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Conception of Control Paradigms for Teleoperated Driving Tasks
in Urban Environments

– Abstract –

Teleoperated driving enables a fallback solution for autonomous driving. A human operator
remotely takes over the control of the automated system for some time-span. By keeping
the operator in the vehicles control loop, this mobility concept benefits from the humans
cognitive abilities. However, teleoperation poses its own challenges. To overcome these, this
contribution presents several teleoperated driving concepts. The presented concepts raise the
level of autonomy in different ways, while the human operator remains the main decision-
maker.
For this purpose, real-time capable algorithms for path and trajectory planning are developed
that aim for safe and comfortable motions of the remote controlled vehicle. For the planning
of collision-free and smooth paths in real-time, this work modifies the Constrained CHOMP
algorithm, a local path optimization technique. A second optimization step, the domain step,
is introduced in order to prevent the path to get stuck in poor local minima. Additionally,
the original algorithm is extended in order to take the vehicle dimensions, the vehicles non-
holonomic constraints and a reference path into account in the optimization. For the planning
of optimal trajectories in real-time, efficient formulations of constrained linear-quadratic op-
timal control problems are derived separately for the longitudinal and lateral dynamics. They
are solved by means of a time-variant, linear MPC scheme using Quadratic Programming. To
address the solvability of the optimal control problems as well as to meet the requirements
w.r.t. comfort and safety that arise for automated driving, this thesis introduces a two-stage
constraint softening using slack variables.
To promote comfort and safety for direct control, the model-predictive cruise control for direct
teleoperated driving tasks is presented in this work. This assistance concept uses the presented
trajectory optimization, in order to adapt on-board the operator’s control commands for the
longitudinal dynamics in real-time, for example due to an incorrect assessment of the driving
space or due to the delayed or even interrupted vehicle communication. To overcome high
communication time delays, this work presents the corridor-based motion planning concept.
The operator is enabled to specify an area – the corridor – towards a desired destination,
within the automated vehicle then calculates an optimal motion by itself using the novel hybrid
motion planning, combining the modified, two-step Constrained CHOMP algorithm and the
model-predictive trajectory generation for the longitudinal and lateral dynamics. To support
the operator in the planning task, this thesis presents a supervisory control concept. A modified
RRT algorithm continuously generates feasible paths that the operator can choose from. The
path selected by the operator is then forwarded to the novel hybrid motion planning algorithm.
Finally, this thesis introduces a novel concept for path optimization based on deep learning.
For this purpose different problem statements together with different neural network architec-
tures are examined based on data generated using the modified, two-step Constrained CHOMP
algorithm.
The proposed teleoperated driving concepts as well as the developed algorithms are evaluated
using real driving experiments. The results show an increase in comfort and safety using the
teleoperated driving concepts and a significant reduction in computational effort using the
developed algorithms.
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1 Introduction

The development and improvement of the vehicle’s intelligence has undergone a rapid process
in recent years. While previous research focused on promoting the driver’s safety and comfort,
current efforts target at completely removing the driver from the control loop of a vehicle.
Self-driving systems aim to improve road safety and offer people new mobility services. In
addition to passenger transport, autonomous vehicles (AVs) might be used to carry goods.
Many new technology companies as well as traditional automobile manufacturers are making
immense technological efforts to advance automated driving.

1.1 Motivation

Although extensive research has been carried out towards autonomous driving, this technol-
ogy remains highly challenging. The greatest challenge is self-driving operation in an urban
environment. Autonomous transportation systems with the current level of machine intelli-
gence cannot fully process complex, dynamic environments and make appropriate decisions.
Reasons may have different origins, such as traffic regulations that do not correspond with the
actual traffic situation, for instance when a human regulation is required. Often construction
sites can be too complex for the AVs. This may occur, if they do not meet the standard or are
not completely installed, i.e. when sign posts are missing or lane markings are only partially
existent. Road constructions may contain narrow spots that require special attention to prevent
collisions with other road participants. Other vehicles, such as buses or trucks, may require
more space to maneuver at intersections. In such situations, the AVs have to react and reset
their position to allow other vehicles to turn. In the case of crowds at public events or high
traffic conditions at entrances and exits of main roads, special consideration must be given,
but assertive threading may also be required.
To overcome these functional limitations of autonomous transportation systems with the cur-
rent level of machine intelligence, teleoperated driving offers a high potential and represents
a promising fallback option [37]. By transfering data via a mobile network connection with
a high bandwidth, the autonomous vehicle (AV) is remotely controlled by a human operator
from a stationary working station [136]. The human operator receives the vehicle’s envi-
ronment data provided by sensors, interprets them and transmits strategic and operational
commands to the vehicle. Fig. 1.1 shows a schematic representation of this concept. The op-
erator’s working station is equipped with control elements, such as the conventional steering
wheel and pedal combination or a computer mouse and keybord. Furthermore, the images
and other sensor data received from the vehicle are displayed to the operator using several
monitors. The key advantage of teleoperation is that the assisting human is able to remotely
take over control for some timespan but stays locally independent. In situations in which AVs
are not able to process its environment adequately or to make a robust decision, the human



Figure 1.1: Schematic representation of the data transmission for teleoperated driving of au-
tonomous vechiles (AVs).

operator can provide robust driving behavior using its decision-making and environmental
awareness abilities.

1.2 State-of-the-Art

1.2.1 Teleoperated Driving

The unavoidable communication link in teleoperation always introduces certain time de-
lays [119]. As pointed out in [104], round trip times of more than 200 ms already decrease
human task performance. In particular, a variable time delay has a significant impact. To over-
come communication time delays in teleoperation, the authors in [120] distinguish between
two main categories: direct and indirect control. Indirect control approaches are additionally
divided into shared controls and supervisory controls depending on the automation level, see
Fig. 1.2.

Direct Control

The most widespread teleoperated driving paradigm is direct control. By using control in-
puts such as the conventional steering wheel and pedal combination, the human operator is
responsible for observing and perceiving the vehicle environment at all times and deciding
appropriate driving commands. The human operator may be supported by augmented reality
approaches that provide visual feedback about a time delay or communication failure [68].
The free corridor, for instance, is a safety concept for teleoperated driving using direct control.
The approach, proposed in [21], visualizes the human operator a path of full braking of the
vehicle, based on parameters such as the current velocity, traction conditions and steering
position. In the event of a communication loss to the operator, the vehicle would follow the
predetermined trajectory and stop. Therefore, the human operator is always responsible for
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keeping this path free from obstacles.
Another augmented reality approach for teleoperated driving is the predictive display as pro-
posed in [24] or most recently in [49]. This approach predicts the motions of the teleoperated
vehicle and other road participants to forecast not only possible critical situations but also to
overcome the communication time delay. The predictions are then visualized to the human
operator as rectangles within the camera images.

Indirect Control

As pointed out in [74], direct control – with the human in the closed control loop – may be
impossible in certain teleoperation situations due to variable time delays and limited band-
with in mobile network connections. For this reason, indirect controls have been developed.
In contrast to direct control, indirect control approaches include automated driving functions
such as path control or obstacle avoidance. The guidance loop is closed autonomously by the
vehicle. Since the human operator is not directly part of the closed control, in indirect control
methods the closed control loop is insensitive w.r.t. any time delays.

Shared Control
In shared control, the human operator is involved in planning tasks: The operator specifies

(a) (b) (c)

Figure 1.2: Adaption of the diagram of automation level for teleoperation according to [120]:
(a) direct control, (b) shared control, (c) supervisory control.
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high-level objectives over the delayed mobile network that the automated vehicle executes on
its own.
As shown in [74], such goals might be waypoints. Here, the proposed system is based on
the transmission of individual images from a camera attached to the front of the vehicle.
The human operator defines a sequence of waypoints in the respective camera image and
transmits these to the vehicle. Using a cubic spline function, a continuous path is interpolated
based on the individually specified waypoints and is then forwarded to the vehicle for tracking
purposes. While the vehicle automatically drives to the end of the specified path, a new
camera image is already transmitted to the human operator. NASA’s Mars rovers are also
conducted by a waypoint-based approach [27]. Their operators face very large time delays
that result from the distance to Mars. Moreover, the limited communication highly depends
on favourable Earth-Mars constellations, hence, the operators must send entire sequences of
motions for a Mars day in advance to the rover. By using the on-board autonomy, the rover
then accomplishes the path independently.
Alternatively, in trajectory-based control [45], the human operator defines a sequence of tra-
jectories in a video stream while the car is driving. Both, the length and the curvature of
the trajectories are edited by the operator using the conventional steering wheel and pedal
combination. The concept has proven to be advantageous for the operator compared to direct
control with straight trajectories even with latencies of up to 600ms. The manual generation
of suitable trajectories in real-time for curved paths or in turning scenarios, however, turned
out to be too challenging for the human operator.

Supervisory Control
Supervisory control entails a high level of automation. The control strategy may be delivered
before execution or within the progress. The automated system is responsible for the vehicle’s
guidance and navigation tasks. The human operator supervises the process and may support
it in decision making [37].
A higher automated concept for teleoperated driving has been proposed in [68]. The human
operator receives path suggestions generated by the automated vehicle. The vehicle then
follows the path chosen by the operator using automated driving functions. The proposed
approach, however, is only suitable for well structured and static environments where all
necessary obstacles are known. This is not the case in almost every urban scenario [118].

1.2.2 Automated Driving

As a classification of driving automation for on-road vehicles, the Society of Automotive
Engineers (SAE) published a standardized categorization – J3016 – in 2014. This standard
classifies the amount of driver interventions and required attentiveness. As illustrated in Fig.
1.3, driving automation can be differentiated into six levels, which span a spectrum from fully
manual driving (SAE Level 0) to full automation (SAE Level 5).
Most vehicles are currently classified in SAE Level 0. These are controlled manually by hu-
mans. Although there are systems that help the driver, humans take on the dynamic driving
task. One example is the Autonomous Emergency Braking (AEB) system. Since it technically
does not drive the vehicle, it is not considered automation in this context. SAE Level 1 rep-
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resents the lowest level of driving automation. The driver is supported by a single Advanced
Driver Assistance System (ADAS, see Section 1.2.2) such as the steering for lane centering or
the adaptive cruise control (ACC), but retains complete responsibility for all driving tasks. At
the level of partial driving automation (SAE Level 2), the vehicle is able to control both lateral
and longitudinal dynamics. For this purpose, several assistance systems are often combined
with one another. However, the driver must remain alert and be able to take control of the
vehicle at any time.
With the conditional automation level (SAE Level 3), the vehicle enters the world of highly
automated driving. Drivers may temporarily detach their attention from the driving task and
take their hands off the steering wheel accordingly. However, the human driver has to take
control if requested by the system. At the level of high driving automation (SAE Level 4),
the vehicle takes on all aspects of the dynamic driving task. In the event of a system failure,
the vehicle is able intervene even if the driver does not respond appropriately to a control
request. In most cases, the system does not require human interaction. The level of full
driving automation (SAE Level 5) can be viewed as a long-term goal for automated driving.
Systems at this level do not require human interaction and are able to drive everywhere in
any conditions. Vehicles will have neither a steering wheel nor pedals. Human users simply
indicate where they would like to be picked up by the vehicle and the destination to which the
vehicle should drive them.

Advanced Driver Assistance Systems

Nowadays, Advanced Driver Assistance Systems are indispensable in road vehicles. They
aim to reduce the consequences of accidents, prevent traffic accidents and enable autonomous
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Figure 1.3: SAE standard J3016: Taxonomy and definitions for terms related to driving automa-
tion systems for road-vehicles adapted according to [95] and [67].



6 Chapter 1. Introduction

driving in the future. The development of driver assistance systems initially began with vehi-
cle stabilization systems. First the Anti-lock Braking System (ABS) and later the Electronic
Stability Program (ESP) were introduced in serial vehicles [140].
The first ADAS to use environmental measurements in addition to the vehicle’s driving dy-
namics is Adaptive Cruise Control (ACC). The ACC system detects vehicles in front and
adapts the vehicle’s velocity to that of the vehicle in front while maintaining a desired dis-
tance [137]. Current ACC systems can brake to a standstill and start again automatically [127].
This is especially intended as a comfort system for traffic jams on highways. However, the
functionality in urban environments is limited due to narrow lane widths and tight curves.
With the introduction of the ACC system, the development of frontal collision protection
systems has been encouraged. Effective collision detection, even at close range and in urban
traffic, has been made possible in particular by the additional electronics and sensors that have
been integrated into series vehicles through ACC. In this way, the driver can be warned of a
potential accident or, if an unavoidable collision is detected by the system, an Autonomous
Emergency Braking can be initiated [35].
In the area of lateral vehicle control, the Lane Keeping Assistant (LKA) supports the driver in
keeping in lane and automatically steers the vehicle back into the lane if the system detects an
unintentional departure. Due to a limited steering torque, the driver can overrule the system
at any time [102]. For legal reasons, however, the actual steering is the responsibility of the
driver. The systems are therefore equipped with a hands-off detection. If hands-free driving is
detected, the system deactivates itself. The areas of application of today’s systems are limited
to highways with several lanes and clearly visible lane markings.
An overview of the evolutionary progress from ADAS to automated driving is shown schemat-
ically in Fig. 1.4. The next generation of ADAS in series vehicles will be integrated longi-
tudinal and lateral control systems. These will be SAE Level 2 systems for partial driving
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Figure 1.4: Past and potential future evolution of driver assistance systems, adapted from [9].
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automation, mainly for highways. Many automobile manufacturers and software develop-
ment companies are testing their SAE Level 2 systems intensively. Some companies are
already offering their first systems with limited functions. Common AI, for instance, provides
its Openpilot – an open source software to improve the existing driver assistance in most
new road vehicles [26], [112]. The Openpilot software runs on a mobile phone based on the
phone’s camera data. By connecting the mobile phone to the car, the software enables the car
to automatically steer, accelerate and brake within its lane [16]. The driver only monitors the
function, but has to remain attentive and be ready to take over the full control of the vehicle at
any time.

Software Architecture of Autonomous Driving

Vehicle Control

Sensors Perception Planning

Camera

Radar

Lidar

GNSS

IMU

Detection
• Lane Detection
• Object Detection
• Object Tracking
• Occupancy Grid Map

Localization
• Odometry

Route
Planning

Behavioral
Planning

Motion
Planning

Map

Figure 1.5: Overview of a typical software architecture for self-driving cars, adapted from [11].

The software architecture of autonomous driving can be broadly divided into three categories:
perception, planning and control [99]. A detailed overview is depicted in Fig. 1.5.

Perception
In the perception functions, different sensor data have to be processed first. The sensor data
are used to extract relevant knowledge about the vehicle environment. In the first step, the
vehicle is localized on a digital map using Global navigation satellite system (GNSS) and
Inertial Measurement Unit (IMU) sensor data. An environmental perception takes place in
parallel. The perception of the environment is a fundamental function in order to provide the
system with crucial information about the driving environment [4]. A lane detection func-
tion ( [64], [39]), an algorithm for object detection and prediction ( [110], [100], [138]) and
free space detection ( [78], [130]) lead to holistic information about the current environment
in which the AV is currently driving. The free space function may be used to generate the
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Occupancy Grid Map (OGM). The OGM is one of the most common representations of the
environment of an AV. First proposed in [92], the OGM informs the system about areas of the
vehicle environment, in which the AV cannot drive collision-free. The occupancy grid map
describes the vehicle environment as a multidimensional spatial lattice [105]. Each cell of
the grid represents a portion of the environment. The cells contain information about whether
the space they are representing is currently occupied. However, the OGM only provides a
sparse representation of the vehicle environment, since only cells reached by the sensors are
updated [75]. The OGM forms the basis for any online motion planning and control opera-
tion [99].

Planning
Although the partitioning of the planning functions are somewhat blurred with variations of
the scheme that occur in the literature or in successfully implemented systems, such as the
first [125], second [91] and third placed [3] in the DARPA Urban Challenge, the planning
subsystem can in most cases be roughly divided into three main functions: route planning,
behavioral planning and motion planning.
The route planning function calculates a route through the road network from the current
position of the AV to the user-defined destination. The route search task is formulated by
assigning edge weights according to the cost of traversing a road segment and applying graph
search algorithms [99]. Classical graph search algorithms, like Dijkstra’s algorithm [29] or
the A∗ algorithm [62] are effective for small networks. However, there are more advanced
approaches that improve the efficiency over large networks. A detailed overview of these
approaches with a focus on route planning is given in [6].
The behavioral planning function is responsible for time-critical decisions, e.g. overtaking,
lane change, safety braking, etc. [11]. The decisions are made on board of the AV in the form
of Finite State Machines (FSM) to specify actions in response to specific perceived driving
contexts [91], [12], [5]. The scope of use of FSM is naturally limited as they are designed
manually for a number of specific situations. The AV may react unexpectedly in situations
that were not explicitly taken into account and, for instance, finds itself in a livelock in which
processes constantly repeat the same interaction in response to changes in other processes
without doing useful work [87]. Approaches to improve the organization in large decision-
making structures in order to manage large sets of rules that occur in urban driving scenarios,
have been proposed in [15] and [40]. In [18] and [19] decision making approaches for road
rules enforcement using Linear-Temporal Logic variants with successful real-world overtak-
ing experiment were proposed, where the dynamical system systematically picks which safety
rules to violate and minimizes the level of unsafety.
The motion planning function generates a motion from the current state of the AV to the next
local target state, which is defined by the behavioral planning function. Furthermore, the mo-
tion planning function satisfies kinematic and dynamic constraints of the AV, avoids collisions
with static and dynamic obstacles and provides comfort to passengers. The motion planning
task for AVs has proven to be computationally complex [99]. The task may require an exhaus-
tive search of all possible paths. Motion planning algorithms are usually compared and rated
based on their computational efficiency and completeness [47]. The computational efficiency
indicates the process run time, while completeness relates to whether the algorithm termi-
nates in a finite time, returns a solution if one exists, or otherwise indicates that no solution
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exists [79]. Various approaches for motion planning have been proposed in the literature. A
detailed review to path and trajectory planning algorithms is given separately in Section 1.2.3.

Vehicle Control
The actions defined in the planning subsystem are carried out in the vehicle control subsys-
tem. The purpose of this task – also known as motion control – is to provide the necessary
inputs to the actuators that will generate the desired motions. While planning algorithms often
deal with positions and velocities of the AV in relation to its environment, motion controllers
map the interaction in form of energy and forces. The system performance is assessed with
measurements inside the control system. This enables the motion controller to react to dis-
turbances and thus alter the system dynamics into the desired state [99]. In order to achieve
a satisfactory execution of the planned motion, model-based control approaches that describe
the desired system dynamics in detail are advantageous. For more comprehensive reviews on
motion control techniques, readers are referred to [97], [4] and [99].

1.2.3 Motion Planning

The topic motion planning encompasses a very broad field of research. The areas of appli-
cations range from manipulating arms, for instance in manufacturing or medical, to mobile
robots and transportation systems. The aim of the motion planning function in the context of
automated driving is to generate a motion from the current state of the AV to the next local
target state, which is defined by a behavioral planning function. The main task is to avoid col-
lisions with static and dynamic obstacles and simultaneously meeting kinematic and dynamic
constraints on the motion of the vehicle. Furthermore, the function should provide comfort
for the passengers in the dynamic driving task. The motion plan can be defined by a path or
a trajectory. A path is a sequence of coordinates in the plane, whereas the trajectory is a path
that additionally specifies the evolution of the vehicle’s states – velocity, acceleration and jerk
for instance – through time.

