials.  Requirements for low level 

contaminant identification, and control becomes more stringent with 

decreasing dimensions. Hence, wafer level testing deals with mostly 

material analysis (Davies, 1989).  This can be done by scanning electron 

microscopy (SEM), X-Ray microprobe spectroscopy, transmission 

electron spectroscopy (TEM), Auger electron spectroscopy, or 

Optoelectronic Holography (OEH). 

b) package level testing: electronic components are contained in a hermetic, 

or plastic, enclosures for protection from physical damage and/or the 

adverse effects of gaseous ambient products.  Consequently, package level 

tests have been developed as a means of ensuring reliable package 

performance.  These tests are useful in assessing the quality of package 

design and assembly, and they provide an estimate of package reliability 

in field use (Moore et al., 1989). 

c) component and board level physical tests: physical tests to qualify a 

component or printed circuit board (PCB) are often considered to be back 

end hurdles that can bring into focus some non-functionality.  Complete 

physical and mechanical verification is impossible, but the maturing 
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automation of inspection has greatly improved quality and reliability.  

These include automatic optical testing, solder joint inspection, plating 

thickness, and environmental testing (Palmer, 1989).  

5) sealing: sealing is a process that contains the electronic packages within an inert 

environment.  This is the known as hermetic packaging.  The process consists of 

following “steps” (Tummala, 2001): 

a) fused metal sealing, 

b) soldering, 

c) brazing, 

d) welding, 

e) glass sealing. 

Non hermetic pakcages are also gaining importance.  These feature epoxy 

molding and a blob top. 

6) marking: is the process of putting identification, traceability, and distinguishing  

marks on the package.  The device name, company logo, date code, and lot ID are 

examples of information commonly marked on the packages.  Some marks are put 

on the package during assembly and some marks are put on the package during 

test.  There are two common marking processes, namely, ink marking and laser 

marking.  The most common ink marking process for semiconductor products is 

pad printing.  Pad printing consists of transferring an ink pattern from the plate, 

which is a flat block with pattern depressions that are filled with ink, to the 

package, using a silicone rubber stamp pad.  Silicone rubber repels ink, making 
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the transfer of the ink pattern clean and efficient.  It is also resilient and elastic, 

making it possible to print even on uneven surfaces.  

   

4.4. State of the art packaging of MEMS 

  State of the art packaging of MEMS can be divided into three main areas 

(Bossche et al., 1998): 

1) single chip packaging, 

2) wafer level packaging, 

3) multi-chip modules. 

 

4.4.1.  Single chip packaging 

This packaging method is defined for typical IC standard packages.  For example 

T0-packages, ceramic packages, or pre-formed injected molded packages, are used for 

single MEMS chips.  The single chips are provided with protective layers to shield the 

vulnerable structures and circuits from environmental influences (Gessner et al., 2004).   

MEMS are diced then released to protect them from the sawing process.  Die are then 

packaged in ceramic cavity, metal can, glass and pre-molded plastic, Fig 4.6. 

 

 
Fig. 4.6.  Single chip packaging (Rao, 2002). 
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4.4.2.  Wafer level packaging 

A relatively new field of packaging is the wafer level packaging (WLP).  Wafer 

bonding techniques have gained a lot of importance during the past 10 years (Bossche et 

al., 1998).  In this process the MEMS are released at the wafer level with protection by 

another wafer cap, Fig. 4.7. 

 

 

 
Fig. 4.7.  Wafer level packaging (Rao, 2002).  

 

 A number of methods exist to bond silicon wafers to other silicon, or glass, wafers.  

These include anodic bonding, glass frit bonding, silicon direct wafer bonding (DWB), 

eutectic bonding, epoxy bonding, thermo-compression bonding, and glass to glass 

bonding (Mirza, 2000).  This method is beneficial to pursue the plastic packaging of 

MEMS on a more reliable basis.  Researchers at IC Mechanics (Guillou, 2003) have 

developed a thin film cap deposited during wafer manufacturing, Fig 4.8. 
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                             (a)                                                                           (b) 

Fig. 4.8.  3-axis MEMS accelerometer: (a) without wafer cap, (b)with wafer cap 
(Courtesy: SensorMag). 

                 
 
 

   

4.4.3.  Multi chip modules 

This type of packaging involves the packaging of different devices, such as 

sensors, actuators, and electronics, in a single compact module to make smart 

miniaturized systems (Bossche et al., 1998).  The economic aspect has caused the effect 

that the use of microsystems could be established in all those areas where large quantities 

are needed. 
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5.  PLASTIC ENCAPSULATED PACKAGES 

 Plastic encapsulated packages consist of the IC or the MEMS die, physically 

attached to the leadframe, electrically interconnected to input-output leads, and molded in 

plastic.  Plastic encapsulated packages are made in either surface-mount, or through-hole, 

configurations.  The common families of surface mounted are the small-outline package 

(SOP), the plastic-leaded chip carrier (PLCC), and the plastic quad flatpack package 

(PQFP).  The common families of through-hole mounted devices are the plastic dual in-

line package (PDIP), single in-line package (SIP), and the plastic pin grid array (PPGA). 

 

 

5.1.  Why plastic encapsulated packages ? 

Advantages of plastic encapsulated packages (PEPs) over hermetic packages: 

1) size and weight: weight of plastic packages is about half as much as ceramic 

packages.  The available plastic encapsulated microcircuits (PEMs) can give a 

general idea of the size and weight.  A fourteen lead plastic dual in-line package 

(DIP) weighs about one gram, versus two grams for a fourteen-lead ceramic DIP.  

Smaller configurations such as SOPs and thinner configurations such as thin small 

outline package (TSOP) are available only in plastic. 

2) performance: plastics have better dielectric properties than ceramics.  For typical 

applications encountered commercially, in which frequencies do not exceed 2 to 3 

GHz, plastic packages perform better than their ceramic counterparts, in the same 

form factor (Pecht et al., 1995).  The dielectric constant of typical ceramics stays 
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the same over a wide frequency range whereas the dielectric constant changes for 

plastic molding compounds.  This is because the dielectric constant is dependent 

on the amount of moisture absorption.  

3) cost:  hermetically packaged ICs may cost up to ten times more than a plastic-

packaged IC because of the rigorous testing and screening required for low 

volume hermetic parts (Pecht et al., 1995).  Hermetic packages usually have a 

higher material cost and are fabricated with more labor intensive manual 

processes. The cost of a packaged device in the microelectronics industry is 

determined by several factors.  Figure 5.1, shows an example of items that affect 

the total cost of a package.  Figure 5.2, presents the relative cost for various 

microcircuits packaging options. 

 

 

Fig. 5.1.  Cost drivers in packaging (Pecht et al., 1995). 
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Fig. 5.2.  Relative costs for various microcircuits packaging options (Pecht et al., 

1995). 
 
 

The cost benefits of PEMs decrease with higher integration levels and pin counts, 

because of the high price of the die, in relation to the total cost of the packaged 

device.  The trend towards future multichip modules in laminated packaged in 

form factors such as PQFPs or ball grid arrays make the plastic package an 

innovative packaging option (Pecht et al., 1993).  Table 5.1, compares ceramic to 

plastic cost for dual in-line packages (Pecht et al., 1995). 

 

Table 5.1.  Ratio of ceramic to plastic cost for dual in-line package.  
 

 

 

 

 

 

Lead count Cost of ceramic package/plastic 
package 

Dual-in-line package 
8 4.0 
16 6.7 
18 6.3 
20 6.0 
24 8.3 
28 7.5 
40 6.9 
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4) availability: plastic devices are assembled and packaged on continuous production 

lines, as opposed to the on-demand production of hermetic parts.  Hermetic 

packages are developed only when there are perceived high performance 

requirements and sufficient market interest. Thus acquisition lead times for plastic 

packages are significantly shorter. 

5) reliability: due to the contributions improved encapsulant materials, die 

passivation, and manufacturing processes reliability of plastic encapsulated 

packages have increases tremendously (Pecht et al., 1993).  Figure 5.3, presents 

the observed comparative failure-rate data for hermetic and non-hermetic devices 

from first year warranty information on commercial equipment operating 

primarily in ground base applications from 1978 to 1988 (Pecht et al., 1993). 

 
Fig. 5.3.  IC failure rate as a function of year (Pecht et al., 1993). 
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5.2.  Plastic packaging materials 

This section presents the research work on the plastic encapsulated materials and 

their characteristics.  The chapter has been organized in the same sequence as the 

materials used for various parts of the plastic package in the IC industry.  Fig 5.4 shows 

that cross-sectional sketch of a typical plastic encapsulated package. 

 

Fig. 5.4.  Cross-section of a typical plastic  
encapsulated package. 

 

5.2.1.  Flow of materials and parts in plastic packaging 

1) die: the silicon die to be packaged is diced from a fully processed wafer.   

2) die passivation: the purpose of die passivation is to seal the active circuit elements 

from ambient moisture, ionic contaminants, mechanical damage due to handling 

and in some cases radiation and electrostatic discharge. 

3) leadframe: the leadframe consist of a die mounting paddle and lead-fingers.  It 

primarily acts as a mechanical support to the die during package manufacture.  

The lead-fingers connect the die to the circuitry external to the package.  Material 

selection criterion includes (Pecht et al., 1995): 
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a. coefficient of thermal expansion, 

b. thermal conductivity, 

c. mechanical strength, 

d. adhesion to encapsulant and die-attach material., 

e. oxidation and corrosion resistance, 

f. stampability, formability, etchability, 

g. solderability, 

h. design configuration. 

 

4) die attach: the silicon die is attached to the die paddle of the lead frame with a die 

attach.  The die attach material include heat transfer from the dies to the 

leadframe and if needed die backside electrical contact.  Material property 

considerations in choosing die attach materials include the shear strength, void 

density on application, impurity content, volume resistivity, thermal conductivity, 

manufacturability and cost effectiveness. 

5) interconnections: of all the interconnection technologies used in packaging 

wirebonding is overwhelmingly dominant.  The criterion are: ultimate tensile 

strength, flexural strength, bond pull strength, maximum die pad bonding 

temperature, resistance to intermetallic formation, surface contamination. 

6) encapsulating compound: an encapsulant is generally an electrically insulating 

plastic material formulation that protects the die and leadframe assembly from the 

adverse effects of handling, operation, and storage.  The selection criterion are: 
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a. moldability, cure speed, melt viscosity, flash, 

b. hot hardness, 

c. mold strain resistance, 

d. ionic impurity level, 

e. molding defects, 

f. moisture resistance, 

g. adhesion to all package elements, 

h. curing stress, 

i. coefficient of thermal expansion match with leadframe, 

j. mechanical strength, 

k. glass transition temperature, 

l. thermal conductivity, 

m. thermal stability. 

