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ABSTRACT 

 

 In this thesis we describe the design, manufacturing, and testing of a dynamically scaled 

aircraft, which is a scaled model of a general aviation vehicle that dynamically behaves in a 

similar manner as the full-scale aircraft. This scaled model (Cirrus SR22T) is to serve as a 

testbed for both Distributed Electric Propulsion (DEP) aircraft research and for Visual Inertial 

Odometry (VIO) research. The aircraft is used as a baseline to compare with the DEP aircraft, to 

draw conclusion regarding the effect of changing to a DEP configuration, and to provide a way 

to measure the effect that a DEP configuration would have on a full-scale aircraft. The aircraft is 

also used to collect data from various onboard sensors to provide a data set for the VIO research 

community to use. 
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CHAPTER 1: Introduction 

Although aircraft have significant control surface redundancy, there have been over 600 

deaths in the past 27 years due to complete aircraft control failure [3]. One of the most 

challenging control failures for a control system to deal with is a total hydraulic failure, which 

although rare, does occur. During the 1990’s researchers investigated propulsion-controlled 

aircraft (PCA) as a solution to this problem [7]. PCA use the thrust from the engines to control 

the aircraft as a backup system and is independent of the hydraulically control system. This 

concept was never successfully employed on civilian transport aircraft due to numerous technical 

challenges [7]. One of the most significant of these challenges was the long time constant of 

turbofan engines, between the desired throttle input and the resulting thrust change in thrust 

output [8]. The time response for an emergency control system, like what NASA developed in 

the 1990’s [7], could be long since in emergencies, performance is gladly traded for 

survivability. However, in order for a PAC primary aircraft control system to be able to perform 

as good as or better than the classic primary control systems, there is no choice but to have a 

short time response. Many of these challenges can potentially be addressed while maintaining the 

redundancy and safety standards necessary for certification by using electrical ducted fan (EDF) 

systems. 

The EDF systems are associated with far shorter response times than turbine-driven 

propulsors, eliminating the time constant limitation of PCA’s. Coupling the EDF system with 

distributed electric propulsion (DEP) aircraft lends itself to new capabilities in control systems. 

A DEP aircraft differs from the conventional one by having many smaller propulsors spread 

across the wing instead of a few bigger propulsors. This new concept improves the efficiency of 

the aircraft [4, 9-12] while having the potential of replacing or significantly augmenting existing 
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control surfaces, which will allow for large reductions in aircraft weight and fuel burn. Currently, 

however, there has been no research at attempting to control these DEP aircraft using propulsor 

thrust. 

A major integration benefit of DEP comes due to the aerodynamics of placing propulsors 

along the leading edge of the wingspan (as a high lift device). By using DEP, the dynamic 

pressure over the wing is enhanced at slow speeds [14], allowing for designing an aircraft with a 

smaller (area) wing that is just as safe as a non-DEP aircraft during takeoff/landing. A smaller 

wing of course decreases the overall drag of the aircraft. A side benefit of having a smaller wing 

is that we are able to design the aircraft to cruise at L/D max [14], something that is difficult to 

achieve due to the fact that the L/D max for larger wings usually is at a lower velocity than what 

is needed for cruise. 

An additional DEP advantage can be achieved by mounting the propulsors at each 

wingtip, enabling the propellers to be spun against the tip vortex [14]. This results in an increase 

in propulsive efficiency due to the reduction in induced drag [17], making the airplane more 

efficient. 

Classic aircraft control has been well studied and understood. PCA has been preliminarily 

studied mainly in the context of emergency aircraft control [6]. The proposed research would go 

further by carrying out the novel study of PCA as the primary aircraft control and applying it to a 

state-of-the-art DEP design. In order to develop this complex control system, this study aims to 

advance our understanding of two multidisciplinary areas of aircraft design: the rapid and 

accurate control of engine thrust, and the aerodynamic coupling effects of leading edge 

propellers in close proximity. This knowledge could lead to more efficient aircraft design, 

perhaps eliminating the need of vertical and horizontal tails. 
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The DEP design, however, brings new challenges. With new challenges there is also 

higher risk. In order to mitigate this risk, there is the need for a baseline aircraft to serve as a 

technology proof of concept. This aircraft would test out and evaluate the subsystems that would 

also go on the DEP aircraft such as the flight controller and DAQ systems. This baseline aircraft 

was begun by our groups previous work. The end goal for this baseline aircraft is to serve as a 

way to quantify the effect of changing an aircraft to a DEP configuration. This done by 

characterizing the dynamics of the baseline to then compare with the dynamics of the DEP 

aircraft. This is done by performing system identification on both aircrafts, so we have two 

mathematical models, one for each aircraft. We can then compare, in both simulation and 

experimental settings, the response of the aircrafts to the same inputs at the same flight 

conditions. 

Another contribution of this work is to relate our DEP aircraft dynamics to the full-scale 

general aviation aircraft. This is done by dynamically scaling the baseline aircraft, to match the 

dynamics of the full-scale aircraft. NASA [18] has been researching this topic since the 1930’s 

and has developed a mature method for rigid-body dynamic models in incompressible flow that 

we follow. Using this method and based on the scaling factor we can compute the required mass, 

moment of inertia, altitude, and velocity that would cause the dynamics of our scaled baseline 

aircraft to behave in similar fashion as the full-scale aircraft. Once we have a mathematical 

model of our dynamically scaled baseline aircraft we have a way to relate our DEP aircraft 

dynamics to the full-scale aircraft, which would further our DEP research by providing a way to 

apply our findings to the general aviation sector. 