Path Planning

For the planning of suitable paths in automated driving a great amount of navigation tech-
niques have been modified from mobile robotics to face the challenges of road networks and
driving rules. The utility and performance of these approaches are typically evaluated accord-
ing to the class of problems to which they apply and by their guarantees of convergence to
an optimal solution [97]. The algorithms for path planning can be broadly divided into three
categories:

Graph-search methods:
Graph-search based planners search for feasible paths based on a discretized representation of
the environment – the graph. The graph is often represented as an occupancy grid, that depicts
where objects are located in the environment.
Probably the most widely known algorithm that finds the shortest path in the graph is Dijk-
stra’s algorithm [29]. The algorithm builds up a tree representing the shortest paths from a
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given source node to all other nodes in the graph by performing the best first search. If only a
path to a single target node in the graph is intended, the search can be guided by a heuristic in
order to speed up the process. The heuristic function uses the information on the target node
in order to estimate the costs, which are necessary to extend a path to the target node. The
most recognized heuristic search algorithm is A∗ [62]. The algorithm has proven to return an
optimal path according to the discretized resolution, if the implemented heuristic function is
permissble and never overestimates the cost-to-go. A∗ is suitable for searching spaces that are
known a priori, however, it is expensive in terms of memory and speed in vast areas. Each
time the occupancy grid is updated with sensory data, the shortest path from the vehicle’s cur-
rent position is recalculated repeatedly. Since such updates often only affect a minor portion
of the graph, it can be wasteful to run the entire search each time.
In order to efficiently recalculate the shortest path each time the graph is updated, the family
of real-time replanning graph search algorithms such as Dynamic A∗ (D∗) [121], Focussed
D∗ [122] and D∗ Lite [76] has been designed. These algorithms reduce replanning time by
taking advantage of information from previous search efforts.
Anytime search algorithms try to quickly generate and provide a first suboptimal path, which
is then continuously improved with more computing time [97]. To find a first solution, the
Anytime A∗ algorithm [61] uses a weighted heuristic. The Anytime behaviour is achieved
by continuing the search with the cost of the first suboptimal solution as an upper bound.
The Anytime Repairing A∗ (ARA∗) approach [85] performs multiple searches with increas-
ingly smaller weighted heuristic while reusing the information from previous iterations. The
Anytime Dynamic A∗ (ADA∗) algorithm [84] represents a dynamic modification of (ARA∗)
in terms of the D∗ algortihms. The combination of the methods behind D∗ Lite and ARA∗

creates an anytime search algorithm for real-time replanning in dynamic environments [97].

Sampling-based methods:
Sampling-based planners aim to solve timing constraints for the planning in high-dimensional
or vast spaces. The most prominent approaches are Probabilistic Roadmap (PRM) [73] and
Rapidly-exploring Random Tree (RRT) [80]. The latter has been extensively studied for au-
tomated driving. The RRT algorithm is an efficient method for finding paths online. The
rapid exploration is achieved by random sampling in the environment and extending a tree of
nodes towards the random sample. In addition, non-holonomic constraints can be taken into
account in the algorithm. The authors in [72], however, demonstrated that the RRT converges
to a non-optimal solution, since the existing tree structure biases future expansions. Further-
more, they introduced an asymptotically optimal modification of the RRT, called RRT∗ and
proved the same computational efficiency in finding non-optimal solutions and probabilistic
completeness as the original RRT. The asymptotically optimal convergence is achieved by an
additional incremental rewiring function. New nodes are not only added to the tree structure,
but they are also considered as replacement parents for existing nearby nodes in the tree, if
that results in a lower cost path from the initial node. With uniform global sampling, the RRT∗

asymptotically finds the optimal solution to the planning problem by asymptotically finding
the optimal paths from the initial node to each node in the problem area. This contradicts its
single-query nature and becomes expensive in large spaces. In order to improve the conver-
gence rate and final solution quality while maintaining the same probabilistic guarantees on
completeness and optimality as RRT∗, the authors in [42] present the Informed RRT∗. This
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algorithm uses the information of a target node to perform a focused search by modifying the
sampling function. Until a first solution has been found, the Informed RRT∗ behaves the same
as RRT∗. Thereafter, Informed RRT∗ only samples within an admissible heuristic, an ellip-
soidal subset of the planning domain which includes the initial node and target node as well
as the first non-optimal solution. With an increasingly better solution, the ellipsoidal subset
further reduces the search space.
A novel planning method which balances the advantages of graph-search-based planners and
sampling-based planners is Batch Informed Tree (BIT∗) [41]. BIT∗ uses batches of samples
to perform an ordered search around the minimum solution proposed by a heuristic, as in A∗.
However, the search is carried out on a continuous planning domain. By processing several
sample batches, which allow subsequent searches to be focused on the subproblem that might
contain a better solution, the algorithm asymptotically converges towards the global optimum,
as in Informed RRT∗.

Numerical optimization:
Numerical optimization methods aim to minimize a cost function subject to constraint vari-
ables. In path planning, these methods are often used to optimize the solutions of graph search
or sampling-based algorithms to remove jerky or redundant motions from the paths that such
planners may generate. Nevertheless, the optimization of a complex cost function can re-
quire complicated and time-consuming calculations that may not be bearable for real-time
applications.
A representative approach with practical applications in automated driving is the Artificial
Potential Field (APF) [129]. This algorithm defines a virtual potential in the environment.
The potential can be designed according to the desired path property. Possible potentials can
be the attraction to a target point or the repulsion from obstacles.
A relatively novel numerical optimization for motion planning is Constrained CHOMP [22].
CHOMP stands for Covariant Hamiltonian Optimization for Motion Planning. The algorithm
is well suited to generate a smooth and collision-free solution by iteratively improving an
initial path. A major advantage of this optimization technique is that the initial path does
not have to be collision-free [108]. The objective function, which represents a trade-off be-
tween smoothness and collision avoidance, is minimized by iteratively solving a sequential
quadratic problem subject to linear inequality constraints. A detailed description on Con-
strained CHOMP and the necessary modification for the application in automated driving are
given in Section 2.

Trajectory Planning

In general, the trajectory planning task is to determine a time course for the transition of sys-
tem states, which takes system-related constraints into account and is as optimal as possible
with regard to predefined criteria [90]. The fundamental requirement for the trajectory plan-
ning function is to ensure that no collision in future vehicle motions occurs. The motions
of other road users have a particular influence on the trajectory planning of the automated
vehicle. The available driving space is not only constrained according to the current obstacle
positions, but also by their future positions, which vary over time depending on their velocity.
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Figure 1.6: Optimal state trajectory x∗(t) of an optimal control problem taking into account the
inequality constraint h ≤ 0 for x2, the end condition g = 0 as well as the fixed end
time tf, according to [131].

For this reason, the explicit consideration of time in the trajectory planning is indispensable
for dynamic obstacles. In order to timely adapt the vehicle motion to changing traffic situa-
tions and to take comfort aspects into account, the trajectory planning has to generate future
motions with a sufficient planning horizon. However, the requirement for a planning horizon
that is as large as possible contradicts a preferably short calculation time for the trajectory
planning problem. This is crucial in order to react quickly to sudden changes in the vehicle
environment through cyclical replanning of the vehicle’s trajectory. To avoid undesired inter-
actions between the motion control and the motion planning, the trajectory planning has to
comply with physical driving limitations, even in critical situations.
Due to the above mentioned requirements in automated driving, the theory of optimization
with differential equations has proven to be particularly advantageous and has thus estab-
lished for trajectory planning [1], [55], [57], [86]. Since the planning of the trajectories is
carried out by solving an optimization problem, the term trajectory optimization is used in
this context.

Mathematical formulation of optimal control problems
In contrast to static optimization, in which the optimization variables x are elements of the
Euclidean space Rn, dynamic optimization is dedicated to the determination of functions x(t)
of an independent variable t – time for instance – that minimizes a cost functional. Optimal
control problems represent a special case of dynamic optimization, for which the function to
be determined is the input trajectory of a dynamic system. The system dynamics are taken into
account in the optimization in the form of differential equations. A structure of the optimal
control problem often used in the literature [58], [82], [98], [131] is:

Minimize the cost functional

J(u) =
∫ tf

t0
l(x, u, t) dt + V(xf, tf) (1.1a)

taking into account the system dynamics

Ûx = f(x, u, t) , x(t0) = x0 , x(tf) = xf , (1.1b)
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as well as the end conditions and inequality constraints

g(xf, tf) = 0 , (1.1c)
h(x, u, t) ≤ 0 , (1.1d)

with respect to the control signal u(t) for t ∈ [t0, tf].
The problem of optimal control consists in generating a control trajectory u∗(t) on the interval
t ∈ [t0, tf] for the dynamic system (1.1b) with state vector x(t) and input u(t), so that the state
trajectory x∗(t) reaches the target state xf starting from the initial state x0, the inequality con-
straints h ≤ 0 and end conditions g = 0 are satisfied and at the same time the cost functional
J is minimized, as schematically visualized in Fig. 1.6. The final costs are taken into account
in the cost function using V(xf, tf).
In the context of automated driving, the vehicles motion dynamics are described using the
system model (1.1b). The target of the optimization is to determine a control trajectory in the
form of future courses for steering, accelerator and brake. Undesired vehicle motions such as
deviations from the lane center or hectic accelerations can be penalized using the cost function
(1.1a). The inequality constraints (1.1d), as indicated in Fig. 1.6, can be used to constrain the
driving space in such a way that obstacles are considered in the optimization process. Addi-
tionally, the end conditions (1.1c) offer the option of specifying a defined target state, such as
a desired velocity at the end of a maneuver.

Model-predictive trajectory optimization
According to the previously described requirements, a permanent adaptation of the vehicle
motion according to current sensor information is necessary in order to take into account
the constantly changing driving environment and driving condition. This can be achieved
by cyclically solving the optimal control problem at short intervals ∆t on a progressive opti-
mization horizon of length T in the sense of the basic principle of Model-Predictive Control
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Figure 1.7: Basic principle of model-predictive control according to [131]; thick, blue: evolu-
tion of the optimized state vector and control input at time t j ; thin, blue: optimized
evolution in the past; thick, gray: actual evolution of the closed control loop.
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(MPC) [36], [54], [123]. As visualized in Fig. 1.7, in each step, the control trajectory u∗(t),
t ∈

[
t j, t j + T

]
optimized on the basis of the system state x(t j) is applied exclusively on the

interval
[
t j, t j + ∆t

]
, since the result of the next optimization step is already available at the

following point in time.
Due to the constantly changing initial conditions, the optimal control problem (1.1) to be
solved on the optimization horizon T is therefore reformulated by the substitution of the time
interval from t ∈ [t0, tf] to t ∈

[
t j, t j + T

]
.

General problem in trajectory optimization
Although the formulation of optimal control problems and their cyclical solution on a finite
optimization horizon offers a high potential to meet the requirements for all traffic situations,
however, the methods known from optimization theory do not offer the possibility to solve
non-linear and non-convex optimization problems in real-time without simplifications. The
combination of the high-order non-linear system model resulting from driving dynamics and
kinematics [107] as well as the non-convex structure of the optimization problem caused by
the driving environment, see Fig. 1.8, prohibits the unrestricted use of existing optimization
methods.
The general problem of trajectory optimization is therefore to formulate the non-linear and
non-convex optimal control problem in such a way that existing optimization methods can
be used effectively according to their properties. Taking into account the computing power
required for the solution, simplifying assumptions must be made that convert the general
problem into efficiently computable sub-problems without the solution of the general problem
losing its validity. Since simplifying assumptions always lead to compromises, the previously
mentioned requirements for automated driving offer the opportunity to compare the various
optimization methods and to evaluate them objectively.

a
b

Figure 1.8: General problem of the environment-related non-convex motion planning with mul-
tiple options (a,b), adapted according to [58].
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Optimization methods

For solving dynamic optimization problems, various methods are known from optimization
theory. Typically, they are divided into three categories: dynamic programming, indirect and
direct optimization methods [94].

Dynamic programming
This method is directly based on Bellman’s Principle of Optimality [7]. Dynamic program-
ming is characterized by a combinatorial solution finding and is hence suitable for global,
albeit approximate, solution finding of non-convex optimization problems, including non-
linear system models. The cost functional can be composed flexibly of several terms and a
large number of system constraints can be defined. By adding many sub-problems, however,
the complexity of the optimization problem increases significantly, which is why the use of
dynamic programming is limited to systems of low order due to the curse of dimensional-
ity [69]. Despite the limitation, dynamic programming offers advantages for vehicle motion
planning due to its particular property for global solution finding with non-linear system dy-
namics [83]. As suggested in [56], for instance, the non-convex motion planning problem can
be solved in a simplified manner for the vehicle kinematics as a partial dynamics of the vehicle
model. The resulting trajectory, which is not necessarily drivable, serves as a reference in a
two-stage approach for a subsequent optimization of higher system order. Therefore, the orig-
inal non-convex problem formulation can be successfully solved by a combination of different
optimization methods. As shown in [31], this strategy offers clear advantages, especially in
semi-structured environments such as parking lots or construction sites. However, real-time
planning of future vehicle motions with a continuously differentiable steering course is not
possible due to the high system order required for this. Since the requirement for comfortable
motion planning cannot be adequately met, this method is no longer taken into account in this
work.

Indirect optimization methods
Approaches that are based on the evaluation of the necessary conditions for optimal control
problems are called indirect optimization methods [94]. In the multivariable case, the opti-
mality conditions result in a system of equations, the solution of which leads indirectly to the
minima or maxima of the original problem [128]. Although the indirect optimization methods
can only be used to solve local optimization problems, in special cases of problem formula-
tion they are particularly attractive for trajectory optimization, as they allow insight into the
structure of the optimal solution. As shown in [60], the solutions of the optimization problem
can be determined extremely efficiently for simple motion models under certain conditions.
Using these methods, however, difficulties arise while taking into account equality or inequal-
ity constraints, since they make an analytical solution of the optimization problem practically
impossible even for simple motion models. This severely limits the use of indirect methods for
trajectory optimization. An approach with which some of the previously described require-
ments for trajectory planning can nevertheless be met, given a sufficiently fine discretization
of the driving space in combination with sampling over a large number of motion candidates,
is described in [135].
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Direct optimization methods
To avoid the issues of indirect methods, direct optimization methods convert the optimal con-
trol problem into a nonlinear programming (NLP) problem, which can be efficiently solved
using static optimization methods [82]. In particular, the possibility of integrating a large
number of system constraints the requirements for motion planning makes direct optimiza-
tion methods interesting in automated driving, as can be seen from numerous implementations
known from research [43], [51], [134].
A widely used method for solving NLP is sequential quadratic programming (SQP). Due to
the iterative solution finding, however, the convergence behavior is highly dependent on an
initial starting guess for the numerical algorithm. Its determination is generally not trivial.
Furthermore, solving NLPs may be time-consuming due to the sequence of approximating
linear quadratic programs (QPs) that are solved iteratively using a forward simulation of the
system dynamics [59].
The authors in [34] or [59] for instance, propose the formulation of linear-quadratic optimal
control problems in order to reduce the computational effort. By combining linear-quadratic
optimal control problems with direct optimization methods, no iterations and no initial starting
guess are required. By solving only a single QP in each optimization step, the computational
effort can be significantly reduced. Using Linear Model-Predictive Control in combination
with quadratic programming is advantageous for real-time trajectory optimization with high
replanning frequencies. Applications can therefore be found in various fields of research such
as marine vessels [96], aviation [8] and vehicle automation [17], [59].

1.3 Challenges in Teleoperated Driving

Although teleoperated driving offers several advantages by keeping the human operator in the
control loop, this technique still poses its own challenges as briefly mentioned in Section 1.2.

Reduced situational awareness of the operator

Due to the limited information that the operator receives about the vehicle environment as a
result of the physical absence and the limited senor data, the operator’s situation awareness is
reduced compared to controlling from within the vehicle [67]. A reduced situation awareness
may affect the driving performance of the operator.

Communication loss

An important fact is the possible loss of communication within a teleoperation mission. This
aspect is always present in wireless communication systems and there is no practical method
of preventing it [21]. Therefore, a suitable solution is required that ensures the safety of a
teleoperated vehicle in the event of a loss of communication to the operator.



1.4. Objectives 17

Figure 1.9: Measured time delay during teleoperated driving using a LTE mobile network, in-
cluding time for the transmission of the camera images from the vehicle to the op-
erator’s working station as well as the time for the transmission of the operator’s
control commands [32].

Communication time delay

In teleoperation, the unavoidable communication link between operator and AV always in-
troduces certain time delays [119]. Furthermore, mobile networks have limited bandwidth
capacities, hence, camera images have to be encoded before transmission and decoded there-
after. The authors in [32] took measurements of the transmission of three encoded camera
images at the speed of 3 Mbit/s from an AV to the operator’s working station using a conven-
tional LTE (4G) network. The results show an average time delay of 138 ms and a maximum
time delay of 450 ms, as can be seen in Fig. 1.9. Before visualization, the images are usually
buffered up to a constant time delay in order to offer the operator an appropriate streaming
quality [32] [67]. Freezing of images during a teleoperation mission can thus be prevented. To
take possible communication jitters into account and to ensure a smooth display of the camera
images for the operator, the received images must be buffered at least 500 ms at the working
station [25], [32]. Controlling a vehicle remotely in an urban environment with such long
delays is one of the greatest challenges in teleoperated driving using state-of-the-art methods.

1.4 Objectives

The above mentioned challenges affect the performance of a teleoperated driving task in dif-
ferent ways. Therefore, the main objective of this thesis is to develop control concepts for
teleoperated driving that address these challenges. Since a single solution cannot meet all as-
pects, this thesis aims at providing situation-dependent teleoperated driving concepts for the
human operator. The concepts raise the level of autonomy in different ways, while the human
operator still remains the main decision maker in all driving tasks.

Model-predictive cruise control for direct control. To relieve the human operator and
to promote comfort and safety for direct control, an assistance system is to be devised: the
model-predictive cruise control for direct teleoperated driving tasks. Using this concept, the
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operator’s control commands for the longitudinal dynamics are adapted on-board in real-time
in order to consider other road participants. This concept aims in particular to support op-
erators in critical situations, when they do not react appropriately in a teleoperated driving
maneuver, for example, due to an incorrect assessment of the allowable driving space or due
to a delayed or even interrupted communication with the ego vehicle. For this purpose, this
assistance system is based on a trajectory optimization for the longitudinal guidance that is to
be developed in this thesis.

Corridor-based motion planning for shared control. To overcome high communica-
tion time delays, in this thesis a corridor-based motion planning concept is envisaged. This
shared control approach is meant to introduce highly automated driving functions for teleoper-
ated driving. In contrast to direct control, in this indirect control concept the operator is kept
outside the closed control loop. The guidance loop is closed autonomously by the vehicle.
Therefore, the closed control loop is insensitive w.r.t. any communication time delays. By
taking advantage of the human abilities in decision making, the operator is enabled to specify
an area – the corridor – towards a desired destination. Therefore, the operator is able to in-
teractively take into account, for instance, missing or inadequate lane markings or untracked
obstacles, not detected by the system, in the motion planning. The operator decides between
specifying a complete corridor to the target destination in advance or initially a sub-corridor
using this method. The automated vehicle then calculates an optimal motion by itself within
the corridor. In this thesis, a novel hybrid motion planning, combining trajectory and path
optimization algorithms, is to be developed.

Automatic path generation for supervisory control. To support the operator in the plan-
ning task, this thesis aims at an automatic path generation approach. Without the presence of
a target position, this concept continuously generates further feasible paths and then forwards
these to the operator. The operator decides which path will be followed by vehicle. For this
purpose, a global path search algorithm, the RRT algorithm, is to be modified in such a way
that the vehicle environment is explored and reasonable paths are generated. The selected
path is then forwarded to the hybrid motion planning algorithm, combining trajectory and
path optimization algorithms developed in this work.

Model-predictive trajectory optimization. For the planning of optimal trajectories in
real-time, efficient formulations of constrained linear-quadratic optimal control problems are
to be derived separately for the longitudinal and lateral dynamics. To keep the order of the
system representation and thus the calculation effort as low as possible, the control problem
for the lateral dynamics are to be derived with a disturbance term, specifically the reference
path orientation. The optimal control problems are solved by means of a time-variant, linear
MPC scheme using Quadratic Programming. To address the solvability of the optimal control
problems as well as to meet the requirements w.r.t. comfort and safety that arise for auto-
mated driving, this thesis introduces a two-stage constraint softening using slack variables.
The safety-related longitudinal as well as lateral obstacle distances are linked to a heavily
weighted slack variable to guarantee the solvability of the optimization problems. In addition
to hard constraints regarding the corresponding accelerations, comfort-related longitudinal
and lateral distances to obstacles are to be defined and linked to a less weighted slack variable
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in order to account for comfort in the trajectory optimization. By introducing a two-stage
constraint softening for the longitudinal as well as the lateral obstacle distance constraints in
combination with a suitable choice of the weighting of the comfort slack variable, a compro-
mise is to be achieved between a comfortable distance to obstacles and a smooth trajectory
profile in a dynamic maneuver. The proposed trajectory optimization design only enables
the formulation of locally optimal problems. By combining the trajectory optimization with
the path optimization developed is this thesis, the resulting hybrid motion planning envisages
globally optimal trajectories.