 The available materials for the various plastic package parts are summarized in 

Table 5.2. 

Table 5.2.  Materials for various parts (Pecht et al., 1995). 
Die 

passivation 
Lead 
frame 

Die attach Interconnection Encapsulating  
compound 

Phosphorus-
doped 
silicon 

dioxide, 
Silion 
nitride, 

 

Cu-Zr 
Cu-Fe 
Cu-Mg 
Fe-Ni 

 

Polymer: 
resin based 
epoxies or 
polymides 
Solder die 

attach 
Gold eutectic 

die attach 

Gold 
Aluminium 

Silver 
Copper 

 

Epoxies 
Cyanate esters 

Urethanes 
Silicones 
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5.3.  Plastic package types 

 Plastic packages for the ICs are available in a wide assortment of package styles 

and lead configurations.  They can be classified as surface-mount or through-hole 

configurations. 

 

 

5.3.1.  Surface-mount configuration 

 Surface mount packages are designed for low-profile mounting on printed wiring 

boards for smaller products.  The various package configurations are: 

1) Plastic quad flat pack (PQFP): they are square or rectangular plastic packages 

with leads on all four sides.  The package consists of a metal lead frame with a 

center paddle for chip attachment.  The lead count varies from 40 to 240 pins 

(Pecht et al., 1995). The major advantage of these low-profile packages is density 

mounting.   

2) Plastic leaded chip carrier (PLCC): they are molded plastic packages with leads 

on all four sides.  The leads are formed in the J-bend configuration, with lead 

counts 18-124 (Pecht et al., 1995).  This also offers the advantage of dense 

mounting. 

3) Small outline package (SOP): they have leads only on two sides of the package 

body. Pin counts vary from 8-28.  Body widths are typically narrow, 3.675 mm to 

7.35mm (Pecht et al., 1995).  The small body size and low profile occupies lesser 

space.  The gull wing lead form allows ease of inspection of the solder joints.  
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  The common families are as shown in Fig. 5.4. 

                    
               (a)                                              (b)                                        (c) 
Fig. 5.5.  Surface mount configurations: (a) Plastic quad flat pack, (b) Plastic leaded chip 

carrier, (c) small-outline package 
(Courtesy: National Semiconductors). 

 

5.3.2.  Through-hole mounted configuration 

 The various types of through-hole mounted package designs are: 

1) plastic dual-in-line package (PDIP): it is the most commonly used plastic 

package.  It has rectangular body with two rows of leads on the long sides.  Pin 

counts range from 4 to 64 leads (Pecht et al., 1995).  These are a direct 

replacement of CERDIP packages at a much lower cost. 

2) plastic pin grid array (PPGA): they are packages with pins in a grid array under a 

plastic body.  It offers the highest density of through hole packages and the 

highest available pin counts for plastic packages (Pecht et al., 1995). 

3) single in-line package (SIP): they are rectangular plastic packages with leads on 

one of the long sides.  Not used much as it results in a high profile after mounting 

(Pecht et al., 1995). 

The common families for the through-hole mounted configuration are as shown in Fig 

5.5. 
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                                       (a)                                                  (b) 

Fig. 5.6.  Through-hole mounted configurations: (a) Plastic dual-in-line package           
(b) single-in-line package (Courtesy: National Semiconductors). 

 
 

 Some MEMS that have used the plastic packaging approach are MEMS 

accelerometers and non-hermetic camera modules, which use the plastic molded 

packages (Amkor, 2003).  Most of the MEMS devices can use the plastic encapsulation 

approach by protecting the MEMS die at the wafer level.  It involves an extra fabrication 

process, where the micro-machine wafer is bonded to a second wafer which has 

appropriate cavities etched into it.  Once bonded this creates a protective cavity over the 

micro-machine structure.  This method leaves the micro-machine free to move within a 

vacuum or an inert gas atmosphere. Once protected in this way, the device can be 

assembled in a similar way to standard plastic packaging approach (Amkor, 2004).  The 

method can be applied to any MEMS device that requires access to the environment, 

including chemical, pressure, or temperature-sensitive microsensors, CCD chips, 

photocells, laser diodes, VCSEL's, and UV-EPROMS (Peterson and Conely, 2002).  

MEMS used in the medical field like the blood pressure sensors and flush diaphragm 

sensors measure fluid pressure, that need to be disposed after one use can be packaged 

with the plastic packaging approach explained above (Swafford et al.,1997). 
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5.4.  Manufacturing process 

 Plastic package manufacturing depends on the package style (Tummala, 1989).  

Functional requirements expected from the ideal plastic-packaging method are: 

1) low resin viscosity: thermoplastic and thermosets exhibit high viscosities in the 

upper 100 Pa.  In an ideal molding process, the reacting mixture should initially 

display a low viscosity.  This would provide good wetting of the device topology. 

2) good wetting of chip components: both resin and surface tension control the 

wetting of any chip component.  Estimation of the wetting behavior of a given 

resin with a surface can be determined by the familiar Young’s equation, Eq. 5.1.  

  .cos slsl σσθσ −=                                                                     (5.1) 

      relating the surface tensions of the solid and the liquid, and the interfacial tension      

between the two would apply for different cases (Wu, 1982). 

3) good adhesion to chip components: adhesion is controlled by both resin chemistry 

and chip-surface pretreatment.  The formation of good bonds between the reacting 

resin and the uppermost layer of the chip is a direct result of good wetting.  Poor 

wetting leads to the formation of interfacial defects which act as potential sites for 

crack propagation (Mittal, 1976). 

4) resin with inherently low CTE: the CTE of a polymeric encapsulant protecting a 

substrate dictates the magnitude of the residual stresses arising from the inherent 

thermal mismatch between the two materials.  The differential expansion effects 

from a range of materials used in the device can cause small scale motions of 

several microns (Dale and Oldfield, 1977).   
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5.5.  Encapsulation process technology 

Molding techniques already established by the IC industry are transfer molding 

process, injection molding, and reaction-injection molding.  

 

5.5.1.  Transfer molding 

 Transfer molding is a process of forming components in a closed mold from a 

thermosetting material that is conveyed under pressure, in a hot, plastic state, from an 

auxiliary chamber, called the transfer pot, through runners and gates into the closed 

cavity or cavities (Pecht et al., 1995).   

 The various steps in transfer molding are: 

1) leadframes are loaded in the bottom half of the mold, 

2) moving platen and transfer plunger initially close rapidly, but the speed reduces as 

the close, progresses,. 

3) after the mold is closed and clamping pressure is applied the molding material is 

placed in the pot, and the transfer plunger or ram is activated, 

4) pre-heating of the molding compound is done by a high-frequency electronic 

method that works on a principle similar to microwave heating, 

5) transfer plunger then applies the transfer pressure forcing the molding compound 

through the runners and gates into the cavities, 

6) pressure is maintained for a certain optimum time, ensuring proper filling of the 

cavities, 
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7) then, the mold opens, and finally the component is ejected using the ejector 

system in the mold. 

 

 

Fig. 5.7.  Various stages of a typical transfer molding  
process (Courtesy: Pecht et al., 1995). 

 

 

Fig. 5.8.  Transfer molding press (Courtesy: Wabash MPI). 
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5.5.2.  Injection molding 

It is a technique that is used for making large volumes of molds at low costs.  

Injection molded parts are inexpensive because of the automated process and low cycle 

time.  However the molds are extremely complex and withstand high pressures and hence 

costly.  Injection molding was applied to semiconductor packaging in the 80s with 

thermoplastic materials (Tummala, 2001).  Poor reliability hindered the usage of this 

technique.  High viscosity of the thermoplastic material generates a lot of wire sweep due 

to the high injection pressure, which is typically an order of magnitude larger than the 

packing pressure of transfer molding.  Injection molding was not considered optimum 

considering the cost of expensive capital investment (Pecht et al., 1995). 
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6.  MOISTURE AS A FAILURE ACCELERATOR 

 The major accelerators of failure mechanisms in plastic-encapsulated packages 

are moisture, temperature, solvents, lubricants, contaminants, general environmental 

stresses, and residual stresses.  It has been widely recognized that moisture plays a 

significant role in influencing the mechanical behavior, and therefore, the long term 

durability of the polymeric encapsulants (Roy et al., 2000).  It has been established that 

the following factors and their unfavorable combinations play an important role, as far 

moisture induced failures are concerned: 

1) high moisture content, which leads to high water vapor pressure.  This 

might result in a considerable decrease in the ultimate, fatigue, and brittle 

strength of the molding compound, 

2) low fracture toughness of the molding compound, which makes it unable 

to effectively resist the initiation and propagation of fatigue and brittle 

cracks, 

3) low fracture toughness of the molding compound, which makes it unable 

to effectively resist the initiation and propagation of fatigue and brittle 

cracks, 

4) high hygrothermal stresses, the swelling and warpage of the polymeric 

material induces hygroscopic stress in the package that adds to the thermal 

stresses at high reflow temperature, raisng the susceptibility of package to 

cracking, Fig. 6.1 (Wong et al., 2002). 
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             Fig. 6.1.  Hygroscopic swelling raises package stress during solder reflow. 

 

 
6.1.  Moisture uptake in plastic encapsulants 

 
 A plastic encapsulant is generally an electrically insulating plastic material 

formulation that protects a micron size device from the adverse effects of handling, 

storage, and operation (Pecht et al., 1995).  Encapsulant techniques include molding, 

potting, glob-topping, and conformal coating.  The plastic molding compounds used in 

electronic packaging consist of resin, hardener, filler and other materials, Fig 6.2 

(Ardebili et al., 2002). 

 In general., the majority of chip packages use epoxies and molding processes.  

Recent improvements in the properties of molding compounds, plastic package designs, 

and manufacturing technologies have resulted in substantial increase in the reliability of 

plastic packages (Suhir, 1995).  A disadvantage of plastic molding compounds is that 
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they are hydrophilic and absorb moisture when exposed to a humid environment.  Hence, 

use of plastic packaging for MEMS is hampered by moisture-induced failures.  Plastic 

material is inevitable to moisture permeation.  Moisture transport in polymer systems is 

related to the availability of molecular sized holes in the polymer structure and the 

polymer-water affinity.  The availability of holes depends on the polymer microstructure, 

morphology, and crosslink density, which are functions of degree of cure, stoichiometry, 

molecular chain stiffness, and the cohesive energy density of the polymer.   