Our dynamically scaled platform also combines this research work with the visual-

inertial odometry (VIO) research area. VIO has been an active area of research for robotic 



4 

 

navigation systems for several years. This work has resulted in VIO algorithms, which are now 

used in commercial products such as the Google Tango. Several open source methods have also 

been produced for public consumption [32,46,47,48]. Several survey papers have been recently 

published regarding this area of work [40,56]. This approach to state estimation is generally 

considered valuable to aerial robot navigation and autonomous driving among many other areas 

of robotics. Separately from work on visual-inertial odometry, there has been significant interest 

in the robotics community regarding accurate descriptions of dynamic models of micro aerial 

vehicles [29,33]. These models have been used for several different control applications such as 

improved thrust control in [30], improved position control in [60], and simulation of aerial 

vehicles in [39]. Besides modeling work performed by the robotics community, the aerospace 

community has been developing models for aerial vehicles for decades [37,54,59]. In existing 

open sourced approaches to visual-inertial odometry, inertial measurements are either 

numerically integrated or preintegrated according to general rigid body kinematic equations of 

motion. However, using previously developed models of aerial robot dynamics, researchers have 

found that inertial measurement units (IMUs) can also be used to measure forces experienced by 

an aerial vehicle [22,38,41,42,43,52]. Using these dynamic models and IMUs to identify forces 

exerted on a vehicle have been used to improve the estimate of the attitude of aerial robots 

[26,27,31,35,36,44,57], to estimate other disturbance forces like wind [23,58], to estimate the 

presence of system faults [28], in relative state estimation [45], and in visual-inertial navigation 

[20,21,24,25,49,55]. To distinguish the use of such models to improve visual-inertial odometry 

from the methods used in existing open sourced approaches, we will call methods which use the 

IMU to measure forces on a rigid body dynamic VIO. Some researchers also use the term model-

aided VIO. Researchers like [42,50] have shown that using such models in state estimators like 
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visual-inertial odometry improve the accuracy of attitude and velocity estimates and makes such 

approaches to be more robust to slower camera update rates. Several datasets already exist for 

testing visual-inertial odometry in aerial robotic systems. These include the EuRoC dataset [34] 

and Zurich Urban dataset [51]. Both datasets serve as an excellent means by which visual-inertial 

odometry algorithms can be compared. However, neither datasets contain an accurate dynamic 

model of their aerial systems. Therefore, it is currently not feasible to compare approaches to 

using dynamic models of aerial robots as done by [20] for example. As a result, claims regarding 

the use of such dynamic models for VIO have not been validated and compared to some of the 

more recent open source methods of visual-inertial odometry. In this work, we present the UIUC 

Dynamic VIO dataset. This   dataset   is   specifically   designed   to   enable   further research on 

VIO methods using IMUs to measure forces experienced by a vehicle. Our dataset contains 

flights with a fixed wing aircraft. Ground truth, camera, and IMU data are provided for each 

flight. Because of this work, dynamic VIO methods can be compared against each other as well 

as against existing open source VIO approaches. We hope that this dataset can be used to 

uncover how these dynamic models can be used in the state estimation process: such as how to 

improve VIO with respect to different measures of robustness or relative pose error. 
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CHAPTER 2: Dynamically Scaled Testbed Aircraft 

2.1. Model construction and sensor implementation 

Based on the recent work of Pieper [61], the testbed aircraft was developed from a 21% 

scaled Hangar 9 Cirrus SR22T kit (Figure 2.1) [62], which was significantly modified to be 

dynamically scaled and to accommodate an array of sensors to make it suitable for acquiring 

detailed aircraft state and visual data. 

 

Figure 2.1 – Image of Hanger 9 Cirrus SR22T 

2.1.1. Model construction 

 The Hangar 9 kit was built according to the provided instructions, but several 

modifications were implemented. Due to the increase in weight to make the aircraft dynamically 

scaled, the landing gear was strengthened by adding an aluminum plate that joined the two aft 

landing gears. To increase the rigidity of the rudder and decrease the shaft play in the servo link, 

the push-pull cable servo link was changed to a metal push rod, fitted inside of a metallic sleeve, 

to avoid binding (see figure 2.2). Since there are sensors in the elevator that may require future 
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servicing, the elevator was changed from being a permanent installation to a removable one, by 

installing a set screw, that screws into the joiner rod. Stronger servo linkages were used on every 

control surface, and the Futaba BLS171SV servos were chosen due to their high torque to weight 

ratio.  

 

 

Figure 2.2 – Metal push rod link for rudder  

 

2.1.2. Sensors 

In order to use this aircraft as a testbed for other research, and in order to identify the 

dynamics of the aircraft, the aircraft was outfitted with many sensors, while the control surface 

commands were logged by the avionics package. Hall effect sensors were installed in order to 

record the actual control surface deflections produced during flight. Hall effect sensors are used 

to measure a magnetic field, hence they were placed near the control surface, while a magnet was 



8 

 

installed on the control surface (see figure 2.3) which moves further or closer from the sensor as 

the control surface moves. The hall effect sensors used were the TDK HAL830UT-A. 

An RCAT alpha/beta probe was also mounted on the right wing. This probe measures 

angle of attack and sideslip angle while being light weight. It uses a 5v nominal operation with a 

0.75-degree resolution and +/- 1-degree accuracy. 

To measure the in-flight airspeed, a pitot static tube attached to an All Sensors 20-

CMH2O pressure sensor was integrated on the left wing. The static and total pressure tubes were 

routed to the sensor, and the voltage output corresponded to the dynamic pressure, which was 

then used to determine airspeed. 

All of the mentioned sensors were connected to the data acquisition system via twisted-

pair double-shielded data cabling (see figure 2.4) that helps protect against electromagnetic 

interference (EMI) and signal distortion. See table 2.1 for a summary of onboard sensors. 