Path optimization generating globally optimal solutions. For the planning of collision-
free and smooth paths in real-time, the Constrained CHOMP algorithm, a local path opti-
mization technique, is to be modified. A second optimization step, the domain step, is to be
introduced in this thesis to prevent the path to get stuck in poor local minima. The subsequent
smoothing step, including the original formulation of the objective functional, is to be mod-
ified in order to take the vehicle dimensions into account. Furthermore, additional objective
functions are to be introduced that address the vehicle non-holonomic constraints and penalize
the distance to a reference path that represents a guidance planned by the human operator. As
a result, the proposed modified, two-step Constrained CHOMP algorithm should allow for the
generation of optimal solution including the global minimum in real-time for the application
of automated driving.

Path optimization using deep learning. Aiming at a reduction of the computational effort
and the memory usage, a concept for path optimization based on deep learning is to be de-
veloped. Based on data generated by the modified, two-step Constrained CHOMP algorithm,
different problem statements are to be examined together with different neural network archi-
tectures. Investigations are to be carried out in which, in addition to the path to be optimized,
the entire occupancy grid or preselected sections of the occupancy grid are considered as input
of the neural network.

1.5 Outline

The remainder of this thesis is structured as follows:
In Chapter 2, the Constrained CHOMP algorithm, a local path optimization, is modified to
take the vehicle dimensions and non-holononmic constraints into account. Furthermore, an
additional optimization step is introduced so that globally optimal solutions are generated.
Chapter 3 presents an efficient trajectory generation that addresses the requirements arising
from automated driving. A two-stage constraint softening is introduced to take comfort and
safety into account in the optimization and to ensure the solvability of the linear-quadratic
optimal control problems for the longitudinal and lateral dynamics. They are efficiently solved
by means of a time-variant, linear MPC scheme using Quadratic Programming.
To promote comfort and safety for direct control, Chapter 4 proposes a model-predictive
cruise control for direct teleoperated driving tasks. This assistance concept uses the presented
trajectory optimization in order to adapt on-board the operator’s control commands for the
longitudinal dynamics in real-time. This concept is validated using two real driving scenarios:
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a suddenly appearing road participant at an intersection with right of way and an abruptly
braking vehicle in front.
A shared control concept, the corridor-based motion planning, is presented in Chapter 5. The
human operator is enabled to specify a corridor towards the desired destination, in which the
automated vehicle itself calculates an optimal motion. For this purpose, the modified, two-
step Constrained CHOMP algorithm and the developed model-predictive trajectory generation
are combined. This concept is validated using complex simulations and several real driving
scenarios including dynamic obstacles.
Chapter 6 introduces a supervisory control concept. A modified RRT algorithm continuously
generates feasible paths, which are forwarded to the operator for selection. The operator
decides which path will be followed by the vehicle. The concept is validated in real driving
experiments using complex urban scenarios.
Based on deep learning, a novel path optimization concept is presented in Chapter 7. For this
purpose, different problem statements together with different neural network architectures
are examined based on data generated using the modified, two-step Constrained CHOMP
algorithm.
Finally, Chapter 8 concludes this thesis and gives an outlook on possible future work.
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Theory





2 Path Optimization Using
Constrained CHOMP

Motion planning represents an essential element in automated driving. In this thesis this is
done as a combination of separate path and trajectory planning. While in a less automated
teleoperated driving paradigm, i.e. direct control, the path planning results directly from the
specifications of the human operator using a gamepad for instance, the path planning is taken
over by the system in higher automated approaches (c.f. Sec. 1.2.1). To meet the requirements
of real-time path planning, this work modifies the Constrained CHOMP algorithm for the use
in automated driving. CHOMP stand for Covariant Hamiltonian Optimization for Motion
Planning. Originally, the algorithm has been developed as a trajectory optimization technique
in high dimensional spaces, see [108]. As trajectory parameterization, the algorithm uses a
uniform discretization, which samples the trajectory ξ(s) = [x(s), y(s)] over equal steps of
length ∆s: ξ ≈ (q>1 , q>2 , . . . , q>n )> ∈ Rn×2, with q0 = [x0, y0] as the fixed starting point [142].
By using this waypoint parameterization taking into account a constant waypoint distance, the
trajectory planning problem is identical to a path planning problem. Therefore, ξ is referred
to as path in the following.

2.1 Objective Functional

The Constrained CHOMP algorithm in its original form iteratively improves the quality of an
initial path ξ0 by optimizing an objective functional

U(ξ) = fobs(ξ) + w · fsm(ξ) , (2.1)

which represents a trade-off between obstacle avoidance and path smoothness. Here, w de-
notes the weighing factor, cf. [108].

Smoothness Objective

The term fsm(ξ) measures dynamical quantities across the path as the integral over squared
velocity norms [142]:

fsm(ξ) =
1

2

∫ 1

0

������ d
ds
ξ(s)

������2ds , where s ∈ [0, 1] . (2.2)

Using the previously described waypoint parameterization, the smoothness objective is there-
fore reformulated as the sum of squared first-order difference quotients to

fsm(ξ) =
1

2

n∑
k=0

������qk+1 − qk

∆s

������2 . (2.3)
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By transforming the difference quotients into a matrix notation and introducing the finite
difference matrix K, the smoothness objective is rewritten as

fsm(ξ) =
1

2
| |K ξ + e| |2 =

1

2
ξ>A ξ + ξ>b + g , (2.4)

with A = K>K, b = K>e and g = e>e/2. The vector e addresses the boundary condition
q0. Since this optimization technique is based on a projected Newton method, the functional
gradients of the objective functions are required [115]. Considering the quadratic form of
the smoothness objective (2.4), the functional gradient of the smoothness objective becomes
straightforward

∇̄ fsm(ξ) = A ξ + b . (2.5)

Obstacle Objective

While fsm(ξ) encourages smooth paths, the term fobs(ξ) penalizes the vehicle’s proximity to
any obstacle in the environment. In order to make the optimization tractable, an efficient
representation of the vehicle body is required [142]. Taking into account each body element
u ∈ B of the set B of the vehicle’s body approximation, the obstacle objective fobs(ξ) inte-
grates the cost encountered by each body element u along the path. Specifically, the obstacle
objective calculates an arc length parameterized line integral of each body element’s path
through a workspace cost field and integrates those values over all body elements [142]:

fobs(ξ) =

∫
B

∫ 1

0
c
(
x(ξ(s), u)

)
| |

d
ds

x(ξ(s), u)| | ds du , where s ∈ [0, 1] . (2.6)

The term x(ξ(s), u) denotes the forward kinematics, mapping a robot’s configuration q and a
particular body element u ∈ B to a point x(q, u) in the workspace. The workspace cost func-
tion c

(
x(ξ(s), u)

)
quantifies the cost of a body element u of residing at a particular wokspace

point x(q, u). Furthermore, the workspace cost function c
(
x(ξ(s), u)

)
is multiplied by the norm

of the workspace velocity of each body element. This leads to the arc length parameterization,
which ensures that the optimization does not alter the waypoint distance. An arbitrary vehicle
motion can be attained depending on the definition of the workspace cost function [116]. As
in [108], the workspace cost function is defined as

c(x) =

−d̃(x) + 1

2ε, if d̃(x) < 0
1
2ε (d̃(x) − ε)

2, if 0 < d̃(x) ≤ ε
0 otherwise

. (2.7)

The function d̃(x) provides the nearest distance from the vehicle’s body to an obstacle. For an
efficient computation of d̃(x), an appropriate representation of the vehicle body is required.
As can be seen in Fig. 2.1, the vehicle’s body is over-approximated by a set of three circles B
in this thesis. By using this approximation, hence, the distance of the vehicle to any obstacle
can be calculated efficiently. In the case of a circle, the distance d̃(x) to any point in the
plane results from the distance d(x) to the centre of the corresponding circle subtracted by its
radius r . The cost of a workspace point smoothly drops to zero as a distance of the allowable
threshold ε to an obstacle is reached, see Fig. 2.2.
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Figure 2.1: Vehicle body approximation using a set of three circles.

Since the obstacle objective fobs(ξ) depends only on workspace positions and velocities with-
out higher order derivatives, according to [106] the functional gradient of (2.6) can be derived
as ∇̄ fobs(ξ) =

∂v(ξ)
∂ξ −

d
ds
∂v(ξ)
∂ξ′ . Here, v(ξ) denotes everything inside the time integral. Applying

this formula to (2.6), the functional gradient is given by

∇̄ fobs(ξ) =

∫
B

J> | |x′| |
[
(I − x̂′ x̂′>)∇c − cκ

]
du , (2.8)

where κ denotes the curvature vector of path ξ (see Appendix A.1) defined by

κ =
1

| |x′| |2
(
I − x̂′ x̂′>

)
· x′′ . (2.9)

The term x̂′ in equation denotes the normalized velocity vector x′/| |x′| | and J represents the
kinematic Jacobian at a specific body point u. To simplify the notation, the dependance of J,
x and c on the integration variables u and t has been suppressed.

𝑐(𝐱)

0

ሚ𝑑(𝐱)0 𝜀

Figure 2.2: Illustration of the workspace cost function c(x).
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Using the same discretization as for fsm(ξ), the obstacle objective is reformulated to

fobs(ξ) =
∑
u∈B

n∑
k=1

c
(
x(qk, u)

)
| |x′(qk, u)| | . (2.10)

Equivalent to the obstacle objective, the corresponding functional gradient components ∇̄ fobs,k(ξ) ∈

∇̄ fobs(ξ) for k = 1 . . . n are reformulated as the sum of the set of body elements:

∇̄ fobs,k(ξ) =
∑
u∈B

J>k | |x
′
k | |

[
(I − x̂′k x̂′k

>)∇ck − ckκk
]
. (2.11)

2.2 Dual Projected Newton Method

Given the objective functional U(ξ) and the corresponding functional gradient ∇̄U(ξ), the
optimization of the initial path ξ0 is performed according to [22] by iteratively solving a
sequential quadratic problem subject to linear inequality constraints:

ξi+1 = arg min
ξ

[
U(ξi) + (ξ − ξi)

>∇̄U(ξi) +
ηi
2 | |ξ − ξi | |A

]
s.t C ξ ≤ d .

(2.12)

Here, i represents the iteration and the notation | |ξ−ξi | |A denotes the norm of the displacement
taken with respect to the smoothness matrix A1. Furthermore, the admissible path ξ can be
restricted by using the linear inequality constraints C ξ ≤ d.
With the initial path ξ0 and Lagrange multipliers λ0, the iterative optimization is stated as
follows:

1. Perform an iteration of the projected Newton method

λi+1 = P≥0

(
λi − αi

[
Si 0
0 I

] [ [
∇̄G(ui))

]
Fi[

∇̄G(ui))
]

Bi

])
,

where G(λ) = 1
2ηi
λ>CA−1C>λ − . . .

λ>
(
Cξi − d − 1

ηi
CA−1∇̄U(ξi)

)
.

(2.13)

2. Perform a primal path update

ξi+1 = ξ −
1

ηi
A−1∇̄U(ξi) −

1

ηi
A−1C>λi+1 . (2.14)

The update rule (2.14) is derived from the primal solution (2.12) using a Lagrangian dual
method, c.f. [22]. The matrix P≥0 projects each variable to the positive half-plane. The term
η is a regularization coefficient that specifies the trade-off between the step size α and the
minimization of the objective functional U(ξ). Furthermore, the term Bi and Fi define the
binding set and the free set, respectively. The matrix Si = [∇̄

2G(λi)]
−1
Fi

represents a submatrix
of the inverse Hessian along the direction of free variables Fi, cf. [22].
For optimization two stop criteria are used in parallel in this work: One stop criterion applies
in the event that the differential change of the objective functional U(ξ) becomes smaller than
a threshold, whereas the other one represents the maximum number of iterations.

1 | |ξ − ξi | |A =
√
(ξ − ξi)

>A (ξ − ξi)
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2.3 Complement of the Objective Functional with
Curvature Penalty Function

Although the Constrained CHOMP algorithm is well suited to generate smooth and collision-
free paths, the vehicle non-holonomic constraints are not guaranteed to be satisfied. As de-
scribed in Sec. 3.1, however, the subsequent trajectory optimization of the two-stage motion
planning method developed in this thesis – consisting of a decoupled path and trajectory opti-
mization – requires a reference path with sufficient quality. Due the limitation of the vehicle’s
maximum steering angle, the curvature of the path must therefore be restricted in the opti-
mization. The integration of the curvature into the inequality constraint of the optimization
process is not straightforward, as can be seen in (2.12). The resulting non-linear inequality
constraints would require more complicated and therefore more computationally expensive
optimization methods compared to the advantageous properties of the Dual Projected Newton
method.
Alternatively, a penalty function in the form of the curvature objective

fcrv(ξ) =

n∑
k=1

fcurv,k(ξ) , where

fcurv,k(ξ) =

{
0 if ‖κk ‖ ≤ κmax
1
2(κk − κmax)

2 else

(2.15)

and the corresponding gradient components

∇̄ fcurv,k(ξ) =

{
0 if ‖κk ‖ ≤ κmax
(κk − κmax)∇κk else

for k = 1 . . . n , ∇̄ fcurv,k(ξ) ∈ ∇̄ fcrv(ξ)

(2.16)
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Figure 2.3: Simulation results regarding the curvature constraints.
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is integrated in the Constrained CHOMP framework in this work. The gradient ∇κ may be
derived as the partial derivative of (2.9) for all path points. As examined in [14], however, this
leads to a relatively complex calculation formula. Instead, in this work the curvature vector
defined in [50] is used as the update direction, whereby nearly the same result is achieved, but
with less calculation and implementation effort. In order not to influence the optimization un-
necessarily, the penalty function only takes effect when the curvature limit κmax is exceeded.
In particular, if the limit κmax is exceeded in an optimization step, the curvature penalty func-
tion pulls the path back within the restrictions, see Fig. 2.3. The term κmax is defined as the
vehicle’s drivable curvature limit subtracted by a threshold.
By including the curvature penalty function into the optimization, the objective function is
reformulated to

U(ξ) = fobs(ξ) + wsm · fsm(ξ) + wcrv · fcrv(ξ) . (2.17)

Although the curvature value can still exceed the physical limit despite the modification, the
excess is kept relatively small. As a result, qualitatively sufficient reference paths can be
generated for the subsequent trajectory optimization. In order to generate feasible driving
motions for the automated vehicle, however, the curvature limitation is taken into account as
a hard constraint in the trajectory optimization.

2.4 Complement of the Objective Functional with
Reference Path Objective

With the presence of the curvature term in the objective function, the Constrained CHOMP al-
gorithm is able to generate smooth and collision-free paths while taking curvature constraints
into account. While the smoothness objective of the optimization generates a path as straight
as possible to the end of a given route after evasive maneuvers, natural human driving be-
haviour shows the intention to return to the given route as quickly as possible. In autonomous
driving the route may be generated by the perception system, i.e. the lane center line. In
the case of teleoperated driving approaches, developed in this thesis, the route represents a
guidance planned or selected by the operator.
To address the above mentioned natural driving behaviour, the objective functional U(ξ) is
extended by a further term

fre f (ξ) =
1

2

n∑
k=1

dk(qk, ξre f )
2 , (2.18)

which penalizes the distance to the reference path ξre f – a route specified by the human
operator for instance – in the form of the Frenet-transformed coordinate, see Fig. 2.4. The
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Figure 2.4: Illustration of the reference path cost calculation.
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Figure 2.5: Simulation results regarding the reference path objective.

corresponding components of the functional gradient of the reference path objective become

∇̄ fre f , k(ξ) = dk(qk, ξre f )
[
sin(θk) −cos(θk)

]
for k = 1 . . . n , ∇̄ fre f ,k(ξ) ∈ ∇̄ fre f (ξ) .

(2.19)

As can be seen in Fig. 2.5, the optimized path using the reference path objective smoothly
approaches the reference path ξre f after the evasive maneuvers. Compared to the path without
the added reference path objective, the path with the reference path objective returns to the
reference path noticeably earlier.
Together with the curvature penalty function, the objective functional U(ξ) is therefore refor-
mulated to

U(ξ) = fobs(ξ) + wsm · fsm(ξ) + wcrv · fcrv(ξ) + wre f · fre f (ξ) . (2.20)

2.5 Local Minima Avoidance

Due to the nature of the dual projected newton method, the Constrained CHOMP algorithm
has a tendency to get stuck in undesirable local minima. This usually occurs if the initial path
is passing through an obstacle including a flat or non-convex outer profile [118]. To be more
robust to local minima, the authors in [71] include random pertubations in the optimization
process. Therefore, this technique tries to push the optimization result away from a local min-
ima. While this technique enables a better exploration of the search area, it brings significant
disadvantages in terms of the computing effort, making the algorithm unsuitable for real-time
applications.
As a remedy, this work proposes a two step path optimization including:

• a domain step and
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• a smoothing step
using the Constrained CHOMP algorithm. The smoothing step represents the optimization
w.r.t. the objective functional (2.20).
If a collision is detected along the initial path ξ0, the domain step is executed first. According
to the evaluation of the search area, the path is shifted either orthogonally to the left or the
right. For this purpose, the optimization gradient is redefined in the domain step as follows:

∇̄Uk(ξ) =

{
∆ξnorm,k · Υleft/right if collision = true
0 else

Υleft =

[
0 1
−1 0

]
, Υright =

[
0 −1
1 0

]
for k = 1 . . . n , ∇̄Uk(ξ) ∈ ∇̄U(ξ) ,

(2.21)

where ∆ξnorm denotes the normalized difference vector ∆ξ/| |∆ξ | |. For optimization in the
domain step two stop criteria are used in parallel: One stop criterion represents the maximum
number of iterations, whereas the other applies if the optimized path becomes collision-free.
Fig. 2.6 shows an example of avoiding local minima using the proposed two-step optimization.
Since the vehicle’s perception system was not able to correctly perceive barrier tapes in this
real-world scenario, the driving area has been manually restricted by the human operator using
the teleoperated driving paradigm proposed in Sec. 5 in the form of a corridor. The constraints
on the path, i.e. the corridor, are depicted as a red dotted line. For operator feedback purposes,
the obstacle bounds, which visualize the free driving space and are based on the optimal path,
are represented by yellow lines. The initial path, which is used to initialize the optimization,
is displayed as a red line.
As can be seen in the scenario, the initial path is located between an obstacle and the right
corridor boundary. The Constrained CHOMP algorithm in its original form tries to push
the initial path away from the obstacle, directly into the corridor boundary, resulting in the
optimized path (green dotted line) corresponding to a poor local minimum, see Fig. 2.6 (a).
By using the introduced domain step, however, the algorithm manages to generate an optimal
result related to the global minimum, see Fig. 2.6 (b). The proposed gradient in the domain
step successfully pushes the initial path orthogonally to the left out of the local minimum.
As a result, a collision-free path is generated, that circumvents the obstacle. As can also be
seen in Fig. 2.6 (b), the path that was generated in the domain step is already smooth. The
subsequent smoothing step results in a barely noticeable improvement in smoothness in the
given scenario. This is due to the nature of the Constrained CHOMP algorithm, which uses a
smoothness matrix A as the Riemann’s metric, which is motivated in [108].
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(a) (b)

Figure 2.6: Local minima avoidance using Constrained CHOMP with: (a) original formulation,
(b) domain step only.
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3 Model-Predictive Trajectory
Optimization Using Quadratic
Programming

The requirement for a real-time capable trajectory optimization with a high re-planning fre-
quency represents a major challenge in the context of automated systems. The consideration
of constraints to meet the requirements defined in Section 1.2.3 is essential in almost all driv-
ing situations in order to take into account, for instance, the limits of driving physics during
emergency braking and dynamic maneuvers or to ensure collision-free trajectories by con-
straining the driving space.
By taking advantage of the beneficial propoerties of linear-quadratic optimal control problems
in combination with direct optimization methods, this chapter presents an approach for effi-
cient trajectory optimization. The resulting quadratic program allows for a cyclical solution
finding on a progressive optimization horizon – in the sense of MPC – with high re-planning
frequency in real-time.