 

 
Fig. 6.2.  Molding compound composition. 

 

 

 

6.2.  Moisture diffusion theory  

  Many researches have suggested that water molecules in a polymeric material 

can be present as free molecules in the voids or bound to the polymer chains via 

hydrogen bonding (Ardebili et al., 2003).  Some issues related to the process of diffusion 

are: 
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1)  the phase of the water molecules during absorption into the plastic package.  In a 

typical environment to which plastic encapsulated packages are exposed, water 

molecules may be present in the forms of vapor, liquid, or both.  Moisture 

absorption may involve phase transformation.  Water vapor from the ambient may 

condense to the liquid phase at the exposed surfaces of the plastic package, or in 

the voids in the molding compounds.  The condensed moisture can be either is the 

form of discrete droplets on the surface or in the form of uniform layers. 

2) moisture absorption, is the path of diffusion.  Moisture mainly diffuses through 

the molding compound, but a small portion can also diffuse through the interfaces 

between the molding compound and other materials like leads, if there is de-

adhesion at their interfaces.  Inside the molding compound, the moisture may 

diffuse through the polymeric resin, or through the filler-resin interface.  The 

diffusion through polymeric resin can be referred to as bulk diffusion and the 

diffusion through interfaces between polymeric resin and other materials can be 

referred to as interfacial diffusion. 

3)  interaction between the water molecules and the polymer chains in the polymeric 

resin.  Water molecules in the polymeric chains, can either diffuse freely through 

the free volume or form hydrogen bonding to the polymer chains.  The free 

volume of the polymeric resin is defined as the volume of the resin without the 

volume of the polymer chains and the volume due to thermal vibrations of the 

polymer chains. 
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4) moisture absorption of molding compound samples is the thickness issue.  For 

relatively thin samples, moisture sorption is considered one dimensional.  In this 

research also the computational simulation is done considering it to be a one-

dimensional diffusion.   

The moisture diffusion phenomenon can be diagrammatically represented, Fig 6.3, 

(Ardebilli et al., 2003). 

 

 
Fig. 6.3.  Moisture diffusion in PEM. 

 

6.3.  Diffusion models 

Two diffusion theories have been studied for the phenomenon of moisture 

diffusion in plastic encapsulants (Bonniau and Bunsell, 1981).  The first is the classical 

single phase model of absorption in which the water molecules are not combined with the 

polymer matrix and the second, the Langmuir two phase model considers a free diffusion 

phase and a second combined phase which does not involve diffusion (Bonniau and 
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Bunsell, 1981).  Both of these models are based on the Fick’s law which considers that 

the driving force of diffusion is the water concentration gradient.  The diffusion model is 

shown in Fig. 6.4 (Deshpande and Pryputniewicz, 2004a). 

 In order to simplify the analysis of the diffusion equations the following 

hypotheses have been made (Deshpande and Pryputniewicz, 2004a): 

1) diffusion coefficient of the free phase is independent of the concentration, 

2) consider a planar phase case so that diffusion occurs in one direction only, normal 

to the plane.  The one dimensional diffusion of moisture is often considered valid, 

since the encapsulant layer adjacent to the die is relatively thin (Ardebili et al., 

2002) for the size for the plastic encapsulant.  In this Thesis the half model is 

considered, till the central plane.  Hence further reduction in the thickness of the 

package.  Thin packages can be off the range of about 0.2 to 0.02, thickness to 

length ratio (Pecht et al., 1995).  This has also been discussed in Chapter 9.  While 

a finite element modeling may provide a more accurate analysis of moisture 

diffusion as compared to 1-D analysis or use 3-D analytical solutions for 

simplified geometry, it has the major disadvantages in terms of cost and time, 

3) non-steady state surface concentration is constant and initial distribution is 

uniform, 
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Fig. 6.4.  Moisture diffusion model. 

 

 

Fick’s second law of diffusion for one-dimensional diffusion, i.e., if there is a 

gradient of concentration only along the x-axis is given by 
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x
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∂
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∂
∂             (6.1) 

where C is the concentration of the diffusing moisture, t is the time, and D  is the 

diffusion coefficient.  This equation can be solved assuming that the variables are 

separable.  Thus we may attempt to find a solution by putting 

,)()( tTxXC =             (6.2)  

where X and T are functions of x and t respectively.  Substitution of Eq. 6.2 into Eq. 6.1 

yields 
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which may be written as 
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The right hand side of Eq. 6.4 can be rewritten as  

 ,D
dt
dT

T
1 2λ−=             (6.5) 

where 

 ,2
2

2

dx
Xd

X
1 λ−=             (6.6)  

The solutions for Eq. 6.5 is 

 ,exp Dt2
T λ−=                                   (6.7)                

and the solution for Eq. 6.6 is 

 ,cossin xBxAX λλ +=            (6.8) 

this leads to the solution for Eq. 6.1 using Eqs 6.7 and 6.8, of the form 

 ,)cossin( Dt2
exBxAC λλλ −+=           (6.9)  

where A and B are constants of integration.  Since Eq. 6.1 is a linear equation, the most 

general solution is obtained by summing solutions of the type of Eq. 6.9, so that we have 

 ,)cossin( Dt2
mm

1m
mmm exBxAC λλλ −∞

=
∑ +=                  (6.10) 

where Am, Bm, and λm are determined by the initial and boundary conditions for the 

particular problem.  Thus if we are interested in diffusion out of a plane sheet of 

thickness h, through which the diffusing substance is initially uniformly distributed and 

the surfaces of which are kept at zero concentration, the conditions are 

 ,,, 0thx0CC o =<<=                               (6.11) 
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 .,,, 0thx0x0C >===                                                                (6.12) 

the boundary conditions demand that 

 ,/, hm0B mm πλ ==                                                                            (6.13) 

and hence the Eq. 6.10 becomes  

 ∑ <<=
∞

1
mo hx0hxmAC .,)/sin( π        (6.14) 

By multiplying both sides of Eq. 6.14 by sin(pπx/h) and integrating from 0 to h using the 

relationships   
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the terms for which m is even will be cancelled, and 

 ,.....,,,/ 531mmC4A om == π  

The final solution is therefore 
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where 2n+1 has been substituted for m for convenience so that n takes values 0,1,2… 

The diffusion model considered is for the case of absorption by a plane sheet 

(Crank, 1975).  If the region hxh <<−  is initially at an uniform concentration Co, and 

the surfaces are kept at a constant concentration C1, the solution in the form of 

trigonometric series becomes 
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If Mt denotes the total amount of diffusing substance which has entered the sheet at time 

t, and M∞ the corresponding quantity after infinite time, then  

 [ ] ./)(exp
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0n 22
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1n2
81
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∞
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The corresponding solutions useful for small times are 
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 It has been shown in comparative studies of water absorption theories (Shen and 

Springer, 1977) that with single phase diffusion the weight gain due to absorption can be 

expressed in terms of two parameters, the diffusion coefficient D and the weight gain at 

saturation M∞. 

For 050
h
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2 .>  , Eq. 6.18 reduces to 
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For 050
h
Dt

2 .< , the Eq. 6.18 reduces to 

 .4
π
Dt

h
MM ∞=                                                                                   (6.22) 

These theoretical curves based on Eqs 6.21 and 6.22 are plotted in Fig. 6.5. 
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             Fig . 6.5.  Theoretical curves, single absorption model. 

In fig 6.5 the i2 p
h
Dt

=  and M1, M2, M3 is 
∞M

M . 

In the two phase model, the water molecule which is polar, is capable of forming 

hydrogen bonds with the hydroxyl groups.  Water molecules can exist in polymeric 

media in two states: unbound, or bound to the polymer molecule groups.  During 

moisture diffusion in plastic molding compounds, some of the water molecules may form 

hydrogen bonds with the polymer molecules and become immobilized, while other 

diffusing water molecules move freely through the voids in the plastic compound.  This 

phenomenon is called dual mode absorption.  Considering this model the weight gain M 

as a function of time t is written in terms of four parameters, the diffusion coefficient D, 

weight gain at saturation M∞, the probability α of a molecule of water passing from a 

combined state to the free phase and the probability β of a molecule of water passing 

from the free to the combined phase.  
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For 050
h
Dt

2 .<  Eq. 6.23 becomes 
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The two phase model reduces to the single phase case when α=1and β=0. 

The theoretical curves for the two phase based on Eqs 6.24 and 6.25 model are shown in 
Fig. 6.6.  

 
             Fig. 6.6.  Theoretical curves, two phase absorption model.  
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 The theoretical curves presented here are to compare the two theories that can be 

used to study the moisture diffusion phenomenon in the plastic package. 

In this Thesis, the single phase absorption model has been considered, without 

any reactions between the water molecule and the epoxy resin. 
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7.  HYBRID METHOD 

 To understand and analyze the moisture diffusion phenomenon analytical., 

computational and experimental methods have been used to obtain the final pressure 

build up in the encapsulant (Roman, 2004; Lim, 1998; Marinis and Carter, 2004).  The 

deformation results are then verified with constitutive equations derived from the theory 

of bending of plates. A MATLAB generated code is written to analyze the pressure build 

up in the encapsulant due to the moisture accumulation and the deformation it causes due 

to warpage. 

 The diffusion coefficient D is related to the absorbed moisture content per unit 

time, N, by one-dimensional Fick’s diffusion equation, i.e., 

 ,.
x
CDN
∂
∂

−=        (7.1) 

where C is the moisture concentration and x is the coordinate in the through thickness 

direction.  The diffusion coefficient is generally known as the function of temperature, 

concentration and stress, but the major parameter is the temperature.  Hence D is 

expressed as (Kitano et al., 1988)  

,)exp()(
a

a
o kT

EDTD −=        (7.2) 

where Do is a constant, Ea  is the activation energy (ev), k is the Boltzmann’s constant, 

and Ta is the absolute ambient temperature (K).  Representative values for the mentioned 

parameters are summarized in Table 7.1 
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Table 7.1.  Values of the parameters used in the diffusion simulation 
Do Ea k Ta 

0.472 0.5 ev 8.617x10-5 eV/K 298 K 

 

It has been assumed that the moisture flux at the die-encapsulant interface is equal to 

zero, i.e., 

 ( ) ., 0
x

t0xC
=

∂
=∂          (7.3) 

 At the surface exposed to the ambient, a steady-state moisture concentration is 

given by the ambient temperature, Ta, the relative humidity, RH, and the encapsulant 

moisture saturation coefficient as (Fukuzawa et al., 1985)  

 ,),( solsat SPRHthxC ⋅⋅==       (7.4) 

where the Psat is the saturation vapor pressure at the ambient temperature.  The moisture 

solubility coefficient, Ssol, depends on the temperature, Tm, of the molding compound: 

 ,exp 
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
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
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a4
osol kT

E10SS        (7.5) 

where So is a constant, Tm is the mold compound temperature (K). 

The values of the parameters have been summarized in Table 7.2 (Kitano, 1988). 

 

Table 7.2.  Values used for calculating solubility. 
Ssol Tm 

4.96 x 10-4 448 K 

 



 93

 

 Using the ideal gas equation, deformation values from the experiment and the 

accumulated moisture the pressure build up at a particular deformation can be calculated 

(Tay and Lin, 1985; Deshpande and Pryputniewicz, 2004b). 

The accumulated moisture can be calculated as  

,
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dt
x
CDAm
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∂
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=          (7.6) 

where A is the area of the encapsulant and D is the moisture diffusion coefficient.  With 

this known quantity of the accumulated moisture ingressed into the package the pressure 

can be calculated by the Ideal gas equation (Tong and Hun, 2002) 

 ,amRTpV =          (7.7) 

where p is the pressure, V is the colume, m is the mass of moisture, R is the universal gas 

constant, and Ta  is the temperature.  The volume can be empirically calculated to be 

 AV δ=  .          (7.8) 

 

 

7.1.  Finite difference method 

 The finite difference numerical method was used to solve the diffusion equation 

(Constantinides and Mostoufi, 1999).  The one-dimensional diffusion equation is non-

homogenous form of the parabolic differential equations.  The Crank-Nicolson method 

was used.  This method is semi-implicit numeric method.  It has been popularly used for 

solving heat transfer problems.  Here it has been implemented for the Fick’s second law 
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of diffusion with Dirichlet, Neumann, or Cauchy boundary conditions (Kharab and 

Guenther, 2002). 

 
Fig. 7.1.  Finite difference grid for derivation of implicit formulas. 

 
 

Utilizing the grid of Fig. 7.1, in which half the point in the t-direction (i, n+1/2) is 

shown.  Instead of expressing ∂C/∂t in terms of forward difference around (i, n), the 

partial derivative is expressed in terms of central difference around the half point (Kharab 

and Guenther, 2002). 
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 The second order partial derivative is expressed at the half point as a weighted 

average of the central differences at points (i, n+1) and (i, n): 
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where θ is in the range 0 ≤ θ ≤ 1.  A combination of Eqs 7.9 and 7.10 results in the 

variable-weighted implicit approximation of the parabolic partial differential equation, 

i.e., 
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 Equation 7.11 is implicit because the left hand side involves more than one value 

at the (n+1) position of the difference grid.   

 Finally, when θ=1/2, Eq. 7.11 yields the Crank Nicolson semi-implicit 

representation. 
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When written for the entire difference grid, implicit formulas generate sets of 

simultaneous linear algebraic equations whose matrix of coefficients is usually a 

tridiagonal matrix.  This type of problem may be solved using the Gauss elimination 

procedure, or more efficiently using the Thomas algorithm, which is a variation of Gauss 

elimination. 

Implicit formulas of the type described above have been found unconditionally 

stable.  It can be generalized that most explicit finite difference approximations are 

conditionally stable, whereas most implicit approximations are unconditionally stable. 
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 8.  EXPERIMENTAL SETUP 

8.1.  Optoelectronic holography methodology 

Optical methods can provide noninvasive and full-field of view information about 

components subjected to realistic loading and boundary conditions.  In addition they 

provide a wide range of measuring possibilities.  Optoelectronic holography (OEH) 

techniques have been successfully applied to nondestructive testing (NDT) of objects 

(Pryputniewicz, 1995).  Advantages of the OEH methodology over various other optical 

techniques are: 

1) noninvasive, 

2) full-field of view information, 

3) requires much less mechanical stability that that required in conventional 

holography, 

4) possible to perform static and dynamic investigations, 

5) possible to measure the shape and deformations of a component using 

multiple-wavelength optical contouring techniques with minimum 

modifications to the experimental setup, 

6) can be used for on-site investigations in order to study and diagnose 

problems in industrial environment. 
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8.2.  OEH system 
 

Figure 8.1 depicts the schematic of the OEH system used in the experiment to 

measure deformations, in this Thesis, due to warpage of the plastic encapsulant.  In this 

configuration, the coherent light source is a laser with an operational wavelength of 530 

nm, 3 mW output power.  The output of the laser is directed towards a beam splitter.  The 

beam splitter splits the light into reference beam and the object beam.  The reference 

beam is directed to a lens and through an optical fiber towards a CCD camera.  The 

object beam is directed towards the package, by a mirror and a lens.  Reflected object 

beam carrying the deformation information of the warped package, is imaged by means 

of an objective.  The object beam is then directed via a beam splitter to the CCD camera.  

The measurement of irradiances produced by mutual interference of the object and the 

reference beams are made electronically by the camera.  Processing of this 

interferometric information and display of the quantitative results are carried out 

concomitantly with measurement of irradiation (Pryputniewicz, 2003c).   
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Fig. 8.1.  OEH setup used in this Thesis. 

 
 
 

8.3.  Data acquisition and processing 

 In OEH the process is carried out by recording sequential frames of images of the 

object corresponding to the two states of stress.  Typically, four sequential frames are 

recorded, with a finite phase step-imposed on the reference beam between each frame, for 

every single exposure image of the object.   

 One OEH approach used to perform the static, dynamic, and shape measurement 

investigations of objects consists of acquiring and processing two sets, I(u,v) and I’(u,v) 

of phase-stepped speckle intensity patterns, recorded before and after, respectively, event 
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effects of which are to be measured.  The first set of phase-stepped speckle intensity 

patterns is described by 

 [ ] ,),(cos),(),(),( nMBn vuvuIvuIvuI θφ +∆+=     (8.1) 

where 

 ),(),(),( vuIvuIvuI roB +=                   (8.2) 

is the background irradiance, and 

 [ ] 21
roM vuIvuI2vuI /),(),(),( ⋅=       (8.3) 

is the modulation irradiance.  In Eqs 8.1 to 8.3, Io(u,v) and Ir(u,v) are the object and 

reference beams irradiances, respectively, while. 

 ,),(),(),( vuvuvu ro φφφ −=∆       (8.4) 

is the phase difference between the object and reference beams, with ɸo(u,v) representing 

a random phase due to light scattering from the object of interest and φr(u,v) 

representing a uniform phase from a smooth reference beam wavefront, θn is the applied 

n-th phase step, value of which is obtained during the caliberation procedures applied 

according to the specific phase stepping algorithm that is implemented, and (u,v) 

represents Cartesian coordinates of the image space. 

The second set of phase-stepped speckle intensity patterns is described by 

 [ ] .),(),(cos),(),(),(' nMBn vuvuvuIvuIvuI θφ +∆Ω+∆+=     (8.5) 

In Eq. 8.5, ∆Ω(u,v) is the change in the optical phase that occurred between acquisition 

of the two sets of phase-stepped speckle intensity patterns, value of which relates to the 

shape, or to the changes in states of deformation, of the object of interest.  With the OEH, 
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two sets of phase-stepped speckle intensity patterns are processed in the display and data 

modes.  In the display mode, secondary interference patterns, QD(u,v), are generated and 

displayed at video rates and are modulated by a cosinusoidal function of the form  

[ ] ),(),(),({[/),(cos),(),( ' vuIvuIvuI2vuvuI4vuQ 131MD +−=∆= γ  

    ,})],(),(),(),()],( /''' 212
4242

2
3 vuIvuIvuIvuIvuI −+−+−  (8.6) 

which represents an 8-bit resolution video image obtained after application of four phase 

steps: θn= 0, π/2, π, and 3π/2.  The display mode is used for adjusting, in real time, the 

experimental parameters for accurate OEH investigations, such parameters include 

1) beam ratio r = avg[Ir(u,v)]/Iavg[Io(u,v)], which is important to characterize and set 

in order to obtain appropriate fringe visibility and also to avoid optical saturation 

of the CCD array detector of the CCD camera; 

2) phase step θn, which is obtained by calibration and used in order to acquire 

accurate phase-stepped speckle intensity patterns, In(u,v), based on which further 

processing is conducted. 

 The data mode is used for quantitative investigations, which involve the 

determination of ∆Ω(u,v), related to the shape, or to the changes in states of deformation, 

of objects of interest (Furlong and Pryputniewicz, 2001; Pryputniewicz, 1995).  The 

values of  ∆Ω(u,v) are determined using double-float point arithmetic as 
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where (u,v) arguments have been omitted for simplification.  Equation 8.7 corresponds to 

the implementation of the 4-phase step algorithm with θn= 0, π/2, π, 3 π/2.  Application 



 101

of such algorithm minimizes errors in determination of ∆Ω(u,v) due to possible phase 

stepping miscalibration. 

 The three packages tested for deformation due to moisture accumulation are 

shown in Fig 8.2. 

 

 

           
 

                           (a)                                                                          (b) 
 
 

 
(c) 

 
Fig. 8.2.  Packages tested in this Thesis: (a) package 1: Fairchild 74ACT244,  

(b) package 2: Texas instruments TLC320AD50C, (c) package 3: Philips TDA1517P. 
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1)  Package 1: is a Fairchild 74ACT244.  It is an Octal Buffer/Line Driver packaged 

in 20 lead, Small Outline Integrated Circuit (SOIC).  The physical parameters 

considered for the experiment are shown in Fig. 8.3, 

 
Fig. 8.3.  Physical dimensions (Fairchild Semiconductors). 

 

 

2) Package 2: is a Texas Instruments TLC320AD50C.  It is a single channel codec 

w/master-slave function.  The package type is Plastic Small Outline Package 

(PSOP).  The physical parameters used for the experiment are shown in Fig. 8.4. 
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Fig. 8.4.  Physical dimensions (Texas Instruments). 

 
  
 

3) Package 3: is a Philips TDA1517P.  It is an integrated class-B dual o/p amplifier.  

The package type is Plastic Dual-In-Line Package (PDIP).  The physical 

parameters of the package are shown in Fig. 8.5. 
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Fig. 8.5.  Physical dimensions (Philips). 

 
 Table 8.1 is the summary of the physical parameters of the three packages used in 

this Thesis. 