   

Figure 2.3 – Hall effect sensor placement 
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Figure 2.4 – Twisted-pair double-shielded data cabling used 

 

Sensor Measuring Specification  

Hall effect  

TDK HAL830UT-A 

Aileron (x2), rudder (x1), elevator 

(x2) deflection 

30 mT to 100 mT range 

RCAT alpha beta probe Angle of attack and side slip angle 0.75° resolution, +/- deg accuracy 

All Sensors 20-CMH20 

Pitot Static Tube 

Dynamic pressure for velocity -0.2 to 20 cmH2O, 

5 to 50° C 

 

Table 2.1 – summary of onboard sensors and their respective properties 

 

2.1.3. Data acquisition system 

The data acquisition system was composed of an Arduino Uno with an 8-channel 16-bit 

ADC shield from Iowa Scaled Engineering, an 8-channel low pass filter, and a 5V step-down 

voltage regulator. Figure 2.5 shows the data acquisition system and Table 2.2 summarizes the 

associated components and specifications. The data were acquired through the Arduino, and then 

recorded on the flight controller Raspberry Pi via a USB cable. There was a 2S Lipo battery 

connected to the voltage regulator, which powered the sensors and Arduino/ADC shield. 
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Figure 2.5 - Data acquisition system used for collecting and recording data from onboard                             

sensors 

 

DAQ Component Property 

Arduino Uno 7-12V Input Voltage, 50mA Current 

LTC1867 ADC 16-bit, 8-channel, 200ksps sampling rate 

Low pass filter  

Pololu voltage regulator Constant 5V output 

 

Table 2.2 – Data acquisition components and their respective properties 
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2.1.4. Propulsion and power system 

Due to the increase in weight for dynamically scaling the aircraft a more powerful 

propulsion system was needed from that recommended for the stock Cirrus SR22T model. In the 

end the motor, ESC, and propeller used for this project were the Hacker A60-14L, Castle 

Creations Phoenix Edge 120 amps ESC, and a 19” x 12” APC thin electric composite propeller, 

respectively.  Three 4S 12,000 mAh Lumenier LiPo batteries connected in series powered the 

system, and for safety an EMOCTEC safety power switch was placed between the batteries and 

the ESC. The ESC was also connected to the avionics (directly to the Navio2 servo rail) in order 

to receive the throttle commands. Figure 2.6 shows the propulsion system. 

 

Figure 2.6 – Propulsion system 

 

2.1.5. Flight Controller 

The flight controller used for this project was a Raspberry Pi 3 with a Navio2 hat that was 

running a PX4 autopilot. A Futaba 14SGA 14-Channel transmitter and Futaba R7014SB 14-

Channel FASSTest/FASST Receiver were used (see figure 2.7). The receiver was connected to 
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the Navio2 hat via the SBUS RC input on the servo rail. The PX4 code mainly passed the 

transmitter signals through to the control surface (via RC outputs on servo rail) but could also 

enter a system identification program that would overlay the transmitter signal with a 

predetermined signal sequence. This program was used to excite different modes of the aircraft 

allowing the dynamic responses (via onboard sensors) to be recorded.   

The Navio2 RC outputs from the servo rail were routed to a power distribution board, a 

Smart-Fly PowerSystem Sport Plus which powered and routed the signal to the control surface 

servos. The configuration of transmitter signals and Navio2 RC outputs are summarized in Table 

2.3. Figure 2.8 shows the in-depth controller wiring schematic. There was a 2S battery directly 

powering the Raspberry Pi/Navio2 unit via the servo rail and there were two 2S batteries 

connected to the power distribution board which also powered the servos.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Futaba 14SGA transmitter and R7014SB Receiver used 
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Figure 2.8 – In depth controller wiring schematic 
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Transmitter/Receiver Navio2 Rail 

Output 

Power System Sport 

Plus Input 

Power System Sport Plus 

Output 

Ch. 1 – Aileron Ch. 0 – SBUS in Ch. A – Landing Gear 

(from Receiver Ch. 4) 

Ch. A – Front Landing 

Gear Servo 

Ch. 2 – Elevator Ch. 1 – Aileron Ch. B – Aileron  

(from Navio2 Ch. 1) 

Ch. B – Aileron Servo (x2) 

Ch. 3 – Thrust Ch. 2 - Elevator Ch. C – Elevator 

(from Navio2 Ch. 2) 

Ch. C – Elevator Servo 

(x2) 

Ch. 4 – Rudder Ch. 3 - Thrust Ch. D – Rudder  

(from Navio2 Ch. 4) 

Ch. D – Rudder 

Ch. 5 – Flap Ch. 4 - Rudder Ch. E – Motor  

(from Navio2 Ch. 3) 

Ch. E – Motor ESC 

Ch. 6 - Mode  Ch. F – Flap  

(from Receiver Ch. 5) 

Ch. F – Flap  Servo (x2) 

Ch. 7 - Gain    

 

Table 2.3 – Summary of transmitter channels and RC outputs 

 

2.2. Dynamically scaling the aircraft 

One of the goals of this study is to have a scaled version of a general aviation aircraft that 

not only is dimensionally proportional, but also dynamically scaled. This means that the scaled 

UAV will produce a scaled dynamical response relative to that of the full-scale aircraft with the 

same input. NASA has previously studied methodologies for dynamically scaling aircraft [18] 

and has come up with different relations in order to perform this process properly. Previous 

efforts have also been conducted at the University of Illinois at Urbana-Champaign (UIUC), GA-

USTAR, a dynamically-scaled 20% scale Cessna 182 [63].  

 

2.2.1. Calculation 

Using the incompressible flow conditions scale factors for dynamic models developed by 

NASA [18] the scaling laws for different aircraft properties between the full and scaled aircrafts 

can be calculated. Table 2.4 summarizes these findings. 
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Linear dimension n 

Relative density (m/ρL3) 1 

Froude Number (V2/Lg) 1 

Angle of attack 1 

Linear Acceleration 1 

Weight, mass n3/σ 

Moment of Inertia n5/σ 

Linear Velocity n1/2 

Angular Velocity 1/n1/2 

Time n1/2 

Reynolds number (VL/ν) n1/2ν/νo 

 

Table 2.4 – Scale factors for rigid dynamics models tested at sea level. Multiply full-scale 

values by the indicated scale factors to determine model values, where n is the ratio of 

model-to-full-scale dimensions, σ is the ratio of air density to that at flying altitude (ρ/ρo), 

and ν is the value of kinematic viscosity. 