3.1 Linear Vehicle Dynamics

The idea of MPC is to optimize a prediction of a system behaviour. As the methodology is
based on a system model, the model represents the most important element of the MPC design
[109]. For the application of linear-quadratic optimization, the description of the vehicle
dynamics in the form of linear system models is essential. Although the vehicle dynamics are
generally non-linear, the description of the motion equations in a Frenét frame (Fig. 3.1)

Ûs(t) = v(t)
cos (θ(t) − θΓ(t))

1 − d(t)κΓ(t)
(3.1a)

Ûd(t) = v(t) sin (θ(t) − θΓ(t)) (3.1b)

for the longitudinal distance s and the lateral distance d in relation to a reference path Γ offers
the possibility of deriving a simplified system model for the vehicle’s relative kinematics
[131]. The derivation of the motion equations (3.1) is documented in Appendix A.2. Under
the assumption of small differences between the vehicle’s orientation θ(t) and the orientation
of the reference path θΓ(t) as well as small lateral distances d(t) in relation to the radius
of the reference path rΓ(t), so that d(t)

rΓ(t)
= d(t)κΓ(t) � 1 applies, the motion equations are

reformulated as follows

Ûs(t) = v(t) (3.2a)
Ûd(t) = v(t) (θ(t) − θΓ(t)) . (3.2b)
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Figure 3.1: Relative kinematics of the vehicle motion in a Frenét frame, according to [131].

Since the optimization of the driving trajectory is based on a reference path Γ and the cor-
responding vehicle motion is in the vicinity of the reference path, the previously derived
assumptions for the linearization of the motion equations (3.1) generally result in negligi-
ble effects on the application. Even in critical maneuvers, in which orientation differences
(θ(t) − θΓ(t)) of up to 25◦ may occur for a short time, the approximation generates a mi-
nor deviation of less than 3% in the lateral dynamics Ûd(t). For the longitudinal dynamics
Ûs(t), maximum deviations of 9% result in a conservative overestimation of the positions to be
reached, so that possible deviations only lead to an increase in safety reserves.
Despite the simplifying assumptions, the motion equation for the lateral dynamics (3.2b) re-
mains nonlinear. A combined optimization of both dynamics with the state vector x(t) =
[s(t), d(t)]> would result in a non-linear optimal control problem for the input vector u(t) =
[u1(t), u2(t)]> = [v(t), θ(t)]>. To determine the optimal trajectory, in this work, the corre-
sponding vehicle dynamics are separated into their two main parts. The optimal trajectory
results from a two-stage solution of isolated linear-quadratic optimal control problems for the
longitudinal and lateral dynamics. The two-step solution is therefore characterized as follows:

1. optimize u1(t) based on an initial estimate of u2(t),
2. optimize u2(t) using the previously generated u1(t).

It becomes clear, that a good initial estimate of the lateral dynamics is essential for optimiz-
ing the longitudinal dynamics. In this work, this condition is fulfilled in two different ways
depending on the teleoperated driving paradigm. In direct control, the vehicle’s lateral motion
results directly from the steering wheel angle specified by the human operator and is calcu-
lated using kinematic relationships. In the case of indirect control, an optimized reference
path forms the basis for the initial estimate of the lateral dynamics. The reference path Γ is
optimized using the modified Constrained CHOMP algorithm, see Chapter 2. Moreover, the
solution of the modified Constrained CHOMP algorithm provides the trajectory optimization
the basis for a convex problem formulation including the global minimum.

3.2 Discrete-Time Problem Representation

The discrete-time formulation of the originally continuous-time state space representation

Ûx(t) = Acont(t)x(t) + bcont(t)u(t) + dcont(t)z(t) , x(t0) = x0 , (3.3a)
y(t) = Cx(t) + ez(t) , (3.3b)
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forms the basis for the application of direct optimization methods. By considering dis-
crete time steps tk = k · Ts, k ∈ N of the continuous-time system with the step size Ts,
the continuous-time system can be converted exactly into its discrete-time formulation, as-
suming a piece-wise constant input u(t) and disturbance z(t) between discrete time steps
kTs ≤ t ≤ (k + 1)Ts. The progress of the system state x(tk) at discrete time steps tk is calcu-
lated for a given initial state x0 with the progress of u(tk) and z(tk) by successively solving the
continuous state differential equation

x(t) = eAcont (t−t0)x0 +
∫ t

t0
eAcont (t−τ)bcont(τ)u(τ)dτ +

∫ t

t0
eAcont (t−τ)dcont(τ)z(τ)dτ (3.4)

on the time intervall t ∈ [tk, tk+1] for an iterating k starting at k = 0 [70].
Assuming a piece-wise constant continuous-time system matrix and system vectors, for the
discrete-time system matrix and system vectors the following applies on the discretization
interval k:

A(tk) = eAcont (tk )Ts , (3.5a)

b(tk) =

∫ tk+1

tk
eAcont (tk )τbcont(tk)dτ , (3.5b)

d(tk) =

∫ tk+1

tk
eAcont (tk )τdcont(tk)dτ . (3.5c)

The matrix C and the vector e are identical in the continuous-time and discrete-time repre-
sentation. The linear, discrete-time model of the generalized system formulation (3.3) is thus
obtained using a simplified representation of the time dependency (tk → k) as

x(k + 1) = A(k)x(k) + b(k)u(k) + d(k)z(k) , (3.6a)
y(k) = C(k)x(k) + e(k)z(k) . (3.6b)

The optimal trajectory is obtained by minimizing a quadratic objective function

J =
N∑

k=1

[x(k) − xd(k)]>Qk [x(k) − xd(k)] +
N−1∑
k=0

rku2(k) , (3.7)

extended by desired values xd and which in the discrete-time case is represented as the sum
of all optimization time steps k = 0, . . . , N on the optimization horizon N [70]. The linear
time-variant inequality constraints for the system input u and any system outputs y are defined
at each time step k in the form of:

umin(k) ≤u(k) ≤ umax(k) , (3.8a)
ymin(k) ≤y(k) ≤ ymax(k) . (3.8b)
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3.3 Formulation of the Constrained Quadratic
Program

For solving constrained linear-quadratic optimal control problems (3.6) - (3.7) subject to linear
constraints (3.8), the so-called batch-approach has been established in the literature [13].
Using hyper-vectors, this approach compactly represents the future system behaviour based
on the initial state x0. To simplify the notation, the optimization time steps k = 0, . . . , N
are shown in the following as an index. Given the sequence of vectors for the system state
xk ∈ R

n as well as the output yk ∈ R
p

X =
[
x>1 , . . . , x

>
N

]>
, X ∈ RnN (3.9)

Y =
[
y>1 , . . . , y

>
N

]>
, Y ∈ RpN (3.10)

can be collected. The same is done with the a-priori known vector sequences of the distur-
bance term zk ∈ R

z = [z1, . . . , zN]
> , z ∈ RN (3.11)

z̃ = [z0, . . . , zN−1]
> , z̃ ∈ RN (3.12)

as well as the sequence of unknown input-vectors uk ∈ R, i.e.,

u = [u0, . . . , uN−1]
> , u ∈ RN . (3.13)

As a result, the system equations (3.6) are reformulated to

X = Ax0 +Bu +Dz̃ (3.14a)
Y = CX + Ez, (3.14b)

whereas the summarized system matrices A and B are defined by

A =



A0
1∏

l=0
A1−l

...
N−1∏
l=0

AN−1−l


, B =


b0 0 . . . 0

A1b0 b1 · · · 0
...

. . . . . .
...(

N−1∏
l=1

AN+0−l

)
b0 · · · AN−1bN−2 bN−1


, (3.15)

and C is a block-diagonal matrix involving N times the output matrix C. Furthermore, the
matrices D and E can be determined equivalently to B and C. Accordingly, the objective
function (3.7) is summed up for all iterations k over the entire optimization horizon N . Given
the input vector sequence u, the state vector sequence X and the sequence Xd of desired values
for xk,d, which is defined analogously to (3.9), the objective function becomes

J = [X − Xd]
>Q [X − Xd] + u>Ru, (3.16)

with Q = diag(Q1, . . . ,QN) and R = diag(r0, . . . , rN−1). The compact description of the
system dynamics (3.14), which represents the entire future system state as a function of the
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sequence of the system input uk to be optimized, can be easily integrated into the objective
function (3.16) by inserting (3.14a), so that a static optimization problem arises in which the
optimization variables are represented by the vector sequence u. Accordingly, the objective
function results in

J = u>Hu + Fu + o, (3.17)

with F = 2 [Ax0 + Ez − Xd]
>G, G = QB and H = B>G + R. The term o represents

a constant that is independent of u and, hence, has no influence on the optimal solution.
Equivalently, the output constraints in (3.8b) are reformulated as a function of the optimization
vector u

Y ≤ Ymax ⇒ CBu ≤ Ymax − CAx0 − CDz̃ − Ez
Y ≥ Ymin ⇒ CBu ≥ Ymin − CAx0 − CDz̃ − Ez (3.18)

by inserting (3.14a) and (3.14b), and the corresponding vector sequences for Ymin, Ymax [59].
Both the input and output constraints (3.8) can be compactly represented by

CB

IN
−CB

−IN

︸  ︷︷  ︸
AC

u ≤


Ymax − CAx0 − CDz̃ − Ez

umax
−Ymax + CAx0 + CDz̃ + Ez

−umin

︸                                   ︷︷                                   ︸
bC

(3.19)

as a function of the optimization vector u. The objective function (3.17) in combination with
the linear inequality constraints (3.19) represents a quadratic program which can be solved
efficiently using static optimization methods, cf. [13], [58], [89] and [98].

3.4 Constraint Softening: Quadratic Program
Extension through Slack-Variables

When formulating the trajectory optimization problem, physical constraints must be taken
into account in order to meet the requirements that arise for automated driving. To avoid
infeasibility issues that can be caused by the constraints, cf. [59], and to take comfort for
passengers into account, a relaxation is introduced in the form of slack variables. The basic
idea is to consider the violation of the constraints as an additional cost l(ε) in the optimization.
It is mandatory to formulate sufficiently high costs for the violation of constraints without
negatively changing the optimal solution u∗ of the original optimization problem. This can be
achieved using a linear-quadratic formulation of the additional costs, as shown exemplarily in
Fig. 3.2 for the scalar case r = 1. By choosing a sufficiently large linear gain factor, it can be
ensured that the total costs in the event of constraint violation, i.e. in the impermissible range,
are always greater than in the permissible range. Furthermore, the quadratic term enables
the violation of constraints to be punished more severely. However, a single quadratic cost
formulation may lead to a shift of the optimal solution into the impermissible range in some
cases, see Fig. 3.2(b).
By including r independent slack variables ε = [ε1, . . . , εr]> into the inequality constraints
(3.8) and the optimization vector ũ = [u>, ε>]>, the optimal trajectory is obtained as the
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𝑢∗ = 𝑢∗

𝐽 𝑢 + 𝑙(𝜖)

𝑙(𝜖)

𝐽 𝑢

𝑢, 𝜖

(a) l(ε) = k1ε

𝑢, 𝜖𝑢∗ ≠ 𝑢∗

𝐽 𝑢 + 𝑙(𝜖)

𝑙(𝜖)

𝐽 𝑢

(b) l(ε) = k2ε2

𝑢, 𝜖𝑢∗ = 𝑢∗

𝐽 𝑢 + 𝑙(𝜖)

𝐽 𝑢

𝑙(𝜖)

(c) l(ε) = k1ε + k2ε2

Figure 3.2: Comparison of the total costs with different additional cost terms l(ε), adapted ac-
cording to [131].

trade-off between the violation of constraints and the solvability of the optimization problem
using the additional linear-quadratic cost function

l(ε) = k>ε + ε>K ε . (3.20)

The additional cost function l(ε) is parametrized by k = [k11, . . . , k1r]
> and K = diag(k21, . . . , k2r)

with k11,...,2r > 0. As a result, the objective function (3.17) of the quadratic program is refor-
mulated as

J̃ = ũ>H̃ũ + F̃ũ + o (3.21)

with H̃ = diag(H,K) and F̃ =
[
2 [Ax0 + Ez − Xd]

>G, k>
]
.

It should be noted that with the expansion of the optimization vector ũ, the computational
effort required for the solution increases with the number of slack variables r . Secondary
literature suggests using solely one single slack variable for all inequality constraints in order
to guarantee the solvability of the optimization problem in the process of efficient solution
finding , c.f. [57] and [86]. In contrast, the present work uses special properties of quadratic
programming in combination with static optimization methods in order to solve the optimiza-
tion problem more efficiently even with several independent slack variables. In addition to
ensuring solvability, the use of several independent slack variables offers the possibility of

𝜖1 = 0

𝐽 𝑢 + 𝑙(𝝐)

𝑙1(𝜖1)

𝑢, 𝝐

𝑙2(𝜖2)

𝐽 𝑢

𝜖2 = 0

Figure 3.3: Multi-stage increase in total costs with two independent slack variables ε1 and ε2,
adapted according to [131].
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taking comfort aspects for passengers during the dynamic driving task into account. The vio-
lation of various constraints can thus be viewed independently. The different parameterization
in k and K allows the violation of certain constraints to be prioritized differently, so that a vi-
olation of comfort-related constraints can be preferred to the violation of collision-relevant,
i.e. safety-related constraints. This results in a multi-stage increase in total costs, as shown in
Fig. 3.3 for the case r = 2. In order to generate trajectories that are feasible in terms of driving
physics, however, there exist constraints that must not be softened. Therefore, the selective
use of slack variables for certain constraints takes place by separating those constraints for
the outputs in y and input u that should be softened and those constraints that slack variables
should not affect. By using the matrix Sy and the scalar su, those outputs or the input are
selected, for which slack variables are defined. Further outputs or the input, which should
remain unaffected by the slack variables, are then taken into account using the matrix Hy and
hu. Accordingly, the vector sequences u and Y are divided into

us = Suu; Su = diag(su
1, . . . , s

u
N) ,

Ys = SyY; Sy = diag(Sy
1, . . . , S

y
N) ,

uh =Huu; Hu = diag(hu
1, . . . , h

u
N) ,

Yh =HyY; Hy = diag(Hy
1, . . . ,H

y
N) ,

(3.22)

where all constraints are summarized as follows


HyA′C
Hu

−HyA′C
−Hu

 02nh×r


SyA′C
Su

−SyA′C
−Su

 −Σ2nsN×r

0r×N −Ir

︸                         ︷︷                         ︸
ÃC

ũ ≤




Hy

[
Ymax − B′C

]
Huumax

−Hy
[
Ymin − B′C

]
−Huumin


Sy

[
Ymax − B′C

]
Suumax

−Sy
[
Ymin − B′C

]
−Suumin


0r

︸                       ︷︷                       ︸
b̃C

, (3.23)

with A′C = CB and B′C = CAx0 + CDz̃ + Ez. The matrix Σ links the defined slack vari-
ables and the constraints that are to be softened. The objective function (3.21) expanded by
slack variables in combination with the modified linear inequality constraints (3.23) remains
a quadratic program that can be efficiently solved using static optimization methods despite
several independent slack variables.

3.5 Longitudinal Trajectory Optimization

As derived in Section 3.1, the vehicle longitudinal dynamics can be sufficiently described
along the reference path Γ in the Frenét frame using a one-dimensional motion. The system
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dynamics in the longitudinal direction can consequently be efficiently formulated as a time-
invariant integrator system

Ûx(t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 x(t) +


0
0
0
1

 u(t) (3.24)

with the state vector x = [s, v, a, j]> and input u = Üa. According to (3.1a), s(t) defines the
distance, v(t) the vehicle velocity and a(t) the vehicle acceleration along the reference path Γ.
Moreover, j represents the jerk in the longitudinal direction. In order to ensure a continuously
differentiable acceleration for reasons of comfort despite the necessary time-discretization of
the system dynamics, a fourth-order representation for the longitudinal dynamics is chosen in
this work. By defining the system outputs

y(t) =
[
1 0 0 0
0 0 1 0

]
x(t) , (3.25)

collision-relevant restrictions and physical driving limitations of the longitudinal trajectory
can be taken into account as linear inequality constraints with respect to s(t) and a(t) in the
optimization.
According to the objective function (3.7), the weightings

Qk = diag(ws,wv,wa,w j) and rk = wu , (3.26)

including the weighting factors ws,wv,wa,w j,wu > 0, allow desired trajectory profiles to be
defined, taking into account motion specifications with respect to the states of the system dy-
namics (3.24) as a square in the objective function. The factors ws,wv,wa serve, for instance,
to address deviations from a desired motion xk,d, in particular a desired vehicle velocity. In
contrast, the terms w j and wu inhibit any change in the driving velocity in order to avoid jerky
accelerations caused by sudden changes in the velocity specifications.

3.5.1 Safety and Comfort-Related Constraints

For the planning of safe and comfortable longitudinal trajectories, this section formulates
the constraints w.r.t. the previously defined system outputs (3.25). The constraints are de-
rived from the given motion specifications and the prevailing traction conditions. In this way,
collisions with obstacles can be avoided during future vehicle motions and physical driving
limitations can be observed.
In order to comply with physical driving limitations and thus to ensure feasible longitudinal
vehicle motions, constraints that result from the maximum acceleration and deceleration po-
tential are particularly important [58]. Depending on the prevailing tire grip, which varies,
for instance, with weather or road conditions, the traction condition is accounted for by time-
variant inequality constraints

amin(k) ≤ a(k) ≤ amax(k) (3.27)
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[s1(k), v1(k), a1(k)]T[s(k), v(k), a(k)]T

∆sf(k)

[s2(k), v2(k), a2(k)]T

∆sr(k)

Figure 3.4: Constrained longitudinal position s(k) of the ego vehicle (dark blue) at time step k,
adapted according to [118]

as acceleration restrictions in the trajectory optimization.
In addition to taking into account physical driving limitations, the formulation of time-variant
position constraints enables collision-relevant obstacles to be taken into account in the motion
planning. As shown schematically in Fig. 3.4, the predicted positions of other road partic-
ipants at future time steps k limit the longitudinal position s(k) of the ego vehicle at the
corresponding time steps. In the case of abrupt movements of the other road participants or
sensor noise for instance, the definition of a hard constraints of the longitudinal position s(k)
may render the optimization problem unsolvable [118]. Therefore, the longitudinal position
restrictions for the ego vehicle are taken into account using soft constraints.
In the literature, as for example in [57] or [86], a single slack variable is usually applied for a
soft constraint on a safety distance. On the contrary, the optimization formulation in this work
accounts for a two-stage longitudinal distance constraint within the optimization horizon N

s2(k) + ∆sr,comf(v2(k)) − εcomf ≤ s(k) ≤ s1(k) − ∆sf,comf(v1(k)) + εcomf
s2(k) + ∆sr,safe(v2(k)) − ε ≤ s(k) ≤ s1(k) − ∆sf,safe(v1(k)) + ε

(3.28)

for reasons of comfort. The time-variant terms

∆sf,comf(v1(k)) = ∆sf,obs,comf(v1(k)) + lf,bumper

∆sf,safe(v1(k)) = ∆sf,obs,safe(v1(k)) + lf,bumper

∆sr,comf(v2(k)) = ∆sr,obs,comf(v2(k)) + lr,bumper

∆sr,safe(v2(k)) = ∆sr,obs,safe(v2(k)) + lr,bumper

(3.29)

are modeled as a function of comfort and safety-related obstacle distances

∆sobs,comf(vp(k)) = max
(
vp(k) · th,comf , ∆s̃obs,comf

)
∆sobs,safe(vp(k)) = max

(
vp(k) · th,safe , ∆s̃obs,safe

)
,

(3.30)

which depend on the predicted velocities of the corresponding road participants vp(k) as well
as the constant comfort and safety-related time headways (th,comf and th,safe). In the case of a
crossing road participant or a static obstacle, vp(k) becomes 0. The terms s̃obs,comf and s̃obs,safe
define a minimum distance to obstacles for comfort and safety. The constant terms lf,bumper
and lr,bumper define the length from the vehicle rear axle to the front bumper and rear bumper,
respectively. To ensure the solvability of the quadratic program, the safety distances ∆sf,safe
and ∆sr,safe are linked to the heavily weighted slack variable ε . For reasons of comfort, how-
ever, the longitudinal comfort distances ∆sf,comf and ∆sr,comf are linked to the less weighted
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slack variable εcomf. Due to the two-stage longitudinal distance constraint, a compromise be-
tween a comfortable distance to an obstacle and a smooth acceleration or deceleration profile
in a dynamic maneuver can be achieved through a suitable choice of the weighting of the
comfort slack variable εcomf [118].
By introducing the independent slack variables ε and εcomf, the matrices and scalars introduced
in Section 3.4 are parametrized by

su = 0 hu = 0

Sy =

[
1 0
1 0

]
Hy =

[
0 1

]
Σ4N×2 = [I2 . . . I2]> ,

(3.31)

where r = 2 applies.