              Table 8.1.  Summary of the physical parameters of the packages. 
 Package 

type 
Number 
of leads 

Length
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Area 
(mm2) 

Package 1 SOIC 20 12.6 10.008 1.006 126.101 
Package 2 PSOP 28 18.10 7.50 1.000 135.75 
Package 3 DIP 18 21.8 6.48 1.610 141.264 

 

 The sample was held in a vice, under boundary and loading conditions as shown 

in Fig 8.6.  
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The boundary conditions of the package depend on the way it is clamped.  In this 

Thesis to estimate the warpage behavior under normal operating conditions the package 

is kept attached to the circuit board.  This method of clamping prevents stresses to be 

build up at the package.  The circuit board is then clamped to the fixture.  The clamping 

stresses are different for all the three packages as the hand clamping pressure varies.  To 

obtain results without this effect on the package, the clamped fixture with the package 

was kept aside for almost half a day and then mounted in the chamber.  To prevent any 

mounting disturbances on the package initial exposures were taken, until no fringe was 

observed.  At this time a reference was taken and the OEH experiment was performed 

based on the double exposure method.   

 
Fig. 8.6.  Vice showing the placement of the package.  

 
 To determine the deformation of the plastic package it is important to expose it to 

a moist environment.  Such experiments usually take long term continuous exposure of 

the package to the humid environment in an environmental chamber.  Due to time 

constraints the chamber was fixed at a temperature of 20°C and 90% RH.  The 

experiment has been used to study deformations of the plastic package over a period of 

time, without changing the humidity and temperature.  The samples were subjected to 
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humid conditions in the chamber, one by one, Fig 8.7.  The controllable humidity range 

was 20% to 98% ± 2% relative humidity as limited by a ±2 °C dew point temperature as 

specified in the chamber manual. 

 
 

     
 
 

 
Fig. 8.7.  OEH experimental setup.  
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9.  PLATE THEORY 

 Constitutive equations, based on the bending theory of thin plates are presented 

for the assessment of the deformation due to warpage of the plastic encapsulant (Suhir, 

1995).  The theory was assumed and found to be applicable after the displacemenr of the 

packages observed from the experimental studies.  The encapsulant over the die is 

displaced by the pressure of the moisture accumulation, the displacement and the 

pressure can be related by the plate theory (Lim et al., 1998; Nakazawa et al., 1996).  

Theoretically the warpage phenomenon and the stresses and strains developed due to it 

can be solved by the generalization of the viscoelasticity law, which corresponds to the 

three-dimensional form of Hooke’s law (Flugge, 1975).  But it is mathematically difficult 

to solve for a membrane or a plate case.  It is well established for a beam structure 

(Flugge, 1975).     

The ideal-gas equation, Eq. 7.7, for the relation between the pressure build up by 

the moisture at a particular temperature and accumulated moisture content, and the plate 

theory for the relation between that pressure built up and package deformation are 

assumed for further understanding of the warpage phenomenon for small times(Tay and 

Lin, 1985; Lim et al., 1998)  .  It has been studied that a uniformly loaded rectangular 

plate clamped around its support contour can be a suitable analytical model for the 

evaluation of the maximum stress in the plastic encapsulant (Fukuzawa, 1985).  In the 

analysis that follows a comprehensive analytical model is derived based on the Kirchoff’s 

theory of bending plates (Suhir, 1991).  The  Kirchoff’s theory has been applied assuming 

the packages to be thin i.e. not less than 1/50 thickness to length ratio, Table 9.1.  A 
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partial differential equation (PDE)  formulation is described which can be used to further 

developed to calculate the von-Mises stress in the molding compound to be used as a 

suitable failure criterion (Suhir, 1995).  Calculation of the von-Mises stresses with the 

information of deformations and bending stresses is a structural criterion (Suhir, 1995).  

This reflects the cumulative role of various geometrical and material factors affecting the 

strength of the package.  The results of experimental investigations, valuable as they 

might be, inevitable reflect the combined effect of variety of factors.  Therefore, 

theoretical and analytical modeling can be helpful for understanding, predicting and 

optimizing the mechanical behavior of a plastic package (Shoraka, 1986).    

 The plate in bending is a plane structure, Fig. 9.1.  It is loaded laterally to its 

surface.  Depending on the thickness-to-length ratio several theories of plate have been 

developed, Table 9.1. 

 

 

 
Fig. 9.1.   Plate in bending. 
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Table 9.1.  Plate theories. 
 moderately thick thin very thin 

h/L, h/w 1/5 to 1/10 1/5 to 1/50 <1/50 
 With transverse 

shear deformation 
Without transverse 
shear deformation, 
mostly used for 
practical 
applications 

Geometrically non-
linear, with 
membrane 
deformation 

Theory Reissner, Mindlin Kirchhoff von Karman 
Related beam theory Timoshenko Euler Bernoulli Theory of second 

order 
  

 The displacements of very thin plates are usually so large that a geometrically 

non-linear theory, von-Karman theory becomes necessary which is able to consider the 

membrane action (Suhir, 1995).  On the other hand, the shear deformation of moderately 

thick plates has to be considered, Reissner Mindlin theory (Bletzinger, 2000).  Most of 

the practical applications deal with thin plates.  Within the valid range of linear behavior 

a pure bending theory will be good enough and shear deformation can be neglected, 

Kirchhoff theory (Timoshenko, 1940; Tee, 2002).  With the experimental results obtained 

the Kirchoff’s theory has been considered applicable to the deformation due to warpage 

for a plastic encapsulant (Suhir, 1995; Bletzinger, 2000). 

 The principal load carrying behavior can be compared with that of a beam grid 

which is resistant to bending and torsion.  The related deformations are curvatures κx, κy, 

and the twist κyz,, Fig. 9.2. 
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Fig. 9.2.  Load carrying behavior of plates in bending. 

 
 
 
 
 

 
9.1.  Differential equation based on the Kirchhoff theory 

 
 The plate is described by its mid-surface in the idealized system.  The statical and 

geometrical equations are given for an infinitesimal element (Reddy, 1999; Suhir, 1995). 
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Fig. 9.3.  Shear forces at an infinitesimal element of a package. 
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Fig. 9.4.  Moments at an infinitesimal element of the package. 
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Statical equations under equilibrium are (Bletzinger, 2000): 
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 Equations 9.7 to 9.9 are the curvatures which pertain to the geometrical 

parameters, during the twisting of the plate, Fig. 9.5 (Bletzinger, 2000). 
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Fig. 9.5.  Twisting of the plate (Bletzinger, 2000). 
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Equations 9.10 to 9.12 are related to the material parameters (Bletzinger, 2000) 
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With elimination of shear forces from the equilibrium conditions given by Eq 9.1, 

(Bletzinger, 2000) 
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With elimination of moments given by Eq. 9.2. 
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 With the solution w obtained from the Eq. 9.14, the stress resultants can be 

calculated (Suhir, 1995; Bletzinger, 2000).  This information can then be used to 

calculate the failure criterion and hence assess the reliability (Suhir, 1995).  The solution 

of Eq. 9.14 is solved here by exact solutions.  By means of series expansion and the 

partial differential equation w can be obtained from differential equations.  This single 

series expansion is used which satisfies the Navier conditions w=0, ∆w=0 of two 

opposite edges.  In this case the package has been considered to be a plate which is 

simply supported at two edges.  The support conditions of the remaining edges can be 

chosen arbitrarily and in this case it is observed that the edges move out of plane. 

 The solution is derived assuming that the load distribution and deformation are 

constant in z-direction.  The differential equation hence reduces to: 
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where K is the plate stiffness  
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where E is the modulus of elasticity, v is the Poisson’s ratio. 

Deformation w is expanded by Fourier Series. 
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Which implies the Navier conditions (w=0 and w′′=0) at both edges (Bletzinger, 2000) 

Inserting deformations into the differential equation 9.17: 

 .)sin()sin( yp
K
1yw nn

n
n

4
n ααα ∑=∑      (9.18) 

Comparison of coefficients in Eq 9.18 yields 
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Back substitution in Eqs 9.10, 9.11 gives the stress resultants 
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The load that causes the deformation of the encapsulant has been assumed to be as 

hydrostatic load (Suhir, 1995), Fig 9.6.   

 
 

Fig. 9.6.  Loading nature of the plate. 

The hydrostatic loading can be given as (Reddy, 1999) 
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10.  REPRESENTATIVE RESULTS AND DISCUSSION 
 
 

10.1.  Representative results for package 1 

 In this Section representative results from the experiments are presented.  All 

packages were kept in the chamber at 20°C, 90% RH, at  a saturation pressure of about 

2.33 x 10-3 Pa.  The loading conditions have been explained in chapter 8, Fig. 8.6.   The  

due to warpage behavior due to moisture accumulation for package 1 is shown in Fig. 

10.1. 

            

 

             

Fig. 10.1.  Quantitative results for package one after three days. 
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 Fig 10.1. shows the results for sample 1 after 3 days.  The results obtained from 

the current OEH setup and data analysis gives a rigid body translation of the package.  

The maximum rigid body displacement obtained is 0.86 µm. 

 Fig 10.2 shows the quantitative results for sample 1 after 6 days.  The maximum 

rigid body displacement was observed to be 1.17 µm.   

 The third exposure has not been included as it resulted into a very minimal 

contrast and hence proper quantitative results that could not be analyzed. 

 

 

                 

 

               
Fig 10.2.  Quantitative results for package one after six days. 
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10.2.  Representative results for package 2 

 Package 2 was also kept in the chamber under same environmental conditions as 

used for package 1.  The mounting of the sample was also not changed. 

 Fig 10.3 shows the quantitative results for sample 2 after 3 days.  The maximum 

displacement observed was 2.13 µm. 

 

 

          

 

          
Fig. 10.3.  Quantitative results for package two after three days. 
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 Figure 10.4 shows the quantitative results for package 2 after 6 days.  The 

maximum displacement observed is 2.64 µm. 

 

        

 

     
Fig. 10.4.  Quantitative results for package two after six days. 

 

 Figure 10.5 shows the quantitative results for package 2 after 10 days. It is 

observed that maximum displacement obtained is 3.43 µm. 
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Fig. 10.5.  Quantitative results for package two after ten days. 
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10.3.  Representative results for package 3 

Fig. 10.6 shows the quantitative results for package 3 after 3 days.  The maximum 

displacement after 3 days is observed to be 0.84 µm. 