 

Table 2.5 summarizes the full-scale aircraft characteristics that our scale aircraft is 

matching. These values were derived in the previous work on this project [61] and based on 

the Frasca International, Inc. Cirrus SR22-T flight simulator model.  
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Parameter Full scale aircraft 

Cruise altitude (ft) 6562 

Max cruise speed (mph) 153 

TOW (lbs) 2900 

Ixx (slugs-ft2) 2306.5 

Iyy (slugs-ft2) 1841.8 

Izz (slugs-ft2) 3331.0 

 

Table 2.5 – Full-scale Cirrus SR22-T aircraft characteristics. 

 

 Using the relations from table 2.4 with the full-scale aircraft characteristics from table 

2.5, the following target model characteristics are produced (summarized in Table 2.6): 

                                               𝜎 =  
𝜌

𝜌𝑜
=

1.007 𝑘𝑔/𝑚3

1.186 𝑘𝑔/𝑚3 = 0.840                        Eq. 2.1 

𝑛 = 0.21 

𝑉𝑚𝑎𝑥,𝑐𝑟𝑢𝑖𝑠𝑒
𝑚𝑜𝑑𝑒𝑙 = 𝑉𝑚𝑎𝑥,𝑐𝑟𝑢𝑖𝑠𝑒

𝐹𝑆 ∗ 𝑛
1

2⁄ = 153 𝑚𝑝ℎ ∗ (0.21)
1

2⁄ = 70.11 𝑚𝑝ℎ           Eq. 2.2 

          𝑇𝑂𝑊𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑂𝑊𝐹𝑆 ∗
𝑛3

𝜎
= 2900 𝑙𝑏𝑠 ∗  

(0.21)3

0.840
= 31.97 𝑙𝑏𝑠                     Eq. 2.3 

𝐼𝑥𝑥
𝑚𝑜𝑑𝑒𝑙 = 𝐼𝑥𝑥

𝐹𝑆 ∗
𝑛5

𝜎
= 2306.5 (slugs ∗ 𝑓𝑡2) ∗  

(0.21)5

0.840
= 1.121 (slugs ∗ 𝑓𝑡2)     Eq. 2.4 

𝐼𝑦𝑦
𝑚𝑜𝑑𝑒𝑙 = 𝐼𝑦𝑦

𝐹𝑆 ∗
𝑛5

𝜎
= 1841.8 (slugs ∗ 𝑓𝑡2) ∗  

(0.21)5

0.840
= 0.896 (slugs ∗ 𝑓𝑡2)     Eq. 2.5 

𝐼𝑧𝑧
𝑚𝑜𝑑𝑒𝑙 = 𝐼𝑧𝑧

𝐹𝑆 ∗
𝑛5

𝜎
= 3331.0 (slugs ∗ 𝑓𝑡2) ∗  

(0.21)5

0.840
= 1.620 (slugs ∗ 𝑓𝑡2)     Eq. 2.6 
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Parameter Target scaled model 

Cruise altitude (ft) 1100 

Max cruise speed (mph) 70.11 

TOW (lbs) 31.97 

Ixx (slugs-ft2) 1.121 

Iyy (slugs-ft2) 0.896 

Izz (slugs-ft2) 1.620 

Table 2.6 – Scaled model aircraft characteristics 

 

The values in Table 2.6 represent the target values for the aircraft used in the current 

study.  

 

2.2.2. Inertia rig testing 

The moments of inertia were measured using the inertia rig in the UIUC Aerodynamics 

Research Lab (ARL). Due to the size of the aircraft used in the current study, the moment of 

inertias had to be measured in sections and then combined using the Parallel Axis Theorem 

equation 2.7.  

                                                               𝐼 =  𝐼𝑐𝑚 + 𝑚𝑑2                                              Eq. 2.7 

The measurements were performed by mounting the aircraft from a freely rotating bearing and 

allowing a known weight to hang from the other end (Figure 2.9). The weight created a known 

torque and the aircraft was allowed to freely rotate. We then record the angular moment of 

inertia using a gyroscope on our Navio2 and the px4 code. We record ten free rotations with four 
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different known weights. We then use the following energy equations to calculate the moment of 

inertia based on a least squares fit MATLAB function lsqlin(). 

                                                𝑃𝐸 = 𝐾𝐸 + 𝐷𝑟𝑎𝑔 = 𝐴𝐼 + 𝐵𝑑                                               Eq. 2.8 

Where ‘A’ and ‘B’ are coefficients based on our measurements of angular velocity. ‘I’ 

and ‘d’ are the parameters that are estimated, namely the moment of inertia and drag parameter 

due to air resistance respectively. 

                                               𝑃𝐸 = 𝜏 ∗ 𝛩 = 𝜏 ∫𝜔 = 𝑚𝑟 ∫𝜔                                               Eq. 2.9 

                                                                 𝐾𝐸 =  1

2
𝜔2𝐼 = 𝐴𝐼                                                Eq. 2.10  

                                                    𝐷𝑟𝑎𝑔 =  −𝑑 ∫𝜔3 = 𝐵𝑑                                                  Eq. 2.11 

Where ω, m, and r are the measured angular velocity, hanging mass, and radius 

respectively. 

 

Figure 2.9 – Scaled aircraft mounted onto the inertia rig ready to measure Iyy. 
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2.2.3. Optimization of mass placement for moment of inertia problem 

With the calculated target moment of inertias that would dynamically scale the baseline 

aircraft and with a way to experimentally calculate our actual moment of inertias, we had the 

problem of adding mass in strategic locations in order to match these desired parameters as 

closely as possible. This problem was turned into the following optimization problem. 