3.6 Lateral Trajectory Optimization

In contrast to the longitudinal dynamics, which can be adequately described by time-invariant
system equations of a one-dimensional motion, there are various opportunities in the Frenét
frame to formulate the lateral vehicle dynamics under the assumption of linear system models
[59], [131]. The system models differ primarily in the physical aspects taken into account and
the choice of the system input.
Based on the relationships shown in Fig. 3.1 between the orientation θΓ and the curvature
κΓ of the reference path as well as the vehicle states of the lateral distance d, the orientation
θ and the curvature κ along the longitudinal position s, the kinematic equation (3.2b) is ex-
panded to include higher system states for the formulation of the system model of the lateral
motion. As a result, collision-relevant restrictions and physical driving limitations are taken
into account. For this purpose, the center of the vehicle rear axle is defined as the reference
point, so that the side slip angle can be neglected [107]. As a result, the derived assumptions
for the linearization of the motion equations show negligible effects on the motion planning,
c.f. Section 3.1.
Whereas the authors in [59], for instance, use the reference path orientation as a state of their
system model, in this work, the reference path orientation is defined as a disturbance term
z(t) = θΓ. By choosing the first time derivative of the curvature Ûκ as a system state and its
second time derivative as the system input u(t) = Üκ, a fourth order system is modeled, which
ensures a continuously differentiable steering angle for comfort reasons despite the necessary
time-discretization of the system dynamics.
By using the velocity profile v(t) generated by the longitudinal trajectory optimization as a
time-variant parameter, the linear system dynamics for the lateral motion are modelled as
follows

Ûx(t) =


0 v(t) 0 0
0 0 v(t) 0
0 0 0 1
0 0 0 0

 x(t) +


0
0
0
1

 u(t) +


−v(t)

0
0
0

 z(t) , (3.32)

with the state vector x = [d, θ, κ, Ûκ]>.
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Figure 3.5: Representation of the system outputs for lateral collision-avoidance.

To formulate collision-relevant constraints, as shown in Fig. 3.5, the vehicle geometry is
approximated by three circles, which are positioned along the longitudinal axis. The circle
center positions are defined in relation to the rear axle center using the distances l1 = 0,
l2 = l/2, l3 = l based on the wheelbase l, so that their distances to the reference path are
calculated – analogously to the approximation of the lateral distance d – using

di = d + li sin(θ − θΓ) ≈ d + li(θ − θΓ) , i = 1, 2, 3 . (3.33)

In combination with the curvature κ to take physical driving limitations into account, the
system output is defined by

y(t) =


d1
d2
d3
κ

 =

1 0 0 0
0 1

2 l 0 0
0 l 0 0
0 0 1 0

 x(t) +


0
−1
2 l
−l
0

 z(t) . (3.34)

For reasons of comfort for the passengers, a natural driving behavior is desirable. The driving
behavior of human drivers is essentially characterized as a compromise between driving in the
middle of the lane and minimizing the lateral vehicle accelerations and the lateral jerk. This
is achieved, according to (3.7), using the weightings

Qk = diag(wd,w(θ−θΓ),wκ,w Ûκ) and rk = wu , (3.35)

including the weighting factors wd,w(θ−θΓ),wκ,w Ûκ,wu > 0. While the terms wd and w(θ−θΓ)
address the avoidance of any deviations from the reference path Γ, the terms wκ, w Ûκ and wu
inhibit any changes in direction by minimizing the curvature and its derivatives, so that the
vehicle motion is planned as smooth as possible.

3.6.1 Safety and Comfort-Related Constraints

In order to ensure feasible lateral vehicle motions, physical driving limitations must be taken
into account, which result mainly from mechanical properties of the steering actuator at low
driving speeds in teleoperation missions. The physical limitations due to the maximum steer-
ing angle δ are accounted for by time-invariant inequality constraints

κmin,δ ≤ κ(k) ≤ κmax,δ , (3.36)
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as curvature restrictions in the trajectory optimization. Due to the low lateral dynamics in
the selected experiments, the limited steering acceleration and steering speed of the actuator
are not discussed further in this thesis. A consideration of these, however, is possible by
constraining Ûκ and the system input u = Üκ, respectively.
In addition to the limitations of the driving physics, collision-relevant constraints are required
to generate safe lateral trajectories. Other road participants and static obstacles have a signif-
icant impact on the planning of future lateral vehicle motions. To avoid collisions, as shown
in Fig. 3.6, the driving space can be constrained by restricting the right and left side of the
reference path Γ so that the positions of dynamic and static obstacles are taken into account in
the lateral trajectory optimization. In the case of abrupt movements of other road participants
or sensor noise for instance, the definition of hard constraints of the lateral distances di(k)
with i = 1, 2, 3 may render the optimization unsolvable [118]. Therefore, the lateral distance
restrictions of the approximated body representation are taken into account using soft con-
straints. Analogously to the formulation of the longitudinal distance constraints, the lateral
trajectory optimization accounts for two-stage soft constraints for the lateral distances along
the vehicle’s longitudinal position s(k) aiming at both comfort and solvability:

di,min, comf(k) − εcomf ≤ di(k) ≤ di,max, comf(k) + εcomf ,
di,min, safe(k) − ε ≤ di(k) ≤ di,max, safe(k) + ε ,

with i = 1, 2, 3 .
(3.37)

To ensure the solvability of the quadratic program, the safety distances di,min,safe and di,max,safe
are linked to the heavily weighted slack variable ε . For reasons of comfort, however, the lateral
comfort distances di,min,comf and di,max,comf are linked to the less weighted slack variable εcomf.
Due to the two-stage lateral distance constraint, a compromise between a comfortable distance
to an obstacle and a smooth steering profile in a dynamic maneuver can be achieved through
a suitable choice of the weighting of the comfort slack variable εcomf [118].
By introducing the independent slack variables ε and εcomf, the matrices and scalars introduced
in Section 3.4 are parametrized by

su = 0 hu = 0 Hy =
[
0 0 0 1

]
Sy =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0


>

Σ6N×2 =


I2
...

I2

 ,
(3.38)

where r = 2 applies.
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Figure 3.6: Lateral system constraints of the ego vehicle (blue) at time t j and after the time
interval ∆t along the reference path Γ. Another road vehicle and its prediction are
colored in gray and approximated by a rectangle, adapted according to [118].
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4 Model-Predictive Cruise Control for
Direct Teleoperated Driving Tasks

The following chapter presents an assistance concept for direct control in teleoperated driving
tasks. The main content of the concept has been previously presented in [117].

4.1 Overview on the Approach

As described in Section 1.2.1, direct control represents a teleoperated driving paradigm with
the lowest level of automation. The operator closes the control loop by directly providing
operational commands to the automated vehicle based on the received sensor information
about the teleoperation scenario. As can be seen in Fig. 4.1, the operational commands
may be generated using a gamepad. Direct teleoperated driving offers several advantages by
keeping the human in the closed control loop. Humans still outperform machines in terms of
perception and processing tasks [93]. Consequently, situations may occur where the decision
system of the AV reaches its limits and unforeseen traffic situations lead, in the worst case, to
an accident. This can be the case of automated driving tasks on road particularities such as
construction sites or in situations in which a policeman controls the traffic.
As mentioned in Section 1.3, two of the main challenges in teleoperated driving are insuffi-
cient remote situational awareness and the communication time delay. State-of-the-art direct
control concepts to deal with these issues are visual assistance systems in the form of the

Figure 4.1: Image of the operator workplace: A human operator controls the vehicle using a
gamepad.
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Predictive Display, where the motions of the ego vehicle and other road users are predicted
and visualized in the form of augmented information as rectangles in the camera images, c.f.
Section 1.2.1. Any misinterpretation of these additional information, however, may have fatal
consequences. Furthermore, due to the delayed transmission of camera images and opera-
tional commands, the operator may not have enough time to react appropriately to a sudden
change in a traffic situation in a hazardous scenario. As investigated in [126], the reduced field
of view due to the characteristics of cameras may lead to incorrect assessments of obstacle po-
sitions and thus to insufficient distances to vehicles in front. Although no empirical evidence
exists in the literature, passengers complained about unnatural acceleration processes during
experiments in scope of this work. All of these factors, which the human operator has to take
into account and compensate for, can lead to cognitive overload and hence a performance
degradation in complex teleoperation scenarios, as pointed out in [48].
A useful method to address the described issues and thus to increase safety and comfort for
direct teleoperated driving, could be an on-board adaption of the operator’s control commands.
An ADAS known from conventional driving, is the ACC system, see Section 1.2.2. This
system measures the distance to vehicles in front and alters the ego vehicle’s dynamics in
order to maintain a desired distance [137]. Latest ACC approaches, mainly based on a MPC
framework such as in [2], [23] or [86], focus on minimizing fuel consumption and vehicle
control errors. These systems are mainly designed for highway scenarios as they only consider
vehicles in front. However, these approaches are not suited for application in cross traffic that
occurs in urban scenarios.
For this purpose, the model-predictive cruise control for direct teleoperated driving tasks
is presented in this work. This assistance concept uses the advantageous properties of the
quadratic program for longitudinal trajectory optimization developed in Sec 3.5 in order to
adapt on-board the operator’s control commands for the longitudinal dynamics in real-time
to address both safety and comfort. This concept aims in particular to support operators in
critical situations, when they do not react appropriately in a driving maneuver, for example
due to an incorrect assessment of the possible driving space or due to the delayed or even
interrupted communication with the ego vehicle. Critical scenarios in which an operator has
to react quickly and carefully can be caused by a sudden change in the traffic situation. Two
critical scenarios, which are experimentally examined in more detail in the following section,
are: a suddenly appearing road participant at an intersection with right of way and an abruptly
braking vehicle in front.

4.2 Experimental Results

The effectiveness of the model-predictive cruise control approach is assessed by means of real-
world teleoperated driving use cases. The experimental vehicle is equipped with a LiDAR as
well as cameras for operator feedback, object prediction and environmental detection, respec-
tively. For the optimization of the longitudinal trajectory a time step of 200 ms was chosen, so
that the selection of N = 30 leads to an optimization time horizon of 6 s. For computational
efficiency, the proposed approach is implemented in C++. The computations run on an Intel
i9-9980XE 3 GHz processor with an average calculation time of 5 ms. For reasons of com-
fort, the maximum acceleration is limited to amax = 2 m/s2. The experiments were carried
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out on a road with reduced traction conditions caused by gravel. The minimum acceleration
is therefore limited to amin = −5.5 m/s2. In order to be able to react comfortably to an abrubt
braking of a preceding vehicle, it is recommended, according to [38], to adhere a distance in
meters that corresponds to half the value of the current speed in kilometers per hour. For this
purpose, the comfort related time headway is defined as th,comf = 1.8 s, c.f. equation (3.30).
For a sufficient safety distance in critical situations, the safety related time headway is defined
as th,safe = 0.9 s.
The optimized trajectory is passed to a stabilizing I/O-linearizing feedback controller which
feeds its control signals to the vehicle’s actuators. The design and implementation of the
motion controller is out of the scope of this thesis.

4.2.1 Reaction to a Right-of-Way Vehicle at an Intersection

In the first scenario, as can be seen in Fig. 4.2, the operator with the ego vehicle wants to
cross an intersection. Accordingly, the operator sets the desired acceleration of ad = 2 m/s2

together with a desired maximum velocity of vd = 13.89 m/s ≈ 50 km/h using a gamepad.
Unfortunately, the operator does not react to a vehicle approaching from the right at the inter-
section. This can have several triggers in such a real-world teleoperation scenario. As can be
seen in the image frame of the operator’s camera view in Fig. 4.2 (a), the vehicle which has
right of way is difficult to perceive, since it is partially obscured and moves behind a static
object of a similar color. Another important challenge in teleoperated driving represents the
unavoidable time delay in the mobile network connection. If this is comparatively high, as
stated in Sect. 1.3, the operator may finally detect the vehicle approaching from the right too
late. A manual intervention by the operator might be too late in both situations. The result
can be an uncomfortable driving behavior or even a collision.
As can also be seen in Fig. 4.2 (a) in the virtual representation visualized using RViz1, the ob-
ject detection perceives the vehicle approaching from the right (orange cuboid) and predicts
three possible maneuvers (orange rectangles). The implemented longitudinal trajectory opti-
mization reflects this information and calculates a comfortable trajectory accordingly (green
rectangles) down to a standstill in the selected optimization horizon while maintaining a com-
fort distance. The corresponding optimal trajectories in terms of the vehicle’s velocity and the
acceleration are depicted in Fig. 4.2 (a).
As the other road participant continues its motion, the longitudinal trajectory optimization
generates a smooth acceleration profile in compliance with the desired acceleration, see Fig. 4.2
(b). The link to the video associated with the described scenario can be found in the footnote2

below.

4.2.2 Reaction to a Suddenly Braking Vehicle in Front

In the second scenario, the operator with the ego vehicle follows a preceding vehicle. For this
purpose, the operator leaves the setting of the appropriate vehicle’s velocity and distance to
the preceding vehicle to the proposed longitudinal trajectory optimization. Accordingly, the

13D visualization tool for Robot Operating System (ROS)
2Video of the experiment: https://youtu.be/wnPiXu6C9sg
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operator specifies the desired maximum acceleration, i.e. ad = 2 m/s2 together with a desired
maximum velocity of vd = 13.89 m/s ≈ 50 km/h using the gamepad. As can be seen in
Fig. 4.3 (a), the algorithm smoothly adjusts the velocity profile of the ego vehicle w.r.t. the
one of the preceding vehicle. In this way, it is possible for the operator to maneuver the ego
vehicle in flowing traffic comfortably while maintaining safety and comfort distance without
much effort.
Even if the vehicle in front brakes abruptly, as can be seen in Fig. 4.3 (b), the longitudinal
trajectory optimization algorithm generates a smooth trajectory until the ego vehicle comes
to a standstill behind the vehicle in front. The compliance with the safety distance and the
minimum permitted acceleration are also kept. In this situation as well, manual intervention
by the operator might take place too late due to the time-delayed data transmission. Again,
the consequences could be an uncomfortable driving behavior or even a collision.
As described in Section 3.5, the longitudinal safety distance constraint ∆sf,obs,safe is linked to
the heavily weighted slack variable ε to ensure the solvability of the quadratic program. The
longitudinal comfort distance constraint ∆sf,obs,comf, which is related to the weakly weighted
slack variable εcomf, is used to provide a comfortable distance to the vehicle in front. A suitable
choice of the weighting of the comfort slack variable εcomf allows for an optimal compromise
between a comfortable distance to the vehicle in front and a smooth deceleration process in
such a abrupt braking scenario for instance, as depicted in Fig. 4.3 (b).
The link to the video associated with the described scenario can be found in the footnote3

below.

4.3 Conclusion

This chapter presents an assistance system, the model-predictive cruise control for direct tele-
operated driving tasks. This approach aims to relieve the human operator in complex tele-
operation scenarios in which the human is directly involved in the closed control loop. The
model-predictive cruise control approach is based on a novel linear-quadratic problem for-
mulation for the vehicle longitudinal guidance, proposed in Chapter 3. This is efficiently
solved by means of a time-variant, linear MPC scheme using Quadratic Programming while
at the same time satisfying the requirements for comfort and safety, resulting from automated
driving. In the work on ACC, [2], [23] or [57] for instance, the required computing time is
not mentioned. However, the studies revealed clear advantages of the proposed longitudi-
nal trajectory optimization in terms of computing effort in comparison to known approaches.
Although a direct comparison of the computing effort is only possible qualitatively due to
different hardware used, the trajectory optimization time of 100 - 200 ms in [133] or [141] in
relation to only 5 ms in this work shows a significant increase in efficiency on a comparable
processor.

3Video of the experiment: https://youtu.be/f1u1g6O3JEc
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Figure 4.2: Reaction to a passing road participant at two consecutive times, where the graphs
indicate: the optimal trajectory (in green), acceleration constraints (in red), and mea-
surements (in black).
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Figure 4.3: Vehicle following with sudden braking maneuvers at two consecutive times, where
the graphs indicate: the optimal trajectory (in green), comfort and safety constraints
(in orange and red), and measurements (in black).



5 Corridor-Based Motion Planning
for Shared Control

The following chapter presents a shared control concept for indirect teleoperated driving tasks.
The main content of the concept has been previously presented in [116] and [118].

5.1 Overview on the Approach

In direct teleoperated driving, the human operator is kept directly in the vehicle’s closed con-
trol loop. As described in Section 1.2.1 or Section 4.1, possible shortcoming w.r.t. machine
perception for instance can be compensated for in this way. However, complex urban sce-
narios including high or variable communication time delays lead to a high workload to the
operator as stated in Section 1.3. This forces the operator to drive more slowly and more care-
fully than with low communication time delays. As stated in Section 1.2.1, indirect control
approaches has been introduced to overcome high and variable communication time delays.
The operator is not part of the closed control loop. The guidance loop is closed autonomously
by the vehicle. Therefore, the closed control loop is insensitive w.r.t any communication time
delays. In shared control, a subclass of indirect control (see Section 1.2.1), the operator is only
involved in planning tasks. The operator is enabled to define high level goals over the delayed
communication channel that the robot executes on its own afterwards [120]. State-of-the-art
shared control approaches are: trajectory-based control and waypoint-based control.
The trajectory-based control proposed in [45] proved to be easier for the operator when driv-
ing straight-line paths with communication time delays of over 200 ms compared to direct
control. It turned out, however, that specifying appropriate trajectories in turning scenarios or
for curved roads become highly challenging. Any attempt to generate trajectories manually
in such scenarios resulted in an undesirable stop-and-go driving behavior. Issues regarding an
incorrect assessment of distances to obstacles affect both, the trajectory-based and waypoint-
based approach. Any misjudgement of the driving space may lead to collision-afflicted paths.
Using waypoint-based control, no reliable statement can be made about possible collisions
along the resulting path. Only a simulation that takes into account both the vehicle geom-
etry and kinematics can clarify the situation. This approach is therefore time-consuming in
complex urban scenarios, since it requires several attempts to set the waypoints properly un-
til a feasible collision-free path is found. Even worse, both approaches are not suitable for
dynamic environments including other road participants.
The work in [28] points out clearly that human strengths are related to cognitive tasks, like
behavioural decision-making and situation analysis. After years of learning and gaining ex-
perience, see [46], humans manage to easily cope with difficult road topologies and confusing
traffic situation. Automatized machines, however, have strong capabilities in vehicle stabiliza-
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tion and collision avoidance thanks to their precise sensor equipment. Furthermore, Automa-
tion systems are superior in coping with latency effects. Humans often solve delay-free tasks
with cognitive challenges faster than automatized systems [124]. However, this relationship
reverses with the presence of time delay. An optimal percentage of human tasks taken over
by automatized systems, depending on the given time delay, leads to a minimum completion
time.
A shared control approach that seeks to distribute human-machine tasks optimally is the
corridor-based motion planning concept. This concept enables the operator to specify an area
– the corridor – towards the desired destination. The automated vehicle has then to calculate
a collision-free motion within the specified corridor. By specifying the corridor, the operator
is able to interactively take into account, for instance, missing or inadequate lane markings or
untracked obstacles, see Fig. 5.1. For this purpose, this concept is supported by both camera
and LiDAR measurements. The operator is able to take advantage of the sensor measurements
and to define the boundaries of the corridor according to the perception. The operator decides
between specifying a complete corridor to the target destination in advance or initially a sub-
corridor using the method described in Section 5.1.1. As the automated vehicle progresses
within the sub-corridor, the operator is able to append further corridor segments. Within the
specified corridor the automated vehicle calculates an optimal trajectory in real-time. For
this purpose, a novel hybrid motion planning method is proposed, that determines, in the first
phase, an optimal path for the static environment using the modified, two-step Constrained
CHOMP algorithm, developed in Chapter 2. In the second phase, a collision-free trajectory is
generated online along the optimal path using two separate linear-quadratic problem formu-
lations for both, longitudinal and lateral dynamics. They are efficiently solved by means of
a time-variant, linear MPC scheme using Quadratic Programming taking into account safety
and comfort related requirements resulting from automated driving.