 

      

 

    
Fig. 10. 6.  Quantitative results for package three after three days. 
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Fig 10.7. shows the quantitative results for sample 3 after 6 days.  The maximum 

displacement observed is 1.11 µm. 

 

       

 

 

 

 

         
Fig. 10.7.  Quantitative results for package three after six days. 
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Fig. 10.8 shows the quantitative results for sample 3 after 10 days.  The maximum 

displacement obtained is 1.33 µm. 

 

          

 

           
Fig. 10.8.  Quantitative results for package three after ten days. 

 

The experimental results are summarized in Table 10.1. 

Table 10.1.  Summary of deformation obtained for each sample over 10 days. 
 Displacement after 

3 days (µm) 
Displacement after 

6 days (µm) 
Displacemenr after 

10 days (µm) 
Package 1 0.86 1.17 - 
Package 2 2.13 2.64 3.43 
Package 3 0.84 1.11 1.33 
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Fig. 10.9.  Graphical representations of the variation of the rigid body translations. 

 
 It is observed from the results obtained from the experiments that the 

displacement occurring due to a rigid body motion of the package due to warpage 

depends upon the physical dimensions of the packages.  The displacement increases non 

linearly as a function of time for each of the package.  For package 1 it is observed that 

the displacement after 3 days is 0.86 µm as compared to package 2 which shows a 

displacement of about 2.13 µm.  The displacement observed for package 3 is 

approximately equal to that for sample 1.  The displacement of package 2 is more that 

that of package 1 and 3 because it is less thick and it is also observed that the number of 

leads are more than the other packages.  The displacement of package 3 is lesser than 

package 1.  It is observed from the physical dimensions of the package 3, that the lead 

frame thickness is around 0.24 mm whereas the lead frame thickness of package 1 is 

0.114 mm. 

It is also observed that as the area of the package increases the translation also 

increases.  The lead frame and number of leads on to the package also affect the 
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displacement.  Plastic leadframe interface is a mechanical joint (Tummala, 1989).  Water 

penetrates by capillary migration along leads (Pecht et al.,1995).  The ability to retard 

water penetration along the metal/plastic interface is a function of plastic shrinkage 

around the leads.  Generally more the plastic coverage, the greater will be the 

compressive forces.  Hence the area of the metal lead and lead frames should be less or 

equal to the plastic encapsulant (Tummala, 1989).  It is proposed to study in future the 

influence of deformed encapsulant on the lead coplanarity. 

 It is also observed that the rectangular shaped packages 2 and 3 were far more 

prone to warpage than the approximately square shaped package 1.  This fact has been 

established by experimental studies in previous studies (Kong et al.,2003). 

 The results obtained show a rigid body translation from which the deformation 

results can be obtained using IDL software by fitting a plane such that the rigid body tilt 

can be subtracted out such that only the out of plane deformations are obtained.  Another 

way of getting the rigid body translations and general deformations or a combination of 

both can be obtained by measuring the three-dimensional displacement vector field of the 

surface  points. 

 Some other experimental methodologies that can be used to study the hygroscopic 

phenomenon of warpage and swelling include spectroscopic methods.  Many works have 

suggested that water molecules in a polymeric material can be present as free molecules 

in the voids (Ardebili et al., 2003).  The Moire interferometry methods can be used to 

measure the in-plane and out of plane deformations results.   
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10.4.  Finite difference method results 

 This Section presents the results of the moisture concentration profiles through 

the thickness of the package.  The code was developed in MATLAB 6.5 and a user 

interface, Fig. 10.10 was created so that it can be used for various encapsulant material 

properties.  The interface also makes it possible to enter variable values of the 

environmental conditions and material parameters. 

 

 
Fig. 10.10.  User interface for the Matlab code. 

 
The code is listed in Appendix A.  
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10.4.1  Representative computational results 

 This section represents the computational results for the three packages.  The 

graphs presented here are: 

1) the concentration profile as a function of thickness and time Figs 10.11(a), 

10.12(a), 10.13(a), 

2) the flux over a period of 10 days Figs 10.11(b), 10.12(b), 10.13(b), 

3) the moisture content in grams Figs 10.11(c), 10.12(c), 10.13(c), 

  
                                    (a)              (b) 

 
(c) 

 Fig. 10.11.  Computational simulation for package 1: (a) concentration profile (b) flux as 
a function of time (c) accumulated moisture at the interface. 
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   (a)                  (b) 

 

   
  (c) 

Fig. 10.12. Computational simulation for package 2: (a) concentration profile (b) flux as a 
function of time c) accumulated moisture at the interface.  
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           (a)                               (b) 

    
  (c) 

Fig. 10.13.  Computational simulation for package 3: (a) concentration profile (b) flux as 
a function of time (c) accumulated moisture at the interface. 

 
 
 

 The results presented in Figs 10.11 to 10.13 show moisture diffusion simulation 

through the package.  This helps in understanding the phenomenon of moisture diffusion 

through various encapsulants.  Due to lack of literature regarding various plastic package, 

the modulus of elasticity and the Poisson’s ratio have been kept constant for all 

simulations.  The code developed can be used for different material properties for 
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simulating the moisture diffusion through the various other encapsulants.  The results 

obtained from the moisture diffusion simulation are summarized in Table 10.3. 

 

Table 10.2.  Summary of results obtained from moisture diffusion simulation. 
Concentration 

 
Flux (mol/m2.day) Moisture accumulated 

(x 10-7 gm) 
 

3 
days 

6 
days 

10 
days 

3 
days 

6 
days 

10 
days

3  
days 

6 
days 

10 
days 

Package 1 0.35 0.67 0.86 0.03 0.025 0.01 1.441 1.512 1.575
Package 2 0.4 0.71 0.9 0.03 0.025 0.01 1.505 1.559 1.584
Package 3 0.09 0.39 0.52 0.032 0.026 0.02 1.383 1.438 1.465

 

 

 It is observed that the concentration profile for package 3 is not very steep.  The 

concentration which is denoted in fraction is less for the third package, about 0.52 after 

10 days as compared to the concentration of the other two packages.  Package 1 and 

package 2 have approximately same thickness, hence not much difference is seen in the 

concentration profiles.  This can be attributed to the larger thickness of the encapsulant 

for package 3, which adds on to the bulk of material through which the moisture diffuses.   

The moisture accumulated is highest in package 2 after 10 days with 1.584 x 10-7gm.  

Package 1 has the lowest moisture accumulation after 10 days with 1.465 x 10-7gm.  The 

flux profiles are almost same for all the three packages because the material and 

environment conditions are taken to be similar for all the three packages.  Fig. 10.14 is 

the graphical representation of the variation of moisture content in the encapsulants. 
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Fig. 10.14.  Graphical representation of the variation of moisture content based on Matlab 

simulations. 
 

 The results of total mass of moisture the package are correlated to the theoretical 

curves discussed in Section 6.3.  It is observed that the region for small times is a very 

small portion of the non-linear curve obtained with the matlab simulations results, as 

marked by the red rectangle in Fig 10.15.   

 
Fig. 10.15.  Comparison of the analytical curve and matlab generated curve. 
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It can be established from this that the moisture diffusion equations should be 

theoretically solved for longer time. 

The results of the moisture accumulated in the package and the displacement 

results obtained from the experimental part can be used to calculate the build up of water 

vapor pressures at about 235°C, which is a typical solder reflow temperature.  With this 

information the hygroscopic stresses can be calculated to further analyze the failure 

criterion by von-Mises (Suhir, 1995). 

 

10.5.  Calculation of pressure and deformation 

 Using the ideal gas equation and the results obtained from the experimental and 

computational analysis the pressure developed in the encapsulant was calculated.  By 

applying the theory of plates the deflection developed due to the pressure was calculated 

and verified with the experimental results.  This section presents the deflection obtained 

due to the pressure build up after 6 days.  The calculation sheet is attached in Appendix 

B.   

 Figure 10.16 shows the deformation function for package 1 after 6 days. The 

maximum deformation obtained is 1.886 x 10-7 m.  The experimental results show a 

deformation of 1.17 x 10-6 m.  There is a difference of one order of magnitude. 

 



 133

0 0.002 0.004 0.006 0.008
0

5 .10 8

1 .10 7

1.5.10 7

2 .10 7

width (m)

D
ef

or
m

at
io

n 
(m

)
w16 y1( )

y1

 
Fig. 10.16.  Deformation of package 1 after 6 days. 

 

Figure 10.17. shows the deformation function of package 2 after 6 days.  The 

maximum deformation obtained is 2.221 x 10-7 m.  The experimental results show a 

deformation of about 2.64 x 10-6 m. 

Figure 10.18 shows the deformation function for package 3 after 6 days.  The 

maximum deformation obtained is 5.091 x 10-7 m.   
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Fig. 10.17. Deformation of package 2 after 6 days.
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                   Fig. 10.18.  Deformation of package 3 after 6 days 

Figure 10.19 shows the comparison of deformations for all three packages.  
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Fig. 10.19.  Comparison of deformations after 6 days obtained analytically. 

 

 The discrepancy in the difference between the two results of deformation was 

studied.  The deformation function used as analytical theory needs to take the varying 

concentration at the top and bottom surface.  The analytical expression has been 

developed with curvatures due to varying concentration.  This has been formulated into 

the flow chart, Fig 10.20, to obtain a new set of differential equation for moisture 

absorption loading.  Another reason for this difference maybe considering the moisture 

diffusion as non-fickian diffusion and developing the diffusion equations accordingly.  

The plausible cause for this is the time dependent, viscoelastic response of polymers 

(Weitsman, 1990).   

 The major portion of deformation of the encapsulant is due to varying 

concentration in the through thickness direction.  It is assumed that the concentration 

distribution is linear through the thickness.  In this Thesis half model, till the mid plane 
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has been considered.  This also accords with the bending behavior of plates where it is 

assumed that the change in concentration at the mid surface vanishes, because this will 

cause pure membrane stresses.   

 The definition of curvature due to concentration expansion can be given as 

(Bletzinger, 2000): 

 
t
C

C
∆

= βκ           (10.1) 

where κc  is the curvature, β is the coefficient of hygroscopic swelling, t is the time and 

∆C is the change in concentration. 

The differential equation for deformation w, Eq 9.14  becomes (Bletzinger, 2000) 
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The partial differential equation formulation for deformation and stress resultants can be 

summarized with the flow chart given in Fig 10.20. 

 With this formulation the experimental results can be verified.  The information 

of the deformation due to moisture accumulation helps in further understanding of the 

stress resultants in the encapsulant that can be used for reliability assessment of the 

package. 
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Fig. 10.20.  Flowchart for the formulation of PDE considering concentrations. 

 
 

 The hybrid method developed in this Thesis is summarized in Table 10.3.  The 

table gives the values of parameters obtained with the matlab simulation and the 

experimental results with the verification of the displacements due to rigid body 

translations. 

Table 10.3.  Summary of computational and experimental results. 
 Concentration Moisture 

accumulated (x 
10-7 gm) 

Experimental 
results (µm) 

Pressure 
(MPa) 

Analytical
results 
(µm) 

Package 1 0.67 1.512 1.17 0.23 0.1886 
Package 2 0.71 1.559 2.64 0.53 0.221 
Package 3 0.39 1.438 1.11 0.26 0.5091 
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10.6.  Concept of the package model for MEMS 

 The plastic package for MEMS will have a different configuration and fabrication 

process than those used in the IC industry.  For MEMS die a head space will be required 

to provide movement of the mechanical structure.  To protect the device at the wafer 

level, an extra fabrication process is involved.  The fragile MEMS structure can be 

covered with a second wafer which has appropriate cavities etched into it (Baert, 2004).  

A concept is being developed to apply a microcap at the wafer level and then proceed to 

standard packaging (Gilleo, 2001).  The cap essentially produces a micro-hermetic 

package.  The present caps are of silicon wafer.  Cavities between the top lid and the 

MEMS wafer allow the device structures to move freely (Persson, 2002).  After this 

wafer bonding, the device can be packaged for electrical connections and environmental 

isolation in standard plastic encapsulation process similar to those used in fabrication of 

integrated circuits (ICs).  Plastic encapsulant has the inherent property of moisture 

absorption.  But with suitable selection of material and characterization techniques like 

OEH a reliable package can be modeled.  The results obtained from OEH type non 

destructive testing, the estimate of deformation of the encapsulant can be made and hence 

the cavity space determined.  Based on the results obtained in this Thesis a package 

model has been suggested, Fig 10.21 (Deshpande and Pryputniewicz, 2004a).  .   
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Fig. 10.21.  Suggested package model. 

 
 
 

 It is observed that for the configuration of package 3, the deformation due to 

warpage is less as compared to the deformation of package 1 and package 2.  Also the 

moisture accumulation rate is lower.  Hence the optimum design parameters for the 

plastic encapsulated package are: 

L = 21.8 mm, 

h = 3.7 mm, 

wi = 6.5 mm, 

Lead frame thickness = 0.5 mm, 

Wafer cap thickness = 0.5 mm. 
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11.  CONCLUSIONS AND FUTURE WORK 
 

 Integrated circuit packaging and their testing is well advanced because of the 

maturity of the IC industry, their wide applications, and availability of industrial 

infrastructure.  The study of the packaging methods for MEMS shows that this is not true 

for MEMS with respect to packaging and testing.  A standardized MEMS device 

packaging is difficult to adopt due to the wide applications of the MEMS.   

 The movement of the mechanical element also makes this problem difficult.  In 

this Thesis the functions of MEMS packages have been studied.  The most important 

function that distinguishes MEMS packaging from the standard IC packaging are that 

they are in direct contact with the environmental physical and chemical parameters, 

which can eventually degrade the reliability of the package.  Other functions include 

mechanical support, electrical connections and thermal considerations.  MEMS 

packaging transcend three major tasks assembly, packaging, and testing.  It is found that 

this costs about 50 % to 90 % of the cost of the finished product.  The reason behind the 

high cost of MEMS packaging was studied.  Packaging of MEMS is application specific 

and hence desired process steps vary significantly from application to application.  Some 

other issues are problems in dicing, die handling, residual stresses, moisture penetration, 

etc.   

 The various types of packages and packaging methods were studied.  The state of 

art packaging methods include, single chip packaging, wafer level packaging and multi 

chip modules.  MEMS devices today are available in hermetically sealed packages.  It 

was found that hermetic packages may cost up to ten times more than a plastic-package 
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because of the rigorous testing and screening required for low production volume 

hermetic parts.  Hermetic packages usually have a higher material cost and are fabricated 

with more labor intensive manual processes.  Also hermetically sealed packages require 

that the active signal lines travel through the seal region to make electrical connection to 

the device.   

 This Thesis investigates new prospects in plastic packaging by building on the 

principles of from the already established plastic encapsulated microcircuits.  This can be 

a good cost saving option with added advantages of size and weight.  The plastic 

encapsulation process methodology has been presented.  However, molded plastic 

packages are not hermetic unlike metal and ceramic.  The porous nature of the plastic 

encapsulant allows moisture to penetrate through the package.   

  An analytical model was developed to understand the moisture diffusion 

phenomenon.  The moisture accumulation was found to be dependent on the thickness of 

the encapsulant and the time over which the moisture diffuses through the package.  A 

characterization technique using OEH methodolgy was developed to measure 

deformations due to warpage caused by moisture accumulation.  The OEH methodology 

is non-invasive and full-field-of-view information is obtained.  The experimental results 

show that the deformation increases linearly with time.  For package 1 the maximum 

deformation after a period of 6 days is 1.17 µm.  For package 2 the maximum 

deformation after a period of 6 days was observed as 2.64 µm.  Package 3 has a 

deformation of about 1.11 µm after 6 days.  It is concluded that the deformation of the 

encapsulant is dependent on the geometrical parameters of the package.  Comparing 
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packages 2 and 3, it is noted that the greater is the thickness, the lower is the deformation.  

Also the area of the package through which moisture ingress occurs makes a notable 

difference.  Package 1 and package 2 have similar thicknesses but there is a huge 

difference of deformations.  Package 2 has a larger area than the package 1.   

 The diffusion analysis was done with the help of finite difference methods, using 

the Crank-Nicolson semi implicit formula.  Graphs corresponding to concentration 

profiles, the flux profile and the moisture accumulation over 10 days have been 

presented.  The moisture content is highest, 1.584 x 10-7 gm in package 2 after 10 days. 

 Constitutive equations based on the theory of bending of plates were derived to 

understand and verify the deformation function due to warpage for encapsulants. 

 With results obtained from the hybrid methodology of experimental and 

computational processes, a concept for the package for MEMS has been presented. 

 Future work includes analyzing the discrepancy between the experimental and 

analytical results by solving the PDE derived for the deformation function taking into 

account the moisture concentration difference in the thickness direction.  It is propsed to 

develop a finite element methodology which incorporates both structural and hygroscopic 

modeling to understand the propensity of the warpage and swelling due to the moisture 

accumulation in the encapsulant.  The actual deformation results need to be extrapolated 

from subtracting the rigid body translation by the method of fitting a plane.  Extending 

the characterization technique of OEH to measure in-plane strains, for obtaining the value 

of hygroscopic swelling β will also be required.  Finally, it is necessary to monitor the 

moisture ingress in real-time for complete information of the reliability of the plastic 
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encapsulation.  This can be done by applying the principle of dew point sensor, which 

can be positioned at the wafer level.      
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APPENDIX A: Matlab code 

 
clear 
redo = 1; 
clc 
 
while redo 
   disp(' ') 
   h = input(' Thickness of the encapsulant (m) = '); 
   tmax = input(' Maximum time (s) = '); 
   p = input(' Number of divisions in x-direction = '); 
   q = input(' Number of divisions in t-direction = '); 
   % to calculate the diffusion coefficient as a function of temperature 
c1=0.472; %constant 
% Activation energy in ev 
Ea=0.5; 
% Boltzmann constant in ev/K 
k=8.617e-5; 
Ta=input('The ambient temperature (K) = '); 
%diffusion coefficient 
Dab=c1*(10e-4)*exp(-Ea/((k)*Ta)) 
 
   disp(' ') 
    
   disp(' Boundary conditions:') 
   disp(' ') 
% to calculate the concentration at the surface exposed to the ambient. 
Rh=input('The relative humdity= '); 
% The saturated vapor pressure in MPa 
P=input('Saturated vapor pressure at ambient temperature= '); 
% solubility dependent on molding temperature 
c2=4.96e-4; 
Ea=0.40; 
k=8.617e-5; 
% Molding tempertaure in K 
Tm=input('the molding temperature= '); 
S=c2*(10e-4)*exp(Ea/((k)*Tm)) 
ca0=Rh*P*S*10e+6 
 
   bc(1,1) = 1; 
   bc(1,2) = ca0; 
   disp(' ') 
   disp(' Condition at the die-encapsulant interface :') 
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   disp('   1 - Dirichlet') 
   disp('   2 - Neumann') 
   disp('   3 - Robbins') 
   bc(2,1) = input(' Enter choice : '); 
 
   u0 = [ca0; zeros(p,1)]; 
   
      [z,t,ca] = parabolic1D(p,q,h/p,tmax/q,Dab,u0,bc); 
 
   % Calculating the flux of A 
   Naz = -Dab*diff(ca(1:2,:))/diff(z(1:2)); 
%%Calculating the accumulated moisture at the interface 
%Calculate the area of the encapsulant 
l=input ('length of the package (m) = '); 
w=input ('width of the package (m) ='); 
A=l*w; 
 
for i=1:10 
   
dayNo=i; 
 
N1=1+50*(dayNo-1); N2=50*dayNo; 
m_N1_N2(i)=A*trapz(Naz(N1:N2))*1; 
if i>1 
    mTotal(i)=m_N1_N2(i)+mTotal(i-1); 
else 
    mTotal(i)=m_N1_N2(i); 
end 
end 
     
% R=8.3144; 
% def=1.88e-6; 
% pr=(mTotal*18*R*Ta)/(def*A) 
 
   % Plotting concentration profile 
   tt=[]; % Making time matrix from time vector 
   for kk = 1 : p+1 
      tt = [tt; t]; 
   end 
   zz = []; % Making height matrix from height vector 
   for kk = 1 : q+1 
      zz = [zz z']; 
   end 
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   figure(1) 
   [a,b]=contour(zz,ca/ca0,tt/3600/24,[0:1:tmax/3600/24]); 

 
 

clabel(a,b,[10:10:tmax/3600/24]) 
   xlabel('x (m)') 
   ylabel('C_A/C_A_0') 
   title('t (days)') 
   grid on 
   % Plotting the unsteady-state flux 
   figure(2) 
   plot(t/3600/24,Naz*3600*24) 
   xlabel('t (days)') 
   ylabel(' N_{Az} (mol/m^2.day)') 
   grid on 
   figure(3) 
   plot(mTotal) 
   xlabel('t (days)') 
   ylabel('mTotal (gms)') 
   grid on 
%    figure(4) 
%   plot(pr) 
 