In order to simplify the manufacturing and the problem, three locations were chosen as 

potential mass mounting points. The moment of inertia equation was one of the main equations 

used where ‘m’ is the mass and r is the distance of each particle from the axis of rotation: 

                                                                𝐼 = ∑𝑚𝑟2                                                Eq. 2.12 

2.2.3.1. Formal problem statement 

The general form of the problem that was used was: 

min𝐿(𝑥) 

                                                             𝑠𝑡 𝐴𝑥 ≤ 𝑏                                                    Eq. 2.13 

𝐴𝑥 = 𝑏 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑥 ≤ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 

This problem form follows the MATLAB documentation in order to use the function 

fmincon().  
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2.2.3.2. MATLAB fmincon() function 

The MATLAB function fmincon() is a nonlinear programming solver [70] that has five 

different algorithms to at its disposal. The default algorithm, and the one used for this problem, is 

the interior-point optimization algorithm which when given the problem: 

                          
𝑚𝑖𝑛
𝑥

 𝑓(𝑥), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥) = 0 𝑎𝑛𝑑 𝑔(𝑥) ≤ 0                            Eq. 2.14 

Solves a sequence of equality constrained approximate problems: 

   
𝑚𝑖𝑛
(𝑥, 𝑠)

𝑓𝜇(𝑥, 𝑠) =  
𝑚𝑖𝑛
𝑥

 𝑓(𝑥) −  𝜇 ∑ ln(𝑠𝑖)𝑖 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥) = 0 𝑎𝑛𝑑 𝑔(𝑥) + 𝑠 = 0    Eq. 2.15 

Where si are the slack variables which turn the inequality constraints into equality 

constraints, and the right side of the cost function (with the logarithmic term) is the barrier 

function. Two types of steps are used at each iteration: 

• Direct step in (x, s) or newton step which solves the KKT equations for the 

linearized approximate problem. 

• Conjugate gradient step which minimizes a quadratic approximation to the 

approximate problem in a trust region, subject to linearized constraints. 

The default step used is the direct, but if not possible, the gradient step is taken. At each 

iteration the algorithm decreases the following merit function: 

Merit function: 

                                 𝑓𝜇(𝑥, 𝑠) +  𝜈‖ℎ(𝑥), 𝑔(𝑥) + 𝑠‖                                                Eq. 2.16 

 

2.2.3.3. Moment of inertia problem statement 

To match this architecture, our state vector x was chosen to have three states, namely: 

         𝑥 =  [
𝑚𝑎𝑠𝑠 @ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 #1
𝑚𝑎𝑠𝑠 @ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 #2
𝑚𝑎𝑠𝑠 @ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 #3

] =  [
𝑚1
𝑚2
𝑚3

]                                                Eq. 2.17 
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The three mass locations chosen are shown in Figure 2.10 

 

 

 

 

 

 

 

 

 

Figure 2.10 – Three locations on the aircraft chosen to add mass 

  

The location coordinates were given the convention of subscript indicates the point 

location. For example, equation 1.1 shows the naming convention for the coordinates for location 

number 1: 

                                      [

𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1
𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 
𝑧 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1

] =  [

𝑥1

𝑦1

𝑧1

]                           Eq. 2.18 

With the main equation used being: 

      𝛥𝐼 = (𝑑1)
2𝑚1 + (𝑑2)

2𝑚2 + (𝑑3)
2𝑚3                          Eq. 2.19 

Where d is the distance from the mass to the axis of rotation, e.g. 

   𝑑𝑥𝑥 = √(𝑦1)2 + (𝑧1)2                                Eq. 2.20 
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The constraints equations were as follows: 

𝐴𝑥 ≤ 𝑏 

𝑥 =  [
𝑚1
𝑚2
𝑚3

] 

          𝐴 =  

[
 
 
 
 
 

1 1 1

(√(𝑦1)2 + (𝑧1)2)
2

(√(𝑦2)2 + (𝑧2)2)
2

(√(𝑦3)2 + (𝑧3)2)
2

(√(𝑥1)2 + (𝑧1)2)
2

(√(𝑥2)2 + (𝑧2)2)
2

(√(𝑥3)2 + (𝑧3)2)
2

(√(𝑥1)2 + (𝑦1)2)
2

(√(𝑥2)2 + (𝑦2)2)
2

(√(𝑥3)2 + (𝑦3)2)
2

]
 
 
 
 
 

      Eq. 2.21 

 

𝑏 = 𝛿𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 ∗  [

𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑥𝑥,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐼𝑥𝑥,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑦𝑦,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐼𝑦𝑦,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑧𝑧,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐼𝑧𝑧,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

] 

No equality constraints were used. See conclusion section for a discussion of the 

constraints. The overshoot weight allows the optimal solution to overshoot the desired parameter 

if it reduces the overall error. 

Our cost function used was a form of the Euclidian norm of the parameters calculated 

after adding the mass minus the desired parameters (an error) but weights were added to control 

which parameters have more weight hence that specific parameters’ error is reduced more than 

the others. See the following equations: 

Without weights: 

𝐿(𝑥) = 𝑛𝑜𝑟𝑚(𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝐴𝑥 − 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑)                        Eq. 2.22 

With weights (actually used): 
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𝐿(𝑥)

= 𝑛𝑜𝑟𝑚

(

 
 

𝑤1 ∗ (
𝑚𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐴(1, : ) ∗ 𝑥 − 𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

2

+ 𝑤2 ∗ (
𝐼𝑥𝑥,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐴(2, : ) ∗ 𝑥 − 𝐼𝑥𝑥,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑥𝑥,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

2

+

 𝑤3 ∗ (
𝐼𝑦𝑦,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐴(3, : ) ∗ 𝑥 − 𝐼𝑦𝑦,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑦𝑦,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

2

+ 𝑤4 ∗ (
𝐼𝑧𝑧,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐴(4, : ) ∗ 𝑥 − 𝐼𝑧𝑧,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐼𝑧𝑧,𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

2

)

 
 

 

Eq. 2.23 

The bounds for our states were as follows: 

0 ≤ 𝑥 ≤ ∞ 

Some assumptions for this problem were: 

• The mass added is added at one point. Since we used lead weights which pack 

more mass per volume, this was not too far off, but for the locations with higher 

mass, this assumption is broken in the physical airplane. 