Figure 5.1: Illustration of the corridor-based control approach: (a) specified corridor with a
collision-afflicted initial path (red) as well as the collision-free optimized path
(green), (b) calculation and automated execution of the collision-free motion.
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5.1.1 Corridor Specification

As described in the previous section, the corridor-based motion planning concept for teleop-
erated driving mainly involves two steps: In the first step, the operator specifies the corridor
according the perceived sensor information. Subsequently, a motion planning algorithm gen-
erates an optimal motion which the vehicle executes on its own afterwards. The specification
of the corridor is done by:

• a spline-based computation of an initial path using specified vehicle poses (x, y, θ) pro-
vided by the operator,

• a subsequent computation of the corridor boundaries using a predefined width and
• a optional customization of the boundaries by moving discrete points.

By using spline functions, polynomial curves are generated that interpolate between given
poses pA = [xA, yA, θA], pB = [xB, yB, θB] with associated scalar curvatures κA, κB. In
order to generate smooth paths, the authors in [111] suggest to take curvature derivatives into
account. Therefore, a C3-spline is required. For this purpose, a polynomial curve of degree
seven as presented in [101] is employed in this thesis.

5.2 Experimental Results

The efficiency of the proposed corridor-based control approach is assessed by means of sim-
ulations as well as real-world teleoperated driving experiments. The experimental vehicle is
equipped with a LiDAR as well as cameras for operator feedback, object prediction and envi-
ronmental detection, respectively. For the optimization of the longitudinal dynamics as well
as the lateral dynamics a time step of 200 ms was chosen so that the selection of N = 30 leads
to an optimization time horizon of 6 s. For computational efficiency, the algorithms approach
are implemented in C++. The computations run on an Intel i9-9980XE 3 GHz processor with
an average calculation time per calculation step of 8 ms for the path optimization and 9 ms
for the combined trajectory generation.
The optimized trajectory is passed to a stabilizing I/O-linearizing feedback controller which
feeds its control signals to the vehicle’s actuators. The design and implementation of the
motion controller is out of the scope of this thesis.

5.2.1 Obstacle passing in a narrow, static Environment

First, simulations were carried out in a relatively complex road scenario with narrow distances
to obstacles, created in a ROS1 environment, in order to investigate the path planning of
the corridor-based shared control approach. The scenario for this purpose including four
obstacles is depicted in Fig. 5.2 (a). It can be observed that the ego vehicle is blocked by
several obstacles along its road lane. The red triangle together with the white area represent
a construction site in the lane. In Fig. 5.2 (a) the overall geometries of all obstacles are
represented. However, due to the functional principle of a LiDAR sensor, such a view is not
possible in reality. It becomes obvious that, depending on the specific poses of the vehicle,

1Robot Operating System: set of software libraries for robot software development
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(a) (b)

(c) (d)

Figure 5.2: Simulation results: (a) road scenario with four obstacles, (b) - (d) progress of the
vehicle along the optimized path (green dotted line) within the specified corridor
(red dotted line) with its centre line (in red) and obstacle bounds (in yellow).
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Figure 5.3: Evolution of objective functions over time belonging to the scenario in Fig. 5.2

obstacles are only partially scanned or completely covered by other obstacles during this
scenario.
Using the method described in Section 5.1.1, the operator is able to specify a corridor accord-
ing to the sensor perception. First, the operator places a pose to avoid obstacle 4, which is
located at the road centre line next to the construction site. Subsequently, the operator speci-
fies the pose where the ego vehicle should return to the original lane. As can be observed in
the video2, the operator is able to generate a plausible shape of the corridor according to the
situation analysis using just a few actions, cf. Fig. 5.2 (b). However, the initial path, i.e. the
centre line of the corridor, is collision-afflicted. By using the corridor bounds as inequality
constraints, the modified, two-step Constrained CHOMP algorithm optimizes the initial path
and generates a collision-free path according to the current sensor information. In Fig. 5.2 (b)
it can also be seen, that obstacle 3 is not detected at all by the LiDAR sensor. Accordingly, an
optimal path is generated that tries to use the apparently free space. As the vehicle progresses
along the generated path, parts of obstacles are detected that were previously not perceived by
the LiDAR sensor. The modified, two-step Constrained CHOMP algorithm adapts the path
in real time according to new sensor information. As a result, the ego vehicle manages to
avoid obstacles 3, cf. Fig. 5.2 (c). Nevertheless, obstacle 4 is not completely scanned. With
further progress of the ego vehicle along the corridor and the corresponding scanning of the
environment, collision-relevant information on obstacle 4 are also taken into account in the
optimization algorithm and the path is adapted accordingly, cf. Fig. 5.2 (d). The evolution
of the obstacle objective and smoothness objective during this experiment are depicted in
Fig. 5.3. The first two peaks of the obstacle objective represent the optimization of the initial
paths from the corridor specification, which comprised two actions.

5.2.2 Avoiding suddenly appearing static Obstacle in a turning
Scenario

As part of this work, the proposed approach was implemented in a real experimental vehicle.
The path planning of the corridor-based shared control approach was tested in a typical urban
scenario. The operator’s task was to navigate the vehicle into a parking area. The operator
specified the corridor for this purpose into the corresponding side street, which is only partially

2Video of the experiment: https://youtu.be/M0R2S4WFciI
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(a) (b)

Figure 5.4: Real driving results: (a) optimal path (green dotted) located within the specified
corridor (red dotted) with obstacle bounds (yellow), (b) Path adaption based on new
sensor information.

(a)

(b)

Figure 5.5: Camera images belonging to the real driving experiment in Fig. 5.4: (a) View of the
side street into which the vehicle should turn, (b) sudden appearance of a previously
hidden obstacle.
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visible from the starting position of the vehicle. The occupancy grid map used for the corridor
specification and the associated optimal path are shown in Fig. 5.4 (a). Fig. 5.5 (a) repre-
sents the corresponding camera image of the scenario. The modified, two-step Constrained
CHOMP algorithm continuously optimizes the path in real time based on newly received sen-
sor information as the vehicle progresses along the specified corridor. As the ego vehicle turns
into the side street, an obstacle suddenly appears, see Fig. 5.4 (b) and Fig. 5.5 (b). The path
optimization algorithm is able to adapt the path online based on the newly received sensor
information and, hence, avoid a collision. The previous and the adapted path are depicted in
Fig. 5.4 (b).

5.2.3 Obstacle passing dealing with oncoming Traffic

The following complex urban scenario is used to examine the corridor-based shared control
approach in its entirety, considering static and dynamic obstacles. In this scenario, the exper-
imental vehicle is blocked by an obstacle along its road lane. As can be observed from the
camera view in Fig. 5.6, the driving space is restricted by barrier tapes. The occupancy grid
map, displayed in the virtual representation implemented in RViz, however, shows that the
barrier tapes are only partially detected near the experimental vehicle but are not detected at
all a little further away. By using the method described in Section 5.1.1, the human operator
manages to specify a plausible corridor shape with just a few actions and, consequently, in-
cludes the barrier tapes in the motion planning process of the shared control approach. This
scenario already represents the basis for the proposed modification, the two-step Constrained
CHOMP algorithm, to avoid collision-afflicted paths in poor local minima in Section 2.5.
The corresponding optimal path is depicted in Fig. 2.6 (b) in a top view. The optimal path
smoothly circumvents the blocking static obstacle. As the ego vehicle starts to drive around
the static obstacle, the object detection recognizes a moving vehicle on the opposite road lane
(orange cuboid) and predicts its manoeuvre (orange rectangles) – as can be seen from the vir-
tual representation in RViz. The implemented trajectory optimization reflects this information
and accordingly calculates a comfortable trajectory (green rectangles) down to a standstill and
lets the oncoming vehicle pass, see Fig. 5.6 (a).
As the other road participant continues its motion, the trajectory optimization generates a
smooth acceleration profile in compliance with a desired velocity value of 15 km/h, see Fig. 5.6
(b). In addition to the speed and acceleration curves, the graphs in Fig. 5.6 show the planned
distances ∆sf,obs, which are constrained in this scenario either by the oncoming vehicle or the
end of the corridor. The link to the video associated with the described scenario is stated in
the footnote3.

5.2.4 Keeping distance to a Pedestrian on the Road

In another scenario, the operator’s task is to specify a corridor along a curved road towards
a desired destination. The resulting optimal path, which in our approach only considers
the static environment, is planned too close to a dynamic object – a pedestrian at the road-
side. Nevertheless, as illustrated by two consecutive time instants in Fig. 5.7, the trajectory

3Video of the experiment: https://youtu.be/H2VoKepMClw
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Figure 5.6: Obstacle passing dealing with oncoming traffic at two consecutive times, where the
graphs indicate: the optimal trajectory (in green), comfort and safety constraints (in
orange and red), and measurements (in black).
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Figure 5.7: Keep a comfortable distance to pedestrian on road at two consecutive times, where
the graphs indicate: the optimal trajectory (in green), comfort and safety constraints
(in orange and red), and the reference curve (black dotted).
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optimization plans a smooth trajectory around the pedestrian in order to avoid a collision.
The benefits of the proposed two-stage constraint softening are reflected, for example, in the
graphs for the lateral position d1. Here, the display of the distance constraints d1,max, comf and
d1,max, safe are omitted for clarity. As described in Section 3.6, the lateral safety distance con-
straints di,min, safe and di,max, safe are linked to the heavily weighted slack variable ε to ensure
the solvability of the quadratic program. The lateral comfort distance constraints di,min, comf
and di,max, comf, which are related to the weakly weighted slack variable εcomf, are used to pro-
vide a comfortable distance to the obstacles. A suitable choice of the weighting of the comfort
slack variable εcomf allows for an optimal compromise between a comfortable distance to ob-
stacles and a smooth steering action, as depicted in Fig. 5.7. The link to the video associated
with the described scenario can be found in the footnote4.

5.3 Conclusion

This chapter presents an indirect control concept for teleoperated driving, the corridor-based
motion planning shared control. This approach aims to relieve the human operator in complex
urban scenarios including low as well as high or varying communication time delays. In con-
trast to direct control, in this indirect control concept the operator is kept outside the closed
control loop. The guidance loop is closed autonomously by the vehicle. Therefore, the closed
control loop is insensitive w.r.t any communication time delays. By taking advantage of the
human abilities in decision making, the operator is enabled to specify a corridor towards a
desired destination, whereas the automated vehicle has to calculate an optimal motion on its
own. Based on linear-quadratic optimization, novel problem formulations are developed for
the vehicle longitudinal and lateral dynamics. They can be efficiently solved by means of a
time-variant, linear MPC scheme using Quadratic Programming while at the same time sat-
isfying the requirements for comfort and safety, resulting from automated driving. Although
the proposed trajectory optimization only enables the formulation of locally optimal prob-
lems, the combination with the modified, two-step Constrained CHOMP algorithm leads to
global optimal solutions. Although a direct comparison of the computing effort is only pos-
sible qualitatively due to different hardware used, the trajectory optimization time of 100 -
200 ms in [133] or [141] in relation to only 8 ms for path planning and 9 ms for trajectory
planning in this work shows a significant increase in efficiency on a comparable processor.

4Video of experiment B: https://youtu.be/u1u52vzy4oI



6 Automatic Path Generation for
Supervisory Control

The following chapter presents a supervisory control concept for indirect teleoperated driving
tasks. The main content of the concept has been previously presented in [114].

6.1 Overview on the Approach

As pointed out in Section 1.3, remote controlling of a road vehicle in complex urban scenarios
leads to a high workload for the operator. Stabilizing the road vehicle and avoiding possible
collisions in direct teleoperated driving require both full attention and a high level of cogni-
tive performance. The main issues are in particular the lack of three dimensional perception
as well as the communication time delay, i.e. the delayed camera transmission of the vehi-
cle environment and the delayed transmission of the operational commands specified by the
operator.
In order to relieve the operator in complex urban scenarios, a useful approach may be to con-
tinuously generate further feasible paths and then forward these to the operator, see Fig. 6.1.
The work in [28] points out clearly that human strengths are related to cognitive tasks, like
behavioural decision-making and situation analysis. After years of learning and gaining ex-
perience, see [46], humans manage to easily cope with difficult road topologies and confusing
traffic situation. Automatized machines, however, have strong capabilities in vehicle stabiliza-
tion and collision avoidance thanks to their precise sensor equipment. It is therefore important
that the found paths are not selected automatically by the machine. In each command step,

Figure 6.1: Generated paths that the operator can choose from based on the operator’s percep-
tion.
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the generated paths are suggested to the operator. The corresponding path will be followed by
the vehicle only after their confirmation by the operator.
Unlike the shared control concept proposed in Chapter 5, the proposed supervisory control
concept does not use predefined target points. Instead, a global path search algorithm – a
modified RRT – generates reasonable paths and proposes them to the operator. However, in
order not to overstrain the operator, the suggestion of too many paths has to be avoided. Be-
fore the remote controlled vehicle stops at the end of a selected path, the algorithm generates
new path suggestions beforehand. As the vehicle navigates as selected by the operator, how-
ever, the vehicle environment changes continuously. Therefore, a very fast reactive local path
adopter is required to ensure that no collision occurs. For this purpose, the modified, two-
step Constrained CHOMP algorithm – developed in Chapter 2 – is employed in this concept.
The major advantage of this modified path optimization is that the path to be optimized can be
collision-afflicted. Obstacles exist in almost every urban scenario that are either partly or even
completely obscured by other obstacles. The progress of the automatized vehicle on a planned
path leads to the discovery of previously undetected obstacles. In fact, the last optimal path
that previously appeared to be beneficial and collision-free may turn out to be infeasible.

6.1.1 RRT-based Path Search

In order to explore the vehicle environment using LiDAR sensor information, the RRT al-
gorithm is modified and combined with a clustering algorithm. The RRT algorithm is com-
monly used to find a path between a starting point and and target point [80]. In the context of
the proposed interactive path planning concept for supervisory control, the RRT algorithm is
modified to explore the entire occupancy grid map and to build up a tree including all feasi-
ble paths. In general, the tree-structured graph of RRT algorithms grows towards stochastic
samples, c.f. Section 1.2.3. For the purpose of the supervisory control concept, the stochas-
tic samples are generated in the area of interest around the planning pose (x, y, θ) in a polar
coordinate system that is centered on the vehicle rear axis:[

xsample
ysample

]
=

[
x
y

]
+ r

[
cos(α)
sin(α)

]
. (6.1)

Here, the sampling distance r is a stochastic value in the range of [rmin, rmax], whereas the
stochastic angle α lies in the range of [θ − β

2, θ +
β
2 ]. The clearance distance rmin neglects the

sampling in the vicinity of the planning pose, since this is less helpful for the tree expansion.
This would lead to unreasonable U-turns, which are rare maneuvers in urban scenarios. The
maximum radial component rmax specifies the planning horizon, whereas the angular com-
ponent takes the the kinematic constraints into account. In order to speed up the exploration
process while driving, the forward sampling and backward sampling are subdivided in the
search process, see Fig. 6.2. At the moment when no feasible paths in the forward direction
can be generated, additional computational effort is accepted in order to explore the envi-
ronment behind the ego vehicle for backwards driving. Backwards driving scenarios usually
arise from a standstill position for the ego vehicle, when the operator has just been contacted
to resolve a blocking situation. The additional computational effort at this point, however, is
negligible as it takes the operator some time to become aware of the scenario.
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Figure 6.2: Sampling range of the modified RRT.

Heuristics are typical approaches to reduce the computational effort of the original RRT [68].
A well-known improvement is the cost-to-go estimation [77]. However, this heuristic requires
a specific target position, which is not present in this concept. Instead, the algorithm decides
which node among the existing ones in the tree is selected for the expansion process. For
this purpose, a new measurement criterion γ is introduced. The next node for the expansion
process is the one with the smallest criterion value. This criterion consists of three components
which are added up for each node:

γ = γsmooth + γlength + γdistance . (6.2)

The term γsmooth rates the control commands, i.e. the steering angles that were needed from
the starting pose to the node. This way, smooth paths are preferred in the expansion process.
The second component γlength favors the short branches of the tree to be expanded, which
leads to a more thorough search of the vehicle environment. The last component γdistance is
motivated by the original exploring heuristic, which measures the euclidian distance between
sample point and node, c.f. [81].
Usually only one node is expanded per expansion step. In contrast to other RRT variants, in
this approach up to five nodes are added to the expansion tree. They are generated using a
kinematic single track model of the ego vehicle. The control inputs of the kinematic single
track model are a series of steering angles δ. By limiting the value of δ, the vehicle kinematic
constraints are accounted for. With a fixed step length l and the previous vehicle state zi =

(xi, yi, θi), the subsequent state is calculated as
∆θ = l·tanδ

L ·

R = l
∆θ

xi+1 = xi + R · (sin(θi + ∆θ) + sinθi)

yi+1 = yi + R · (cosθi − cos(θi + ∆θ))
θi+1 = θi + ∆θ

, (6.3)

where R stands for the turning radius, L is the wheelbase and ∆θ represents the change of
vehicle orientation, see Fig. 6.3 (a). As depicted in Fig. 6.3 (b), the intermediate states are
checked for collision to avoid collision in the segment between two nodes. The corresponding
node is only added to the expansion tree if all intermediate states are collision-free.
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Figure 6.3: Tree expansion: (a) a single step with one control input, (b) one expansion step with
added nodes.

The search process of the RRT algorithm usually is terminated after a feasible path from
starting point to a target point has been found [81]. Since a target point is not available in this
approach, the nodes are expanded until a predefined path length is reached. The path search
algorithm is terminated after a specific number of feasible paths are found or maximal sample
attempts has been reached.
The result of the modified RRT in this work is a multitude of feasible paths. To avoid over-
straining the operator with the path selection task, the number of the paths needs be reduced
without discarding relevant ones. For this purpose the found paths are clustered according to
their end positions by means of the DBSCAN algorithm, see [33].

6.2 Experimental Results

The efficiency of the proposed interactive path planning concept for supervisory control is
assessed by means of real driving experiments in different urban scenarios. As indicated, this
concept is evaluated on the level of path planning. The effectiveness of the combined motion
planning algorithm including path and trajectory optimization has already been investigated
by means of the shared control concept in Chapter 5 and is therefore out of the scope of this
evaluation.
The occupancy grid map forms the basis of the interactive path planning process. The required
data is provided by a LiDAR sensor. The LiDAR sensor is mounted on top of the experimental
vehicle. For operator feedback, a camera transmission is used in addition to the occupancy
grid map.
For computational efficiency, the algorithms were implemented in C++. The computations
were carried out on an Intel i9-9980XE 3 GHz processor with an average calculation time per
calculation step of 11 ms for the path exploration with the modified RRT and 8 ms for the path
optimization with the modified, two-step Constrained CHOMP algorithm.
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6.2.1 Path Exploration and Clustering Results at an Intersection

Fig. 6.4 shows an example of the clustered path search using an intersection scenario. This
scenario is used to investigate whether all feasible paths are found and only reasonable ones
are proposed to the operator. The found paths by the modified RRT algorithm are displayed
in Fig. 6.4 (a). It can be observed that the exploration process generates a lot of feasible
paths. It would be irresponsible to suggest all the paths found by the RRT algorithm. This
is particularly to be avoided while the vehicle is moving, since the human operator will be
overwhelmed during the selection task. To reduce the suggested solutions to the relevant
ones, the feasible paths are clustered by means of the DBSCAN algorithm. The resulted
cluster found in this scenario are shown in Fig. 6.4 (b). For each cluster found, only one path
is subsequently proposed to the operator. The path to be suggested to the operator is selected
based on the cost criterion value of the last node, see Section 6.1.1. The final result of this
experiment is shown in Fig. 6.4 (c). The operator is given three reasonable paths to choose
from.

6.2.2 Interactive Path Planning in a Driving Maneuver

In another urban scenario, the clustered path search using the modified RRT and the DBSCAN
algorithm generated two solutions between which the operator could select, see Fig. 6.5 (a).
The operator’s decision led to the task for the automated vehicle to turn right into a side
street. However, the sidestreet is only partially visible from the vehicle’s starting position, see
Fig. 6.6 (a). As stated in [80], the RRT algorithm does not generate optimal solutions. As
can be seen in Fig. 6.5 (a), the modified CHOMP algorithm removes redundant motions of
the selected option and generates an optimal path. The optimality at the time step as can be
seen in Fig. 6.6 (a) is essentially achieved as a tradeoff between the distance to the reference
path – the selected path option – and smoothness. As the automatized vehicle follows the
optimal path, previously hidden obstacles appear as the vehicle turns into the side street, see
Fig. 6.5 (b) and Fig. 6.6 (b). Based on newly received sensor measurements, the modified
CHOMP algorithm adapts the path in real time and, hence, is able to generate a collision-free
and optimal path. For this purpose, the end point of the optimal path is shifted away from the
reference path in order to reduce the cost value of the obstacle objective. As can be seen in
the graph in Fig. 6.7 at approx. 9 sec., the cost value of the reference path objective, however,
increased. The curvature objective has been suppressed in Fig. 6.7. The curvature objective
had no influence in this scenario, since the corresponding constraint was not violated. Instead
of stopping at the end of the optimal path, the clustered path search generates further options
for the operator. The optimal path forms the basis for this. In this scenario, as can be seen
in Fig. 6.5 (b) or in the associated video1, the path search algorithm generates a straight path
option for the operator.

1Video of the experiment: https://youtu.be/POhICIi4FJI
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Figure 6.4: Results of clustered RRT path search: (a) all found paths, (b) clustered results, (c)
path suggestions for operator.
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Figure 6.5: Real driving results at two consecutive time stamps.
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Figure 6.6: Image sections of the camera view belonging to Fig. 6.5.
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Figure 6.7: Time evolution of the objective functions corresponding to the scenario in Fig. 6.5.

6.3 Conclusion

This chapter presents an indirect control concept for teleoperated driving, an interactive path
planning method for supervisory control. This approach aims to relieve the human operator
in complex urban scenarios including low as well as high or varying communication time
delays. Since in this indirect control concept, the operator is kept outside the closed control
loop and the guidance loop is closed autonomously by the vehicle, the closed control loop is
insensitive w.r.t any communication time delays. By taking advantage of the human abilities
in decision making, the operator is enabled to choose between feasible paths in a given tele-
operated driving scenario. The corresponding path will be followed by the vehicle only after
the confirmation by the operator. For this purpose, the RRT algorithm is modified in such a
way that, without the operator specifying target positions, further paths are generated by the
automatized vehicle, between which the operator can select. To generate optimal paths and,
hence, to avoid collisions, the selected option generated by the RRT algorithm is optmized
in real time using the modified, two-step Constrained CHOMP algorithm. The concept has
been evaluated in real driving experiments, where the RRT in combination with the DBSCAN
clustering algorithm successfully generates suitable path suggestions and the operator selected
option is optimized online to avoid collisions.
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7 Path Optimization for Autonomous
Driving using Deep Learning

The following chapter presents a shared control concept for indirect teleoperated driving tasks.
The main content of the concept has been previously presented in [113]

7.1 Related Work

Over the past two decades, neural networks have gained popularity for addressing complex,
non-linear problems. The majority of prior work in autonomous driving is dominated by
end-to-end or Deep Reinforcement Learning (DRL) methods. Already by 1989 neural net-
works were employed in the first self-driving vehicle as an end-to-end process, in which the
algorithm generated a steering angle based on a camera image after recognizing lanes and
segmenting the terrain, see [103]. Since end-to-end and DRL methods directly map sensor
information to control commands, functional safety is difficult to prove.
As an alternative, the authors in [53] propose a solution for a combined perception-planning
deep neural network. In contrast to end-to-end and DRL methods, the neural network is
trained to estimate an optimal trajectory over a finite prediction horizon. For prediction of
the optimal trajectory, the deep neural network – a combination of convolutional neural net-
work (CNN) and long short-term memory (LSTM) network – is given a sequence of occu-
pancy grid maps as input. The predicted trajectory states are subsequently forwarded to a
motion controller for tracking purposes. Although this approach enables the investigation of
the functional safety of the generated trajectory by evaluating its states using the occupancy
grid maps, the optimality and the quality of the solution is questionable. Since the perfor-
mance of the neural network highly depends on the used data set, even simple scenarios that
were not taken into account in the data set can lead to implausible driving trajectories. Critical
traffic situations in which a collision-avoiding trajectory is urgently required can lead to fatal
consequences.
A hybrid machine learning approach that is designed for the planning of safe trajectories
in complex and dynamic traffic-scenarios is the HARRT+ algorithm proposed in [20]. This
algorithm uses a 3D-CNN for predicting longitudinal acceleration and steering wheel angle
profiles in combination with a RRT variant. By using a dynamic vehicle model, physical
constraints are taken into account in the trajectory planning. The experimental results show
the real-time capability of the algorithm without harming safety in most of the investigated
scenarios. However, the use of the RRT variant requires a subsequent trajectory optimization
in order to remove redundant or jerky motions that such planners may generate.
The motion planning in higher automated teleoperation concepts presented in this work is em-
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ployed as a combination of a path optimization using a modified Constrained CHOMP algo-
rithm (see Section 2) and a trajectory optimization using quadratic programming (see Section
3). Considering the calculation times of 8 ms and 9 ms resulting from the two algorithms, a
further reduction in calculation times with regard to real-time capability with the used hard-
ware is not necessary. However, a reduction in the overall computational effort is reasonable
with regard to more cost-effective hardware. The trajectory optimization designed in this the-
sis takes into account driving physics as well as comfort and collision-relevant constraints.
The effectiveness of the trajectory optimization has been investigated in several automated
driving scenarios. In order to maintain the optimality of the generated trajectories for reasons
of driving safety, a strategy based on neural networks for the optimization of collision-free
paths to reduce computational effort is presented in this chapter.
The remainder of this chapter is structured as follows: In Section 7.2, the process of col-
lecting, extraction, transformation data required for training a neural network is mentioned.
Section 7.3 explains the problem statement, mentions different neural network architectures
which were trained on data collected and transformed in Section 7.2. Section 7.4 details
the training parameters and process, Section 7.5 details the evaluation criteria and evaluation
metrics for the trained models. Section 7.6 concludes the work.

7.2 Data

For the first investigations of neural networks for possible application of path optimization,
measurements were recorded in this work in a standstill position using the corridor-based
teleoperation concept proposed in Section 5. The operator specified an initial path with a
predefined width of the corridor. Based on the occupancy grid map and the operator speci-
fied initial path, the modified Constrained CHOMP algorithm including the domain step, see
Section 2, then generated an optimal, collision-free path.
The raw data was collected in ten distinct scenarios, all of which took place in a car park.
Each scenario contains a number of path optimization cases. Eight of the ten scenarios are
used for training and the remaining two scenarios for validation and testing, respectively. The
raw data is recorded in the odometry frame. As examplarly shown in Fig. 7.1, each of the
data sample contains the following information:

1) Occupancy grid map G of dimension 1536 × 1536 that contains information about sur-
rounding occupancy with a grid resolution of Gres = 0.15 m,

2) Origin of the occupancy grid map Gorg =
[
xorg, yorg

]
,

3) Ego vehicle position qego =
[
xego, yego

]
,

4) Initial path ξinit,odom =
[
q>1 , . . . , q

>
k

]>
∈ Rk×2 with q0 = [x0, y0] as the fixed starting

point and
5) Optimized path ξopt,odom ∈ Rk×2.

For optimization, the path specified by the operator is resampled in the path planning module,
so that both the initial path and the optimized path have a constant waypoint distance of 2 m
in the raw data set. Furthermore, the optimization horizon is limited to 50 m, which is why
k ≤ 25 applies.
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𝝃init =
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⋮

q25

Figure 7.1: Data sample: Binary Occupancy grid map in the background, Initial path (in green),
optimized path avoiding obstacles (in yellow), ego vehicle position (red star).

For the investigations roughly 15000 samples of raw data have been recorded.
However, since the following initial path is already optimal and does not need to be optimized
further after an optimization step, only 10% of the raw data are cases with optimized paths.
Due to the extremely unbalanced nature of the data, training on the entire set resulted in failure
in learning the optimization objectives. The data set is thus filtered based on the inequality of
the initial path and the optimized path. In order to keep the non-optimizing behavior for the
cases in which it is required, a few random samples with non-optimizing behavior are added
to the experimental data. This results in an data set with around 2000 samples, 70% of which
are instances with optimized paths. For training the neural network, both the initial path and
the optimal path are transformed into the occupancy grid map space:

Initial path in occupancy grid map space: ξinit = (ξinit,odom − Gorg)/Gres

Optimized path in occupancy grid map space: ξopt = (ξopt,odom − Gorg)/Gres .
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Depending on the operator’s specification, the initial path and thus the optimized path might
be fewer than 25 waypoints. Since neural networks require a fixed input size, all paths that
consist of fewer than 25 waypoints are padded with their last coordinate values to bring them
to a fixed length of 25.

7.3 Methods

7.3.1 Problem Statement

Training a model that maps specified inputs to outputs based on data with input-output pairs is
referred to as supervised learning. As mentioned in section 7.2, a sample of the training data
set includes information about an occupancy grid map G, an initial path ξinit and an optimized
path ξopt. In this case, the problem statement can be described as a supervised learning task
with the occupancy grid map and initial path as inputs and the predicted optimized path ξ̃opt
as output of the model to be trained. An illustration of the problem statement is shown in
Fig. 7.2. In general supervised learning problems are subdivided into regression and classifi-
cation tasks. The fact that the output of the model in this work correlates to a numerical value,
makes it a classic instance of a regression problem.

Optimal Path

Occupancy 
Grid Map

(1536 × 1536)

Initial Path

𝝃init = 𝐪1
T, ⋯ , 𝐪25

T T

𝝃opt = 𝐪1
T, ⋯ , 𝐪25

T T

Figure 7.2: Illustration of the supervised learning problem statement for the path optimization
task: The neural network takes the occupancy grid map and the initial path as inputs
and predicts an optimized path.

7.3.2 Network Architectures

For classification and regression, artificial neural networks, notably multilayer perceptrons
(MLPs), have gained prominence [44]. To utilize MLPs on two-dimensional data, the data
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needs to be flattened into a one-dimensional long vector, which can then be provided as input
to the MLPs. The spatial structure of the data is lost during the flattening process [44]. With
the loss of spatial organization of the data, an enormous number of parameters would be
required for the application of MLPs to the described problem statement in this thesis. This
would require the use of unrealistic GPU resources, making MLPs impractical for the given
supervised learning task.
Convolutional neural networks (CNNs) offer an elegant and powerful approach for process-
ing two-dimensional data while maintaining the spatial structure. CNN-based architectures
are widely utilized in image classification, object detection, traffic sign detection, semantic
segmentation and in many other applications in the field of computer vision and autonomous
driving, see [63], [78], [103] and [110]. Convolution in the context of a convolutional neural
network is a linear operation involving a dot product of a kernel/filter (two dimensional set of
weights) patch by patch throughout the entire two-dimensional input data. During the training
phase, this filter learns a certain type of feature in the input data and eventually allowing it to
recognize the feature regardless of its position in the related two-dimensional data.
For supervised learning tasks with multiple inputs, including spatial and non-spatial data,
CNNs are often combined with other artificial neural networks. The spatial features extracted
by a CNN are concatenated with the non-spatial input data and passed on to a further neural
network for the classification or regression task. A various number of such hybrid architec-
tures are summarized in [52] for the domain of autonomous driving. However, an application
of an artificial neural network in relation to the path optimization task, given in this work,
does not exist in the literature.

Hybrid artificial neural networks

According to the survey in [52], a possible neural network architecture to learn the path opti-
mization objectives might be the spatial feature extraction from the occupancy grid map using
a CNN followed by the concatenation of the extracted spatial features with the initial path and
finally predicting the optimized path from the concatenated features using a MLP. An illustra-
tion of this architecture is given in Fig. 7.3. MLPs consist of a series of fully connected layers,
i.e. every neuron in one layer is connected to every neuron in the neighboring layers. Due
to their fully connected layers, they are considered as structure agnostic. This means that no
special assumptions have to be made about the input, which makes them widely applicable.
Another neural network architecture mentioned in [52] shows the same structure as the archi-
tecture depicted in Fig. 7.3. Instead of a MLP, however, a recurrent neural network (RNN)
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Grid Map

(1536 × 1536)

Initial Path

Spatial
Features Feature 

ConcatenationCNN

𝝃opt = 𝐪1
T, ⋯ , 𝐪25

T T

𝝃init = 𝐪1
T, ⋯ , 𝐪25

T T

Figure 7.3: Hybrid artificial neural network: Combining CNN and MLP.
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LSTM Optimal Path
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T, ⋯ , 𝐪25

T T

Figure 7.4: Hybrid artificial neural network: Combining CNN and LSTM network.

is used. RNNs are characterized by their ability to use information from previous inputs to
affect the current input and output. In the path optimization case, sequences of waypoints are
to be predicted that are related in a temporal dimension. An approach to predict trajectories
using RNNs is proposed in [53]. Although RNNs capture temporal/sequential patterns, they
suffer from the problem of vanishing gradients, which inhibits learning especially long data
sequences as described in [65]. To address the vanishing gradient problem, long short-term
memory (LSTM) networks – a type of RNNs – were proposed in [66]. In this work, super-
vised learning attempts are made with LSTM networks with the structure described above.
The hybrid artificial neural network including LSTMs is shown in Fig. 7.4.
However, none of the above architectures could solve the problem statement described in
7.3.1. Instead of learning the relationship between the occupancy grid map, the initial path
and the optimized path, the architectures proposed above almost only interpolate between
the initial position and the final position of the initial path. Quantitatively, the loss function
employed for training – the mean absolute error – decreased over the epochs. Qualitatively,
however, the model predictions were not applicable, since collision avoidance in the output
path could not be achieved.
Despite the fact that CNNs have gained popularity as the common method to solve vision-
based tasks, they still show a few drawbacks. As discussed in [88], mapping from pixel index

Figure 7.5: Illustration of feature addition as extra channels, proposed in [88]. h,w=1536,1536
and c=1, post feature concatenation, number of channels are c + 2 = 3
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space to coordinate space proves difficult for CNNs. As with the task given in this thesis,
the CNN was not able to learn the mapping between the occupied cell in the binary grid map
and the corresponding path indices w.r.t. the occupancy grid map. An idea to address this
issue was presented in [88], where the coordinate specific information is manually added as
additional features to the input data. This is done by adding two further channels in a hard
coded manner to the incoming two dimensional data, see Fig. 7.5. However, this operation
of coordinate convolution slowed down the training process in in the context of this work
without noticeably improving the results.

7.3.3 Redefining the Problem Statement

In general, the main purpose of path planning algorithms is to generate collision-free paths.
In the given path optimization task, the initial path has to be altered if obstacles interfere
along it. The degree of path deviation required is determined based on the proximity of
obstacles with respect to the corresponding waypoints. The problem statement is therefore
reformulated using this statement. The redefined problem statement, see Fig. 7.6, remains
a regression task using supervised learning. In contrast to the problem statement in Section
7.3.1, the occupancy grid map G and the initial path ξinit are no longer direct inputs for the
neural network. Instead, the occupancy feature matrix Focc containing information about the
proximity of obstacles along the planned path represents the input. The neural network is
trained based on input-output pairs of the occupancy feature matrix Focc and the deviation

∆ξ = ξinit − ξopt . (7.1)

between the initial path ξinit and the optimized path ξopt. The output of the neural network is
hence the predicted path deviation ∆ξ̃. The predicted optimized path results as the difference
between the initial path and the predicted path deviation:

ξ̃opt = ξinit − ∆ξ̃ . (7.2)

The information about the proximity of obstacles to each waypoint in the initial path is col-
lected by constructing a matrix including the neighboring obstacle positions using occupancy
values for respective locations on the occupancy grid map. To create the occupancy feature
matrix, a certain area is defined for each of the 25 waypoints so that sufficient information on
surrounding obstacles is taken into account. In this thesis, a rectangular search region of 40
cells long and 26 cells wide is defined, which considers the vehicle dimension with additional
threshold values, as can be seen in Fig. 7.7. This results in a surrounding area including
1040 cells per waypoint and thus the occupancy feature matrix is defined with the dimension
25 × 1040. The redefinition of the problem statement has several advantages. The dimension
of the input data is reduced significantly from 1536 × 1536 to 25 × 1040, which improves its
manageability. Furthermore, all relevant occupancy cells are filtered for each waypoint. As a
result, this relationship no longer has to be learned by the neural network.

7.3.4 Trained Models based on the redefined Problem Statement

For the previous problem statement, as described in Section 7.3.1, a CNN was used to extract
spatial information based on the occupancy grid map. By introducing the occupancy feature
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matrix and therefore the redefined problem statement, this step is no longer required.

Distributed Dense Neural Network

As previously mentioned, MLPs have the great advantage of being structure agnostic, which
makes them widely applicable. However, flattened data, i.e. one-dimensional data is required.
To enable processing two-dimensional data and therefore to keep the spatial information pro-
vided by the occupancy feature matrix, a distributed dense (DD) network architecture for path
optimization is proposed in this work. In a distributed layer, a single MLP is defined, which,
however, is applied to each of the 25 features, see Fig. 7.8. Thus, each waypoint-specific
entry in the occupancy feature matrix, i.e. each row, is processed independently.
The output layer of the proposed architecture is again a single MLP wrapped in a distributed
layer that consists of two units due to the coordinate-specific output. Since the ground truth
deviation ∆ξ ranges between [−1, 1], due to normalization, the hyperbolic tangent operator
(tanh) is defined as activation function.

LSTM based Network

As mentioned earlier, LSTMs belong to the category of recurrent neural networks and are
capable of learning long term dependencies in sequential data. The occupancy feature matrix
of dimension (25, 1040) defines a sequence of features of 25 way points. Due to the nature
of the CHOMP algorithm changes in one waypoint have an impact on subsequent waypoint
positions. LSTMs can be used to learn these patterns. Internal gates in LSTMs control the
flow of information. These gates learn which data in a sequence should be kept or discarded.
It can then relay important information along the chain of sequences to make predictions.
The proposed neural network based on LSTM layers consists of one hidden layer, where the
hyperbolic tangent is applied as activation function. The output LSTM layer consists of 50
units with tanh as activation function. A subsequent reshaping layer reshapes the output to

Occupancy Feature 
Matrix: 𝐅occ

Shape: 25 × 1040

Path Deviation:
∆෨𝝃

Shape: 25 × 2

Figure 7.6: Illustration of the redefined supervised learning problem statement for the path op-
timization task: The neural network takes a occupancy feature matrix as input and
outputs the predicted deviation between the initial path and optimized path.
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Figure 7.7: Illustration of the occupancy feature matrix extraction.

dimension of 25 × 2, see Fig. 7.10.

Hybrid Network of LSTM and Distributed Dense Layer

A hybrid neural network architecture is depicted in Fig. 7.11. The LSTM layer consists of
one hidden layer, where the hyperbolic tangent function serves as activation function. The
output layer of the hybrid architecture is a MLP wrapped in a distributed layer that consist of
2 units with tanh activation, which reshapes the output to dimension of 25 × 2.

7.4 Neural Network Training

For training the various neural network-based approaches in this thesis TensorFlow 2.3.0 was
used. TensorFlow derives its name from operations that neural networks perform on tensors,
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i.e. multidimensional arrays. It provides a user-friendly front-end API for developing using
Python, while the back-end is programmed in C++ for performance reasons.
The presented network architectures for the path optimization task mentioned in 7.3.4 were
trained using the mean absolute error (MAE) as loss function and Nadam as optimizer. As can
be seen in Fig. 7.12, LSTM based model converges much faster than distributed dense and
hybrid based neural networks. Furthermore, it becomes clear that there is no overfitting in the
training process as the MAE of training and validation steadily decrease without a large gap
in between. That means that the neural network models do not simply memorize the training
data, but rather learn the pattern of the path optimization. In terms of model complexity the
LSTM-based model has the most parameters, followed by the hybrid network. The DD neural
network has the fewest parameters. The model complexity in terms of parameters is directly
related to the model size and training duration, see Table 7.1.

Table 7.1: Model complexity in terms of parameters
Neural Network Number of parameters Size in KB Training time
DD 4174 76.5 148 s
LSTM 18944 184.7 215 s
LSTM + DD 8350 95.7 189 s
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Figure 7.8: Illustration of the distributed dense (DD) layer.
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Figure 7.9: Neural network with DD layers.
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Figure 7.10: Neural network with LSTM layers.
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Figure 7.11: Neural network with LSTM and DD layers.
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DDHybrid (LSTM+DD)

Figure 7.12: Training loss and validation loss of network architectures discussed in Section
7.3.4.

7.4.1 Hyperparameter Tuning

Parameters that influence the learning task of neural networks are referred to as hyperparame-
ters. Hyperparameter tuning is the process of exploring for the ideal hyperparameters to gain
the best performing model. In order to generalize various data patterns for the model, the
learning rates, weights or different constraints may have to be adapted. Using hyperparam-
eter optimization, an optimal neural network is found that minimizes a specified validation
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loss function (in our case MAE) on independent data and at the same time finds a tuple of
hyperparameters.
Conventional hyperparameter tuning algorithms such as grid search and random search blindly
investigate the hyperparameter space, resulting in an exhaustive search process. Bayesian op-
timization approaches, however, link the model metric and the hyperparameters using Gaus-
sian Processes and, hence, iteratively decide the next hyperparameter candidates based on
previous results until the process converges to an optimum [10].
The hyperparameters taken into account for tuning and their ranges are given in Table 7.2
as an example for the LSTM-based neural network. The effects of different hyperparameter
combinations regarding the validation loss function are shown in Fig. 7.13. It can be observed
that lower learning rates performed better in combination with the nadam optimizer. Satisfac-
tory results were obtained with different amounts of LSTM units in the first layer. Based on
this, the model with the fewest units was chosen due to the less required storage capacity of
the model and consequently faster calculations. The best number of epochs can be observed
between 35 and 70. The best hyperparameter set is stated in Table 7.3.

Table 7.2: Hyperparameters and their ranges for the LSTM-based neural network.
Bayesian optimization

Parameters Ranges Distribution
LSTM Units in layer1 [2-30] Integer Uniform
learning rate (lr) [0.01-0.04] Uniform
optimizer [nadam,adam] Categorical
epochs [5-100] Integer Uniform

Figure 7.13: Hyperparameter tuning for the LSTM-based neural network using Bayesian opti-
mization.
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Table 7.3: Best hyperparameter set for the LSTM-based neural network.
Best hyperparameter set

Parameters Value
LSTM Units in layer1 2
learning rate (lr) 0.033
optimizer nadam
epochs 40

7.5 Evaluation

The evaluation of neural networks, in particular the statement that models perform correctly
with unknown data, is one of the most critical components of neural network quality. It is
crucial to determine a rigorous approach for the evaluation of neural network performance.
This is especially important in the context of automated driving, since the system is safety
critical. The evaluation is carried out using both: quantitative and qualitative metrics.

7.5.1 Quantitative Results

Quantitative metrics are measurements using certain formulas and are therefore represented
numerically. They provide precise information, i.e. facts in mathematical data. For regres-
sion tasks, the most applied quantitative metrics are: mean absolute error, mean square error
and root mean square error. In this thesis, the evaluation target is to discover how close the
predicted path, generated by the neural network, is in relation to the optimal path, generated
by the Constrained CHOMP algorithm. This can be determined from distance between the
respective waypoints.

Average Displacement Error

A quantitative metric that provides insight into the proximity of given paths is the average
displacement error (ADE). This metric refers to the mean square error (MSE) over all way-
points, of the predicted path ξ̃opt and the optimal path ξopt. The ADE is therefore calculated
as follows

ADE =
1

k

25∑
k=1

√(
ξopt(k) − ξ̃opt(k)

)2
. (7.3)

The results of the various model architectures can be seen in Table 7.4.

7.5.2 Qualitative Results

While quantitative metrics measure performance in terms of response time needed, accu-
racy or likelihood to deviate from, qualitative metrics include subjective assessment, for in-
stance, about usefulness or satisfaction [139]. A visual representation of exemplary results
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Table 7.4: Average Displacement Error of various neural network architectures.
Neural Network ADE
DD 1.094
LSTM 0.88
DD + LSTM 1.120

allows even those who are not familiar with the corresponding technical terms to evaluate the
model performance qualitatively. While qualitative metrics are simple methods for evaluating
a model performance, however, this type of evaluation may need expert supervision and may
be exhaustive given large data sets.
The visualization of the optimal path as well as the predicted path and their manual confir-
mation serve the qualitative evaluation of the model performance in this thesis. Fig. 7.14
shows that the model architecture which contains only MLPs can satisfy the objective of gen-
erating collision-free paths. However, this network does not meet the objective of generating
smooth paths. The paths generated by model architectures containing MLPs deviate from the
initial path when there is a surrounding obstacle, see Fig. 7.14(a). The fact that MLPs are not
able to learn sequential relationships between waypoints, as already mentioned, may results
in such a behaviour. LSTMs are designed to learn patterns in sequential data, i.e. between
waypoints in the path sequence. As a result, the model architecture containing LSTM layers
generates smoother paths compared to model architectures based on MLPs as can be seen in
Fig. 7.14(c). The hybrid model architecture, which includes a LSTM as the first layer and
a distributed dense layer as the second layer, cannot generate smooth paths either, since the
output layer is a MLP, see Fig. 7.14(b).
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(a) Distributed Dense model (b) Hybrid model (c) LSTM-based model

(d) Distributed Dense model (e) Hybrid model (f) LSTM-based model

Figure 7.14: Path prediction results using two scenarios indicating: the initial path in green (op-
erator specified), the optimal path in yellow (generated by Constrained CHOMP),
the predicted path in orange (generated by neural network) and the ego vehicle
position as a red star.
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7.5.3 Robustness Evaluation

Safety has a crucial role in autonomous driving. It is therefore imperative that the behaviour
of the neural network is consistent and explainable. In order to investigate the robustness
and the validity of the neural network, iterative predictions are carried out based on paths that
were predicted by the neural network in previous steps. Since optimal paths are also generated
iteratively using Constrained CHOMP, the robustness evaluation process is defined as follows:

1. Given the occupancy grid map and the initial path ξinit: Calculate the occupancy feature
matrix Focc.

2. Predict the deviation ∆ξ̃ based on the occupancy feature matrix Focc, then calculate
ξ̃opt = ξinit − ∆ξ̃.

3. Update the occupancy feature matrix Focc based on ξ̃opt.
4. Back to step 2 and iterate.

This method allows making a statement about the robustness of the neural network and thus
to show whether the model only optimizes the path when it is necessary. Due to the advan-
tageous properties and results, demonstrated by previous quantitative and qualitative metrics,
the robustness evaluation is visualized in Fig. 7.15 for the LSTM based neural network. Here,
it can be observed, that in the first iteration, Fig. 7.15 (a) and (b), the neural network is able
to predict the optimal path sufficiently accurate. The path predicted by the neural network is
almost identical to the optimal path. An ADE of less that 0.6 is achieved in both scenarios.
In further iterations it can be seen that the path is not optimized further. This underlines its
consistency in predicting optimal paths.

7.6 Conclusion

This chapter presents an alternative path planning method based on deep learning to the mod-
ified, two-step Constrained CHOMP algorithm, developed in Chapter 2. Different neural net-
work architectures are examined, which are suitable for path optimization taking into account
the smoothness factor and collisions. The LSTM based neural network shows the highest
model complexity, however, outperforms other models. The required memory and time con-
straints represent key factors in real-time systems. The LSTM based neural network occupies
around 185 kB. The calculations were carried out on an Intel i7-8565U 1.80 HHz processor
with an average calculation time per calculation step of 1.8 ms for occupancy feature matrix
extraction and 0.7 ms for the path prediction. In summary, the total calculation time resulted
in around 2.5 ms per calculation step. Considering the less powerful processor compared to
the experiments in Chapter 5 and 6, where the path optimization takes 8 ms using the modi-
fied, two-step Constrained CHOMP algorithm, a noticeable improvement in computing effort
is achieved using the deep learning approach.
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(a) Scenario 1, iteration: 1 (b) Scenario 1, iteration: 2 (c) Scenario 1, iteration: 3

(d) Scenario 2, iteration: 1 (e) Scenario 2, iteration: 2 (f) Scenario 2, iteration: 3

Figure 7.15: Robustness evaluation of the LSTM neural network using iterative predictions in
two scenarios.
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8 Conclusion and Outlook

8.1 Conclusion

The teleoperation of road vehicles is intended to resolve complex, urban scenarios in which the
current intelligence of autonomous vehicles is insufficient. In order to increase the safety and
precision in urban environments, several teleoperated driving concepts for direct and indirect
control are proposed in this thesis. The proposed concepts raise the level of autonomy in
different ways, while the operator remains the main decision maker in all driving tasks. For
this purpose, real-time capable algorithms for path and trajectory planning are developed that
aim for safe and comfortable motions of the remote controlled vehicle.
The proposed modified, two-step Constrained CHOMP algorithm introduces a second opti-
mization step, the domain step, to prevent the path to get stuck in poor local minima. The
subsequent smoothing step, including the original formulation of the objective functional, is
modified in order to take the vehicle dimensions into account. Furthermore, additional objec-
tive functions are introduced that address the vehicle non-holonomic constraints and penalize
the distance to a reference path that represents a guidance planned by the human operator. For
the application of automated driving, the proposed modified, two-step Constrained CHOMP
algorithm allows the generation of optimal solution including the global minimum. Although
global path search algorithms exist for this purpose, the proposed path optimization is able to
generate an optimal path with significantly less computational effort.
For the planning of optimal trajectories in real-time, efficient formulations of constrained
linear-quadratic optimal control problems are derived separately for the longitudinal and
lateral dynamics. They are solved by means of a time-variant, linear MPC scheme using
Quadratic Programming. To guarantee the solvability of the optimization problems, con-
straint softening is applied by linking the safety-related longitudinal as well as lateral obstacle
distances to a heavily weighted slack variable. In addition to hard constraints regarding the
corresponding accelerations, comfort-related longitudinal and lateral distances to obstacles
are defined and linked to a less weighted slack variable in order to account for comfort in the
trajectory optimization. By introducing the two-stage constraint softening for the longitudinal
as well as the lateral obstacle distance constraints in combination with a suitable choice of
the weighting of the comfort slack variable, a compromise between a comfortable distance
to obstacles and a smooth trajectory profile in a dynamic maneuver is achieved. Although
the proposed trajectory optimization design only enables the formulation of locally optimal
problems, the combination with the modified, two-step Constrained CHOMP algorithm leads
to global optimal trajectories. Compared with state-of-the-art motion planning algorithms,
the results of the novel hybrid motion planning method indicates a significant increase in
computational efficiency.
A teleoperated driving concept proposed in this thesis is the model-predictive cruise control
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for direct teloperated driving tasks. This concept aims to relieve the human operator in com-
plex teleoperation scenarios in which the human is directly involved in the closed control
loop. The model-predictive cruise control approach uses the advantageous properties of the
developed trajectory optimization for the longitudinal guidance. It adapts on-board the oper-
ator’s control commands for the longitudinal dynamics in real-time in order to address both
safety and comfort while considering other road participants. This concept aims in particular
to support operators in critical situations, when they do not react appropriately in a driving
maneuver, for example due to an incorrect assessment of the possible driving space or due to
the delayed or even interrupted communication with the ego vehicle. This concept is success-
fully validated using two real driving scenarios: a suddenly appearing road participant at an
intersection with right of way and an abruptly braking vehicle in front.
The corridor-based motion planning concept proposed in this thesis represents a novel shared
control approach. This approach aims in particular to overcome varying or high communi-
cation time delays to the ego vehicle by introducing highly automated driving functions. In
contrast to direct control, in this indirect control concept the operator is kept outside the closed
control loop. The guidance loop is closed autonomously by the vehicle. Therefore, the closed
control loop is insensitive w.r.t any communication time delays. By taking advantage of the
human abilities in decision making, the operator is enabled to specify an area – the corridor
– towards a desired destination. Therefore, the operator is able to interactively take into ac-
count, for instance, missing or inadequate lane markings or untracked obstacles by the system.
For this purpose, this concept is supported by both camera and LiDAR measurements. The
operator is able to take advantage of the sensor measurements and to define the boundaries of
the corridor according to the perception. The operator decides between specifying a complete
corridor to the target destination in advance or initially a sub-corridor using this method. The
automated vehicle calculates and executes an optimal motion on its own in real-time within
the specified corridor. As the automated vehicle progresses within the sub-corridor, the opera-
tor is able to append further corridor segments. For motion planning, the novel hybrid motion
planning approach is implemented, that determines, in the first phase, an optimal path for
the static environment using the modified, two-step Constrained CHOMP algorithm. In the
second phase, a collision-free trajectory is generated online along the optimal path using two
separate linear-quadratic problem formulations for both, longitudinal and lateral dynamics.
They are efficiently solved by means of a time-variant, linear MPC scheme using Quadratic
Programming taking into account safety and comfort related requirements resulting from au-
tomated driving. This concept is successfully validated using complex simulations and several
real driving scenarios including dynamic obstacles.
To support the operator in the planning task, this thesis presents an automatic path generation
approach for supervisory control. In this indirect control concept, again, the operator is kept
outside the closed control loop. The guidance loop is closed autonomously by the vehicle.
Therefore, the closed control loop is insensitive w.r.t any communication time delays. This
concept aims to relieve the operator in complex urban scenarios by continuously generating
further feasible paths and then forward these to the operator. The operator decides which
path will be followed by vehicle. For this purpose a global path search algorithm, the RRT
algorithm, is modified in such a way that, without the operator specifying target positions,
the vehicle environment is explored and reasonable paths are generated. Before the remote
controlled vehicle stops at the end of a selected path, the algorithm generates new path sugges-
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tions beforehand. As the vehicle navigates as selected by the operator, the modified, two-step
Constrained CHOMP algorithm ensures that no collision occurs by optimizing the followed
path in real-time. The concept is successfully validated in real driving experiments using
complex urban scenarios.
Finally, this thesis introduces a novel concept for path optimization based on deep learning.
For this purpose different problem statements together with different neural network architec-
tures are examined. Based on data generated by the modified, two-step Constrained CHOMP
algorithm, a LSTM based neural network is derived that outperforms noticeably the modified,
two-step Constrained CHOMP algorithm in terms of memory usage as well as computational
effort. The alternative path planning concept using the LSTM based neural network is suc-
cessfully validated using real data recorded in a parking area.

8.2 Outlook

In future work, the combination of the presented teleoperated driving concepts for the step-
by-step solution of a single teleoperated driving task could be investigated. One possibility
is that if the operator has just been contacted to resolve a teleoperated driving task, the au-
tomated system will suggest several feasible paths to the operator. After confirming a path,
the operator specifies corridor boundaries to account for, for instance, missing lane markings
or untracked obstacles in the motion planning. If there is no communication latency problem
and the operator feels ready, the operator can directly take over the control of the remote-
controlled vehicle. In the case of direct control, the automated system further generates new
path suggestions that the operator can choose between and can thus hand over the control of
the vehicle back to the automated system.
To decrease the computational effort, the path optimization using the modified, two-step Con-
strained CHOMP algorithm may be replaced by the proposed LSTM based neural network.
However, to cover all possible driving scenarios more corresponding data is required. In addi-
tion, a neural network could be developed that dispenses the LiDAR data and only uses camera
measurements. This could be accomplished by transforming the camera measurements into a
two-dimensional grid, comparable to the occupancy grid map. This would eliminate the high
costs of the LiDAR sensor.
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A Mathematical Explanations

A.1 The Curvature Vector

The curvature of a path characterizes the amount by which the given path deviates from a
straight line. From differential geometry, c.f. [30], the curvature κ(s) for a path ξ(s) parame-
terized by arc length is defined as

κ(s) =
��������d2ξ(s)ds2

�������� = | |ξ(s)′′| | . (A.1)

Considering an osculating circle, see Fig. A.1, that has a second order contact (equal curva-
ture) with the path ξ(s) at given point q: The arc length parameterization for the circle with
radius ρ centered at the origin in the plane, is defined by

x = ρ cos
s
ρ
,

y = ρ sin
s
ρ
.

(A.2)

Differentiating (A.2) w.r.t. s results in

x′ = −sin
s
ρ
,

y′ = cos
s
ρ
.

(A.3)

𝐭
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Figure A.1: The osculating circle for the point q on the path ξ(s). The tangent of the path at the
given point is represented by the vector t.
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With the arc length parameterization, the magnitude of the velocity vector [x′, y′] is equal for
all s. By differentiating (A.3) w.r.t. s

x′′ = −
1

ρ
cos

s
ρ
,

y′′ = −
1

ρ
sin

s
ρ
,

(A.4)

it can be observed, that the magnitude of the acceleration vector [x′′, y′′] equals 1
ρ . Assuming

the path is arc length parameterized as well, according to [106] the magnitude of ξ′′ should
equal the magnitude [x′′, y′′], i.e.

κ(s) = | |ξ(s)′′| | =
1

ρ(s)
. (A.5)

The curvature vector κ(s) is therefore defined as the vector of magnitude κ(s) that points from
the point q on the path towards the center O:

κ(s) = ξ′′(s) . (A.6)

Considering a path ξ(s∗) that is not parameterized by arc length, differentiating the path twice
w.r.t. arc length s, the following applies

d2ξ
ds2
=

d
ds

(
ξ′

ds∗

ds

)
,

= ξ′′
(
ds∗

ds

)2
+ ξ′

d2s∗

ds2
.

(A.7)

Since s represents the arc length of the path ξ, the relation of s and s∗ is characterized by

s(s∗) =
∫ s∗

0
| |ξ′| |ds∗ . (A.8)

Based on the first differentiation of (A.8) w.r.t. s∗

ds
ds∗
= | |ξ′| | , (A.9)

the following expression results:
ds∗

ds
=

1

| |ξ′| |
. (A.10)

By differentiating the given expression (A.10) w.r.t. s

d2s∗

ds2
=

(
d

ds∗
1

| |ξ′| |

)
ds∗

ds
=

(
d

ds∗
1√
ξ′>ξ′

)
ds∗

ds
,

=

(
−

1

2

(
ξ′
>
ξ′

)−3
2 · 2 ξ′>ξ′′

)
1

| |ξ′| |
=

(
−
ξ′>ξ′′

| |ξ′| |3

)
1

| |ξ′| |
,

= −
ξ′> ξ′′

| |ξ′| |4

(A.11)
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and substituting the obtained result into (A.7), the curvature vector can be calculated by

κ(s) =
d2ξ
ds2
=

ξ′′

| |ξ′| |2
− ξ′ξ′

> ξ′′

| |ξ′| |4
. (A.12)

A.2 The Dynamics of a non-holonomic Vehicle in a
Frenét Frame

To model the vehicle dynamics in the Frenet frame, the relation between the vehicle velocity
v(t) and the first derivative of the Frenét coordinate s(t), i.e. Ûs(t), is required [132]. As can be
seen in Fig. A.2, the point qΓ(s(t)) = [xΓ(s(t)), yΓ(s(t))]

> on the path Γ represents the shortest
distance to the vehicle’s rear axle middle point qv(sv(t)) = [x(sv(t)), y(sv(t))]

>. Therefore, the
connection between these two points and the tangent tΓ(s(t)) of the path form a right angle,
what can be expressed by [

qv(sv(t)) − qΓ(s(t))
]> tΓ(s(t)) = 0 . (A.13)

With the time derivative of (A.13) applies:[
dqv

dsv
Ûsv −

dqΓ
ds
Ûs
]>

tΓ +
[
qv − qΓ

]> dtΓ
ds
Ûs = 0 . (A.14)

By using Frenét’s Formula t′
Γ
= κΓnΓ and

nΓ =
qv − qΓ
| |qv − qΓ | |

=
qv − qΓ

d
, (A.15)

(A.14) is reformulated with Ûsv = v as follows

[tvv − tΓ Ûs]> tΓ − κΓd Ûs = 0 ,

v (cosθ cosθΓ + sinθ sinθΓ) − Ûs − κΓd Ûs = 0 ,

v cos (θ − θΓ) − Ûs − κΓd Ûs = 0 ,

(A.16)
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Figure A.2: Relative kinematics of the vehicle motion in a Frenét frame.
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which results in
Ûs = v

cos (θ − θΓ)
1 − dκΓ

. (A.17)

The time derivative of

d2 =
[
qv(sv) − qΓ(s)

]> [
qv(sv) − qΓ(s)

]
(A.18)

yields

2d Ûd = 2
[
qv − qΓ

]>
[tvv − tΓ Ûs] ,

= 2 d n>Γ [tvv − tΓ Ûs] ,
Ûd = v n>Γ tv ,
= v (−sinθΓ cosθ + cosθΓ sinθ) ,
= v sin(θ − θΓ) .

(A.19)
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