%    figure(4) 
%    plot(m,pr) 
%    figure(5) 
%    plot(t/3600/24,pr*3600*24) 
%    xlabel('t (days)') 
%    ylabel(' pr (mol/m^2.day)') 
%    grid on 
    
   disp(' ') 
   redo = input(' Repeat calculations (0/1) ? '); 
   clc 
end 
 
 

 
 
 
 
 
 



 155

Appendix B.  MathCAD sheet: calculations for deformations 
 

FOR PACKAGE 1 after 3 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results (Appendix 
A). It has been divided by 18 to convert the gms into moles. 

n13
1.39 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ13 0.84 10 6−
⋅:=  m  The value of the deformation was obtained from the experimental OEH results. 

wi1 10.00810 3−
⋅:=  m  Width of the encapsulant 

l1 12.6 10 3−
⋅:=  m  Length of the encapsulant 

A1 l1 wi1⋅:=  m ^2 

Pr13
n13 R⋅ Ta⋅

δ13 A1⋅
:=  Pa Pr13 1.776 105

×=  

It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence, the value if the pressure load will be calculated as 

y 1 10 3−
⋅ 2 10 3−

⋅, wi1..:=  

Ph13 y( )
Pr13 y⋅ A1⋅

wi1
:=  Pa  Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h1 1.006510 3−
⋅:=  m  

v 0.3:=  

K1
E h13
⋅

12 1 v2
−( )⋅

:=  Pa.m^3 

w13 y( ) 0.013021
Ph13 y( ) wi14⋅

K1
⋅:=  m  
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The deformation function for package 1 after 3 days is shown in Fig. B.1. 
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Fig. B.1.  Deformation of package 1 after 3 days 

FOR PACKAGE 1 after 6 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results (Appendix 
A). It has been divided by 18 to convert the gms into moles. 

n16
1.44 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ16 0.33 10 6−
⋅:=  m  The value of the deformation was obtained from the experimental OEH results. 

wi1 10.00810 3−
⋅:=  m  Width of the encapsulant 

l1 12.6 10 3−
⋅:=  m  Length of the encapsulant 

A1 l1 wi1⋅:=

Pr16
n16 R⋅ Ta⋅

δ16 A1⋅
:=  Pa  
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It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

y1 1 10 3−
⋅ 2 10 3−

⋅, wi1..:=  

Hydrostatic loading Ph16 y( )
Pr16 y⋅ A1⋅

wi1
:=  Pa  

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h 1.006510 3−
⋅:=  m  

v 0.3:=  

K1
E h13
⋅

12 1 v2
−( )⋅

:=  Pa m^3 

m  w16 y1( ) 0.013021
Ph16 y1( ) l14

⋅

K1
⋅:=  

The deformation function for package 1 after 6 days is shown in Fig. B.2. 
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Fig. B.2.  Deformation of package 1 after 6 days. 
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 FOR PACKAGE 2 after 3 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results 
 (Appendix A). It has been divided by 18 to convert the gms into moles. 

n23
1.52 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ23 2.13 10 6−
⋅:=  m The value of the deformation was obtained from the experimental  

OEH results. 
wi2 7.50 10 3−

⋅:=  m Width of the encapsulant 

l2 18.10 10 3−
⋅:=  m Length of the encapsulant 

A2 l2 wi2⋅:=  

Pr23
n23 R⋅ Ta⋅

δ23 A2⋅
:=  Pa

It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

z 1 10 3−
⋅ 2 10 3−

⋅, l2..:=  

Ph23 z( )
Pr23 z⋅ A2⋅

l2
:=  Pa Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h2 1.00 10 3−
⋅:=  m  

v 0.3:=  

Pa m^3 K2
E h23
⋅

12 1 v2
−( )⋅

:=  

w23 z( ) 0.013021
Ph23 z( ) l24

⋅

K2
⋅:=  m  
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The deformation function for package 2 after 3 days is shown in Fig. B.3. 
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Fig. B.3.  Deformation of package 2 after 3 days. 

FOR PACKAGE 2 after 6 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results 
 (Appendix A). It has been divided by 18 to convert the gms into moles. 

n26
1.56 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ26 0.51 10 6−
⋅:=  m The value of the deformation was obtained from the experimental OEH  

results. 
wi2 7.50 10 3−

⋅:=  m Width of the encapsulant 

l2 18.10 10 3−
⋅:=  m Length of the encapsulant 

A2 l2 wi2⋅:=  

Pr26
n26 R⋅ Ta⋅

δ26 A2⋅
:=  Pa
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It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

y2 1 10 3−
⋅ 2 10 3−

⋅, wi2..:=  

Ph26 z( )
Pr26 z⋅ A2⋅

l2
:=  Pa Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h2 1.00 10 3−
⋅:=  m  

v 0.3:=  

Pa m^3 K2
E h23
⋅

12 1 v2
−( )⋅

:=  

m  w26 y2( ) 0.013021
Ph26 y2( ) l24

⋅

K2
⋅:=  

The deformation function for package 2 after 6 days is shown in Fig. B.4 
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Fig. B.4.  Deformation of package 2 after 6 days. 
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FOR PACKAGE 2 after 10 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results 
 (Appendix A. It has been divided by 18 to convert the gms into moles. 

n210
1.59 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ210 0.77 10 6−
⋅:=  m The value of the deformation was obtained from the experimental  

OEH results. 
wi2 7.50 10 3−

⋅:=  m Width of the encapsulant 

l2 18.10 10 3−
⋅:=  m Length of the encapsulant 

A2 l2 wi2⋅:=  

Pr210
n210 R⋅ Ta⋅

δ210 A2⋅
:=  Pa

It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

z 1 10 3−
⋅ 2 10 3−

⋅, wi2..:=  

Ph210 z( )
Pr210 z⋅

l2
:=  Pa Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h2 1.00 10 3−
⋅:=  m  

v 0.3:=  

Pa m^3 K2
E h23
⋅

12 1 v2
−( )⋅

:=  

w210 z( ) 0.013021
Ph210 z( ) l24

⋅ A2⋅

K2
⋅:=  m  
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The deformation function for package 2 after 10 days is shown in Fig. B.5. 
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Fig. B.5.  Deformation of package 2 after 10 days. 

FOR PACKAGE 3 after 3 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results  
(Appendix A). It has been divided by 18 to convert the gms into moles. 

n33
1.45 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ33 0.84 10 6−
⋅:=  m The value of the deformation was obtained from the experimental OEH 

 results. 
wi3 6.48 10 3−

⋅:=  m Width of the encapsulant 

l3 21.8 10 3−
⋅:=  m Length of the encapsulant 

A3 l3 wi3⋅:=  

Pr33
n33 R⋅ Ta⋅

δ33 A3⋅
:=  Pa  
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It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

z 1 10 3−
⋅ 2 10 3−

⋅, wi3..:=  

Ph33 z( )
Pr33 z⋅

wi3
:=  Pa  Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h3 1.61 10 3−
⋅:=  m  

v 0.3:=  

K3
E h33
⋅

12 1 v2
−( )⋅

:=  Pa m^3 

w33 z( ) 0.013021
Ph33 z( ) l34

⋅ A3⋅

K3
⋅:=  m  

The deformation function for package 3 after 3 days is shown in Fig. B. 6. 
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Fig. B.6.  Deformation of package 3 after 3 days. 
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 FOR PACKAGE 3 after 6 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results (Appendix 
A). It has been divided by 18 to convert the gms into moles. 

n36
1.51 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ36 0.26 10 6−
⋅:=  m The value of the deformation was obtained from the experimental OEH results. 

wi3 6.48 10 3−
⋅:=  m Width of the encapsulant 

l3 21.8 10 3−
⋅:=  m Length of the encapsulant 

A3 l3 wi3⋅:=

Pr36
n36 R⋅ Ta⋅

δ36 A3⋅
:=  Pa 

Pr36 5.564 105
×=  

It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

y3 1 10 3−
⋅ 2 10 3−

⋅, wi3..:=  

Ph36 z( )
Pr36 z⋅ A3⋅

wi3
:=  Pa Hydrostatic loading 

Calculating the deformation to verify the experimental results 

E 1.1 109
⋅:=  Pa  

h3 1.61 10 3−
⋅:=  m  

v 0.3:=  

Pa m^3 K3
E h33
⋅

12 1 v2
−( )⋅

:=  

w36 y3( ) 0.013021
Ph36 y3( ) l34

⋅

K3
⋅:=  m  
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The deformation function for package 3 after 6 days is shown in Fig. B. 7. 
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Fig. B.7.  Deformation of package 3 after 6 days. 

FOR PACKAGE 3 after 10 days 
Calculating the pressure developed in the encapsulant with the ideal gas equation 

The number of moles have been obtained from the Matlab results (Appendix 
A). It has been divided by 18 to convert the gms into moles. 

n310
1.58 10 7−

⋅

18
:=  

R 8.3144:=  J / mol / K 

Ta 293:=  K The temperature was kept constant due to experimental constraints. 

δ310 0.22 10 6−
⋅:=  m The value of the deformation was obtained from the experimental OEH results. 

wi3 6.48 10 3−
⋅:=  m Width of the encapsulant 

l3 21.8 10 3−
⋅:=  m Length of the encapsulant 

A3 l3 wi3⋅:=  

Pr310
n310 R⋅ Ta⋅

δ310 A3⋅
:=  Pa  
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It is observed in the experimental results that the deformation pattern is due to a nature of 
hydrostatic loads. Hence the value if the pressure load will be calculated as 

z 1 10 3−
⋅ 2 10 3−

⋅, wi3..:=  

Ph310 z( )
Pr310 z⋅ A3⋅

wi3
:=  Pa Hydrostatic loading 

Calculating the deformation to verify the experimental results 
E 1.1 109

⋅:=  Pa  

h3 1.61 10 3−
⋅:=  m  

v 0.3:=  

Pa m^3 K3
E h33
⋅

12 1 v2
−( )⋅

:=  

w310 z( ) 0.013021
Ph310 z( ) l34

⋅

K3
⋅:=  m  

The deformation function for package 3 after 10 days is shown in Fig. B. 8. 
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Fig. B. 8.  Deformation of package 3 after 10 days. 
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Comparison of deformation of the packages after 6 days is plotted on the same coordinates, 
Fig. B. 9. 
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Fig. B. 9. Comparison of the deformations after 6 days. 
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