65 research outputs found

    A flow disturbance estimation and rejection strategy for multirotors with round-trip trajectories

    Get PDF
    This paper presents a round-trip strategy of multirotors subject to unknown flow disturbances. During the outbound flight, the vehicle immediately utilizes the wind disturbance estimations in feedback control, as an attempt to reduce the tracking error. During this phase, the disturbance estimations with respect to the position are also recorded for future use. For the return flight, the disturbances previously collected are then routed through a feedforward controller. The major assumption here is that the disturbances may vary over space, but not over time during the same mission. We demonstrate the effectiveness of this feedforward strategy via experiments with two different types of wind flows; a simple jet flow and a more complex flow. To use as a baseline case, a cascaded PD controller with an additional feedback loop for disturbance estimation was employed for outbound flights. To display our contributions regarding the additional feedforward approach, an additional feedforward correction term obtained via prerecorded data was integrated for the return flight. Compared to the baseline controller, the feedforward controller was observed to produce 43% less RMSE position error at a vehicle ground velocity of 1 m/s with 6 m/s of environmental wind velocity. This feedforward approach also produced 14% less RMSE position error for the complex flows as well

    AUTONOMOUS NAVIGATION OF SMALL UAVS BASED ON VEHICLE DYNAMIC MODEL

    Get PDF

    Communication-based UAV Swarm Missions

    Get PDF
    Unmanned aerial vehicles have developed rapidly in recent years due to technological advances. UAV technology can be applied to a wide range of applications in surveillance, rescue, agriculture and transport. The problems that can exist in these areas can be mitigated by combining clusters of drones with several technologies. For example, when a swarm of drones is under attack, it may not be able to obtain the position feedback provided by the Global Positioning System (GPS). This poses a new challenge for the UAV swarm to fulfill a specific mission. This thesis intends to use as few sensors as possible on the UAVs and to design the smallest possible information transfer between the UAVs to maintain the shape of the UAV formation in flight and to follow a predetermined trajectory. This thesis presents Extended Kalman Filter methods to navigate autonomously in a GPS-denied environment. The UAV formation control and distributed communication methods are also discussed and given in detail

    Air-flow sensing for vehicle length estimation in autonomous driving applications

    Get PDF

    Design and integration of vision based sensors for unmanned aerial vehicles navigation and guidance

    Get PDF
    In this paper we present a novel Navigation and Guidance System (NGS) for Unmanned Aerial Vehicles (UAVs) based on Vision Based Navigation (VBN) and other avionics sensors. The main objective of our research is to design a lowcost and low-weight/volume NGS capable of providing the required level of performance in all flight phases of modern small- to medium-size UAVs, with a special focus on automated precision approach and landing, where VBN techniques can be fully exploited in a multisensory integrated architecture. Various existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for implementation

    RESILIENT STATE ESTIMATION FOR MICRO AIR VEHICLES UNDER SENSOR ATTACKS

    Get PDF
    This thesis proposes a solution to the problem of resilient state estimation and sensor fusion in an autonomous micro air vehicle. The setup comprises of redundant sensors that measure the same physical signal. An adversary may spoof a subset of these sensors and send falsified readings to the controller, potentially compromising performance and safety of the system. This work integrates Brooks-Iyengar Sensor fusion algorithm with a generic state estimator as a method to thwart sensor attacks. The algorithm outputs a point estimate and a fusion interval based on an assumed set of faulty sensors. Finally, the thesis illustrates the usefulness of the resilient state estimator with a case study on a MAV flight dataset

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Development and evaluation of a dynamically scaled testbed aircraft for a visual inertial odometry dataset

    Get PDF
    In this thesis we describe the design, manufacturing, and testing of a dynamically scaled aircraft, which is a scaled model of a general aviation vehicle that dynamically behaves in a similar manner as the full-scale aircraft. This scaled model (Cirrus SR22T) is to serve as a testbed for both Distributed Electric Propulsion (DEP) aircraft research and for Visual Inertial Odometry (VIO) research. The aircraft is used as a baseline to compare with the DEP aircraft, to draw conclusion regarding the effect of changing to a DEP configuration, and to provide a way to measure the effect that a DEP configuration would have on a full-scale aircraft. The aircraft is also used to collect data from various onboard sensors to provide a data set for the VIO research community to use
    corecore