• The x, y, and z locations are assumed to be exact, when, in reality, due to physical 

limitations it is hard to measure exact distances to the locations. 

• It was assumed we could measure the moment of inertias exactly, when, in reality, 

our measurements are based on experimental values that have a certain amount of 

errors. 
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2.2.3.4. Actual values in problem statement 

The following are the actual values used in the MATLAB script: 

 Location #1 Location #2 Location #3 

x(ft) 1 -0.167 0 

y(ft) 0 3 0 

z(ft) 0.458 0 -0.833 

 

Table 2.7 – Locations chosen on aircraft that would affect the moment of inertia 

strategically while making manufacturing feasible 

 

𝑚𝑖𝑛
𝑥

𝐿(𝑥) 

𝐴 =  [

1.0000 1.0000 1.0000
0.2098 9.0000 0.6944
1.2098 0.0279 0.6944
1.0000 9.0279 0.0000

]                           Eq. 2.24 

𝑏 = [

0.672
1.948
0.058
0.483

] 

0 ≤ 𝑥 ≤ ∞ 

The weights were changed to understand their different effects but, in the end, matching 

the total mass of the aircraft to the desired total mass was seen as an important parameter that 

was weighed higher than matching the moment of inertias. 

In the end there needed to be an iterative process of adding weight in specific locations to 

get the actual mass and moment of inertias to match the target. Figure 2.11 shows the final 

weight configuration which satisfactorily achieved the target. See the results section for a 

summary of the dynamically scaling process. 
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Figure 2.11 – Final weight configuration for actual dynamically scaled aircraft 
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CHAPTER 3: Visual Inertial Odometry Dataset 

In tandem to dynamically scaling an aircraft, another use for the testbed aircraft was to 

collect data for a publicly available visual inertial dataset for the visual odometry community. 

Datasets are used by the community to test and compare new research developments in the field. 

Currently, the two most popular data sets in the field are the EuRoC micro aerial vehicle datasets 

[34], and the Zurich urban micro aerial vehicle dataset [51]. Both of these datasets were onboard 

a rotorcraft and at low altitudes (<50ft). The EuRoC data set was indoors (in a machine room and 

a Vicon room), while the Zurich urban dataset was outdoors in urban streets. While these 

datasets have been used, and proven, by many different groups, the addition of a dynamics model 

and visual-inertial dataset for a fixed wing aircraft, represents a significant contribution. 

Within the vision community there has been some progress [42,50] to use the 

mathematical model of the system to improve the accuracy of the visual-inertia odometry 

algorithms. Hence, these new algorithms use the camera and IMU data, together with the model 

of the system to localize where in space the system is. Of course, in order to use these new 

algorithms, there needs to be a model of the system a-priori. As a result, the dataset is constituted 

to include the necessary data (stereo images, IMU measurements with RTK GPS as accurate 

ground truth) for VIO and the model of the system, in order for these new algorithms to be 

tested.  

In order to collect the necessary data, two more systems were added to the testbed. The 

components added were an RTK GPS, a stereo camera, and a second Raspberry Pi to interface 

with and collect the data from these two systems. Figure 3.1 shows a schematic of the added 

system. 
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Figure 3.1 – schematic of dataset sensor system 

 

3.1. Real-time kinematic positioning system 

Ground truth is one of the most important factors for providing a good dataset. This 

measurement is obtained by using a real-time kinematic (RTK) positioning system. With RTK 

GPS, there are two GPS receivers, one on board of the UAV, the other is a ground station. Each 

receiver is also connected to a radio, so the ground station is able to send position corrections to 

the UAV receiver. With this system, position data is able to be recorded with up to 1cm + 1ppm 

horizontal accuracy and 1.5cm + 1ppm vertical accuracy [64]. 
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3.1.1. Ground station 

The ground station is a vital component of the RTK GPS, since it’s necessary in order 

reduce the error due to the ionosphere and produce a more accurate positioning system. The 

ground station is composed of (see figure 3.1) a laptop that is connected to the Swift Navigation 

Piksi Multi GPS receiver with evaluation board (see figure 3.2). The receiver is also connected to 

a Swift Navigation GNSS mini-survey antenna and to a FreeWave 915 MHz radio that sends 

signals up to the UAV (see figure 3.3). Both the laptop and the receiver are powered via a wall 

outlet, while both the antenna, and radio are powered by the Piksi Multi. 

 

 

Figure 3.2 - Swift Navigation Piksi Multi GPS receiver with evaluation board 
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Figure 3.3 - Swift Navigation GNSS mini-survey antenna and the FreeWave 915 MHz 

radio 

 

3.1.2. UAV system 

Onboard of the UAV, the dataset system is very close to the ground station but with some 

significant differences mainly due to weight restrictions. Instead of a laptop we used a Raspberry 

Pi which is lighter but has less computational capabilities. Also, instead of the survey antenna we 

have a Maxtena M1227HCT-A2-SMA lightweight UAV GPS antenna (see figure 3.4). The UAV 

system has a second Swift Navigation Piksi Multi GPS receiver with evaluation board, and a 

second FreeWave 915 MHz radio. 
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Figure 3.4 - Maxtena M1227HCT-A2-SMA lightweight UAV GPS antenna 

 

3.2. Loitor stereo camera 

The Loitor Visual-Inertial stereo camera (see figure 3.5) was used for collecting image 

data. This camera is a common open-source unit used for VIO and simultaneous localization and 

mapping (SLAM). It has two complementary metal oxide semiconductor (CMOS) image 

sensors, and one IMU that outputs acceleration, rotational speed, and quaternions. The camera is 

connected to the onboard dataset Raspberry Pi via USB. All image and IMU data are sent 

through this USB connection for logging. 

 

Figure 3.5 – Loiter Visual-Inertial stereo camera 
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3.3. VIO sensors integration 

In order to record and interact with the dataset sensors a second Raspberry Pi (we refer to 

this unit as the dataset Raspberry Pi) was placed on board. Both the Piksi Multi and the Loitor 

stereo camera were plugged into the RPI via USB. 

 

3.3.1. Raspberry Pi with Robot Operating System 

Raspbian Stretch and Robot Operating System (ROS) Kinetic Kame (ROS-Comm) were 

onboard the Raspberry Pi. ROS was used to interact with the two sensors via open-source 

[65,66] ROS nodes. The data was then recorded as a rosbag and saved on the Raspberry Pi 

memory card. A 3S battery was used to power both the Piksi receiver and the Raspberry Pi. A 

full system schematic can be seen in Figure 3.1 

 

3.3.2. Code structure 

ROS provided a very convenient way to interact with the sensors on the aircraft testbed. 

In ROS, there are “nodes” which are “an executable that uses ROS to communicate with other 

nodes” [67]. The current configuration has two nodes, one for the GPS and one for the camera. A 

custom ROS launch code was written to start these two nodes at the same time with one 

command. Within ROS each node can publish to a “ROS topic”, which is an avenue for 

data/messages to be sent within ROS (Figure 3.6). The two nodes publish the data from each 

sensor over several topics. In order to record the data, the rosbag package was used, which 

subscribes to all the different topics which our data is in, and records them onto the our onboard 

memory card. These rosbags can be converted to a more useful format postprocess.  
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Figure 3.6 – Overview of the ROS topic mechanism. When a publisher (a) and subscriber 

(b) are registered to the same topic, the subscriber receives the network address and port 

of all publishers (c). The subscriber continues by directly contacting each publisher, 

which in return starts sending data directly to the subscriber (d). Many nodes can publish 

and subscribe to the same topic resulting in a N : M relation (e). On the network layer 

there are N · M connections, one for each (publisher, subscriber) tuple. The nodes can be 

distributed over any number of hosts within the ROS network [67]. 
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CHAPTER 4: Results 

After the testbed aircraft was built and instrumented, it was dynamically scaled. The 

results of this process can be found in section 4.1. Afterwards a flight test campaign was planned 

in order to provide the necessary data for system identification and record several flight 

maneuvers. The flight campaign was as follow: 1) there were a series of ground tests to prove out 

the systems and specially to test the safety of the electronics and the flight controller 2) two 

flight tests were conducted to collect the necessary data 3)the data was then processed and used 

in our system identification framework to get the aircraft model. Unfortunately, due to the 

project timeline, and weather limitations, only the first step of this flight campaign was 

completed. Steps two and three are left to be published at a later date. 

4.1. Inertia Test 

4.1.1. Angular Velocity Recorded 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Graph of angular velocity recorded for full aircraft roll (Ixx) 

with a hanging mass of 1lb. 
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4.1.2. Initial Moment of Inertia Measurement Results 

Table 4.1 shows the initial scaled parameters. Notice the large percent errors. 

Parameter Full-scale Target scaled model Actual scaled model Percent error 

Cruise altitude (ft) 6562 1100 - - 

Max cruise speed (mph) 153 70.11 - - 

TOW (lbs) 2900 31.97 28.35 11.32% 

Ixx (slugs-ft2) 2306.5 1.121 0.732 34.75% 

Iyy (slugs-ft2) 1841.8 0.896 0.884 1.31% 

Izz (slugs-ft2) 3331.0 1.620 1.523 5.96% 

 

Table 4.1 – Summary of full-scale, target scaled model, and initial scaled model aircraft 

characteristics 

 

4.1.3. Second Moment of Inertia Measurement Results 

Table 4.2 shows the final scaled parameters after going through the optimization process 

outlined in section 2.2.3. Notice the smaller percent errors. 

Parameter Full-scale Target scaled model Actual scaled model Percent error 

Cruise altitude (ft) 6562 1100 - - 

Max cruise speed (mph) 153 70.11 - - 

TOW (lbs) 2900 31.97 32.67 2.19% 

Ixx (slugs-ft2) 2306.5 1.121 0.945 15.74% 

Iyy (slugs-ft2) 1841.8 0.896 0.994 11.03% 

Izz (slugs-ft2) 3331.0 1.620 1.698 4.84% 

 

Table 4.2 – Summary of full-scale, target scaled model, and final scaled model aircraft 

characteristics 
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4.2. Flight Test 

4.2.1. Ground Testing 

The main goal in the ground testing process was to build confidence in our system and to 

prove we can fly our aircraft safely. First, since the batteries for this project were from a previous 

project, they were visually inspected and cycled multiple times using a Tenergy balance charger 

to make sure they were able to keep charge and output the amperage necessary to fly our system 

safely for the amount of time needed. 

 Next, once the aircraft was fully instrumented and all the sensors were calibrated, it was 

put through a series of mock flights in an empty parking lot. We began by connecting and 

powering all the systems (avionics, data acquisition, VIO system) and taxing around the parking 

lot at very low throttle settings, while moving all the control surface and collecting data from all 

sensors. The batteries and DAQ system were checked to make sure data was being recorded and 

all systems still were good. Once verified, the aircraft was then put through a series of 50-75% 

throttle runs from 5-7 minutes to simulate flight powering conditions. The control surfaces were 

again being deflected during the test, including multiple multisine maneuvers at different gain 

values to simulate the system identification data collection. The batteries were checked again to 

make sure we had a large factor of safety before completely draining them. The data was 

postprocessed as if it were from a real test flight and checked for any anomalies.  Through this 

rigorous testing procedure, we felt confident in our system and moved on to actual flight testing. 
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4.2.2. Flight test conditions 

The flight-testing plan is to fly in the Eli Field in Monticello, IL which is at an altitude of 

703 feet. The procedure for both tests flight would be to take the aircraft up to 400 feet while 

doing a couple of laps and making sure everything is functioning. Once the pilot was 

comfortable, the aircraft was trimmed to steady level flight and the multi-sine maneuvers would 

be run at low, medium, and high gains. The same procedure would be followed for testing 

normal flight maneuvers (e.g. doublet maneuver).  

 

4.2.3. Aircraft flight data 

The following results are from the ground testing in step one of the flight campaign. 

Figure 4.2-4.4 shows the multisine maneuver sent to each control surface that would be used for 

the system identification during data flight test. Figure 4.5-4.7 shows the recorded control 

surface deflection signals during a multisine maneuver during ground testing. Figure 4.8-4.10 

show the IMU data during the ground test. 

 

Figure 4.2 – Aileron multisine maneuver for the dynamically scaled aircraft testbed 
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Figure 4.3 – Elevator multisine maneuver for the dynamically scaled aircraft testbed 

 

 

Figure 4.4 – Rudder multisine maneuver for the dynamically scaled aircraft testbed 
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Figure 4.5 – Aileron control surface deflections during multisine maneuver 

 

Figure 4.6 – Elevator control surface deflections during multisine maneuver 
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Figure 4.7 – Rudder control surface deflections during multisine maneuver 

 

Figure 4.8 – Accelerometer data from Navio2 onboard IMU 
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Figure 4.9 – Gyroscope data from Navio2 onboard IMU 

 

Figure 4.10 – Magnetometer data from Navio2 onboard IMU 
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4.2.4. VIO data 

The VIO sensors (stereo camera and RTK GPS) were also collecting data during the 

ground test. This data was collected using ROS bags on the secondary Raspberry Pi. Once the 

data was removed from the Pi, it was converted to .csv and .jpg.  

 

4.2.4.1. GPS (RTK vs normal) 

Figure 4.11 shows the ground test PiksiMulti RTK GPS tracking and solution. 
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Figure 4.11 – Plot of RTK GPS solution along with satellite tracking during ground 

testing in the Swift Console 
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4.2.4.2. Stereo camera data 

Figure 4.12 shows two sample images from the two cameras on our stereo system. 

 

 

 

 

 

 

 

 

Figure 4.12 – Images from the L and R cameras in the onboard Loitor stereo camera while 

the aircraft was on a work bench 

 

4.3. System Identification 

The flight test data collected will be processed and used to derive the mathematical model 

of our baseline aircraft. The program used will be the NASA System IDentification Programs for 

AirCraft (SIDPAC) which is a collection of computer programs for aircraft system identification 

developed in MATLAB as m-file functions [68]. Because we do not have the actual inflight data, 

the detailed process will be forthcoming in a later publication. 
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CHAPTER 5: Conclusion 

The following section provides a summary of the work in this thesis and some lessons 

learned to apply to future work. 

 

5.1. Summary 

The work in this thesis builds upon prior work in our group. The baseline aircraft was 

built, upgraded and instrumented. The main sensors added were hall effect sensors to measure 

control surface deflection, an alpha-beta probe, a pitot-static tube, and a Raspberry Pi/Navio2 

flight controller with on board IMU, barometer, and GPS receiver. On the VIO side the sensors 

we had were a Raspberry Pi connected to a SwiftNav PiksiMulti RTK GPS receiver and Loitor 

stereo camera system with an onboard IMU. 

After instrumentation the aircraft was dynamically scaled through an iterative optimizing 

process. In the end of this process the parameters of interest namely the cruise altitude, cruise 

speed, TOW, Ixx, Iyy, and Izz were matched to the derived target values from the full-scale aircraft 

parameters.  

Once the testbed aircraft was derived dynamically scaled, a flight test campaign was 

begun and will be completed at a later data in order to record sufficient data to provide in a 

dataset, perform system identification, and validate the derived mathematical model. 
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5.2. Lessons Learned 

During the dynamically scaling process some lessons were learned that could help future 

work in this area. Although the testbed had to match a specific TOW which was fairly high 

(almost 6 lbs heavier than our stock airplane). After instrumentation the aircraft was a lot closer 

to the desired TOW, which did not leave a lot of weight to place in strategic locations to match 

the desired moment of inertias. Care should be taken to minimize the weight of the aircraft by 

integrating systems if possible. 

In the optimization algorithm, the first approach taken for this problem used equality 

constraints instead of inequality constraints, but it quickly was found that there were no feasible 

solutions to this problem. To solve this, we could have added more locations to add mass, but 

speed and ease of manufacturing combined with the inability to exactly implement the solution 

on the physical aircraft caused this option to not be chosen. What was done in the end was to 

change the constraints to be inequalities so there would be some deviation from the desired 

parameters in the final solution but hopefully these deviations would be minimal. An overshoot 

weight value was used so the program could overshoot some parameters from the desired value, 

if it decreases the error in other parameters. 

In the end the program was used to understand the different effects of adding mass in 

specific locations, and to make an informed choice of mass location that would result in a close 

parameter match. Ways to increase the accuracy of the solution from the problem would be to 

include more locations with more exact distance measurements. Another improvement would be 

to include non-point mass equations, where the mass is spread over a small distance range 

instead of one location. 
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5.3. Future Work 

In future work, the flight campaign will be completed, including the initial system 

identification. This initial model would be a simple aircraft model, but in later stages the system 

identification process could be studied further, to see if other models could be derived that are 

better suited or more accurate for our DEP application. The work in this thesis will allow our 

group to now compare this baseline model to the DEP model and further research and learn the 

effects of DEP aircraft.  
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