345 research outputs found

    An Improved Bees Algorithm for Training Deep Recurrent Networks for Sentiment Classification

    Get PDF
    Recurrent neural networks (RNNs) are powerful tools for learning information from temporal sequences. Designing an optimum deep RNN is difficult due to configuration and training issues, such as vanishing and exploding gradients. In this paper, a novel metaheuristic optimisation approach is proposed for training deep RNNs for the sentiment classification task. The approach employs an enhanced Ternary Bees Algorithm (BA-3+), which operates for large dataset classification problems by considering only three individual solutions in each iteration. BA-3+ combines the collaborative search of three bees to find the optimal set of trainable parameters of the proposed deep recurrent learning architecture. Local learning with exploitative search utilises the greedy selection strategy. Stochastic gradient descent (SGD) learning with singular value decomposition (SVD) aims to handle vanishing and exploding gradients of the decision parameters with the stabilisation strategy of SVD. Global learning with explorative search achieves faster convergence without getting trapped at local optima to find the optimal set of trainable parameters of the proposed deep recurrent learning architecture. BA-3+ has been tested on the sentiment classification task to classify symmetric and asymmetric distribution of the datasets from different domains, including Twitter, product reviews, and movie reviews. Comparative results have been obtained for advanced deep language models and Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms. BA-3+ converged to the global minimum faster than the DE and PSO algorithms, and it outperformed the SGD, DE, and PSO algorithms for the Turkish and English datasets. The accuracy value and F1 measure have improved at least with a 30–40% improvement than the standard SGD algorithm for all classification datasets. Accuracy rates in the RNN model trained with BA-3+ ranged from 80% to 90%, while the RNN trained with SGD was able to achieve between 50% and 60% for most datasets. The performance of the RNN model with BA-3+ has as good as for Tree-LSTMs and Recursive Neural Tensor Networks (RNTNs) language models, which achieved accuracy results of up to 90% for some datasets. The improved accuracy and convergence results show that BA-3+ is an efficient, stable algorithm for the complex classification task, and it can handle the vanishing and exploding gradients problem of deep RNNs

    Exploring pavement texture and surface skid resistance using soft computing techniques

    Get PDF
    Pavement skid resistance and texture characteristics are important aspects of road safety. Traditional pavement friction measurement from limited contact with pavement is influenced by multiple factors such as temperature, water depth, and testing speed. Friction prediction from texture data has a potential to save resources and reduce inconsistence of friction measurement due to the existence of water and rubber in friction data collection. This dissertation investigates the application of pavement 2-dimensional /3-dimensional (2D/3D) texture data for friction evaluation from different perspectives.3D texture data with ultra-high resolution 3D laser scanner and friction data with Dynamic Friction Tester are collected on the Long Term Pavement Performance (LTPP) Specific Pavement Study 10 (SPS-10) site in Oklahoma. 2D macro-texture data with High Speed Profiler and friction data with Grip Tester are measured on 49 High Friction Surface Treatment (HFST) sites scattered in 12 states in the United States.Firstly, novel 3D parameters, rather than traditional texture indicators, are calculated for 3D texture data to identify the most important and appropriate texture parameters for skid resistance evaluation. Pavement friction models including the identified 3D texture parameters are developed with fairly good accuracy.Secondly, the wavelet and deep learning methodologies are employed to better use 2D macro-texture data. Discrete wavelet transform is implemented to decompose 2D macro-texture data, which are collected on six HFST sites in Oklahoma, into multiple wavelengths. The Total Energy and Relative Energy are calculated as indicators to represent macro-texture characteristics at various wavelengths. A robust non-contact friction prediction model incorporating energy indicators is proposed with good accuracy. In addition, FrictionNet, a Convolutional Neural Network based model, is developed to pairwise relationship between pavement texture and friction using 2D macro-texture profile as a whole. 49 HFST sites distributed in the 12 states are surveyed including various types of lead-in and lead-out pavement sections. The FrictionNet achieves high accuracy for training, validation, and testing in friction prediction.In summary, novel 3D texture parameters for 3D texture data are identified, and new computing technologies are implemented to better use 2D macro-texture data with respect to pavement friction evaluation. The results demonstrate the potential of using non-contact texture measurements for pavement friction evaluation

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Conception of control paradigms for teleoperated driving tasks in urban environments

    Get PDF
    Development of concepts and computationally efficient motion planning methods for teleoperated drivingEntwicklung von Konzepten und recheneffizienten Bewegungsplanungsmethoden für teleoperiertes Fahre

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Deep Learning Approaches in Pavement Distress Identification: A Review

    Full text link
    This paper presents a comprehensive review of recent advancements in image processing and deep learning techniques for pavement distress detection and classification, a critical aspect in modern pavement management systems. The conventional manual inspection process conducted by human experts is gradually being superseded by automated solutions, leveraging machine learning and deep learning algorithms to enhance efficiency and accuracy. The ability of these algorithms to discern patterns and make predictions based on extensive datasets has revolutionized the domain of pavement distress identification. The paper investigates the integration of unmanned aerial vehicles (UAVs) for data collection, offering unique advantages such as aerial perspectives and efficient coverage of large areas. By capturing high-resolution images, UAVs provide valuable data that can be processed using deep learning algorithms to detect and classify various pavement distresses effectively. While the primary focus is on 2D image processing, the paper also acknowledges the challenges associated with 3D images, such as sensor limitations and computational requirements. Understanding these challenges is crucial for further advancements in the field. The findings of this review significantly contribute to the evolution of pavement distress detection, fostering the development of efficient pavement management systems. As automated approaches continue to mature, the implementation of deep learning techniques holds great promise in ensuring safer and more durable road infrastructure for the benefit of society

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore