209 research outputs found

    Breast papillomas: current management with a focus on a new diagnostic and therapeutic modality

    Get PDF
    Breast papilloma is a term that describes an intraductal papillary configuration of the mammary epithelium on macroscopic or microscopic examination. It includes solitary intraductal papillomas, multiple papillomas, papillomatosis, and juvenile papillomatosis (JP). Recent advances in mammary ductoscopy (MD) have raised new possibilities in the diagnosis and treatment of breast papillomas. This technique represents an important diagnostic adjunct in patients with pathological nipple discharge (PND) by allowing direct visualisation and biopsy of intraductal lesions and guiding duct excision surgery. Treatment of breast papillomas often entails surgical duct excision for symptomatic relief and histopathological examination. Recently, more conservative approach has been adapted. MD-assisted microdochectomy should be considered the procedure of choice for a papilloma-related single duct discharge. Furthermore, there is increasing evidence that MD has the potential to reduce the number of duct excision procedures and minimise the extent of surgical resection. Imaging-guided vacuum-assisted core biopsy can be diagnostic and therapeutic for papillomas seen on mammography and/or ultrasound. Patients with multiple papillomas do have an increased risk of developing cancer and should be kept under annual review with regular mammography (preferably digital mammography) if treated conservatively. Magnetic resonance (MR) can be also used in surveillance in view of its high sensitivity. Because the risk is small, long term and affects both breasts, long-term follow-up is more appropriate than prophylactic mastectomy. Patients who prove to have solitary duct papilloma have insufficient increase in the risk of subsequent malignancy to justify routine follow-up

    Breast Cancer and Breast Reconstruction

    Get PDF
    This book has been contrived to gather recent data on a common health problem. As breast cancer imposes a heavy burden for society due to its psychological, social and economic consequences, every step to broaden our understanding is a worthy task. The aim of this book is to provide some insights on this subject through the information given on new perspectives in genetics and diagnosis, exposed in the section on oncologic issues, as well as on recent topics on surgical treatment, presented in the sections on breast conservative and breast reconstructive surgery

    Automated Deformable Mapping Methods to Relate Corresponding Lesions in 3D X-ray and 3D Ultrasound Breast Images

    Full text link
    Mammography is the current standard imaging method for detecting breast cancer by using x-rays to produce 2D images of the breast. However, with mammography alone there is difficulty determining whether a lesion is benign or malignant and reduced sensitivity to detecting lesions in dense breasts. Ultrasound imaging used in conjunction with mammography has shown valuable contributions for lesion characterization by differentiating between solid and cystic lesions. Conventional breast ultrasound has high false positive rates; however, it has shown improved abilities to detect lesions in dense breasts. Breast ultrasound is typically performed freehand to produce anterior-to-posterior 2D images in a different geometry (supine) than mammography (upright). This difference in geometries is likely responsible for the finding that at least 10% of the time lesions found in the ultrasound images do not correspond with lesions found in mammograms. To solve this problem additional imaging techniques must be investigated to aid a radiologist in identifying corresponding lesions in the two modalities to ensure early detection of a potential cancer. This dissertation describes and validates automated deformable mapping methods to register and relate corresponding lesions between multi-modality images acquired using 3D mammography (Digital Breast Tomosynthesis (DBT) and dedicated breast Computed Tomography (bCT)) and 3D ultrasound (Automated Breast Ultrasound (ABUS)). The methodology involves the use of finite element modeling and analysis to simulate the differences in compression and breast orientation to better align lesions acquired from images from these modalities. Preliminary studies were performed using several multimodality compressible breast phantoms to determine breast lesion registrations between: i) cranio-caudal (CC) and mediolateral oblique (MLO) DBT views and ABUS, ii) simulated bCT and DBT (CC and MLO views), and iii) simulated bCT and ABUS. Distances between the centers of masses, dCOM, of corresponding lesions were used to assess the deformable mapping method. These phantom studies showed the potential to apply this technique for real breast lesions with mean dCOM registration values as low as 4.9 ± 2.4 mm for DBT (CC view) mapped to ABUS, 9.3 ± 2.8 mm for DBT (MLO view) mapped to ABUS, 4.8 ± 2.4 mm for bCT mapped to ABUS, 5.0 ± 2.2 mm for bCT mapped to DBT (CC view), and 4.7 ± 2.5 mm for bCT mapped to DBT (MLO view). All of the phantom studies showed that using external fiducial markers helped improve the registration capability of the deformable mapping algorithm. An IRB-approved proof-of-concept study was performed with patient volunteers to validate the deformable registration method on 5 patient datasets with a total of up to 7 lesions for DBT (CC and MLO views) to ABUS registration. Resulting dCOM’s using the deformable method showed statistically significant improvements over rigid registration techniques with a mean dCOM of 11.6 ± 5.3 mm for DBT (CC view) mapped to ABUS and a mean dCOM of 12.3 ± 4.8 mm for DBT (MLO view) mapped to ABUS. The present work demonstrates the potential for using deformable registration techniques to relate corresponding lesions in 3D x-ray and 3D ultrasound images. This methodology should improve a radiologists’ characterization of breast lesions which can reduce patient callbacks, misdiagnoses, additional patient dose and unnecessary biopsies. Additionally, this technique can save a radiologist time in navigating 3D image volumes and the one-to-one lesion correspondence between modalities can aid in the early detection of breast malignancies.PHDNuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150042/1/canngree_1.pd

    Mammography Techniques and Review

    Get PDF
    Mammography remains at the backbone of medical tools to examine the human breast. The early detection of breast cancer typically uses adjunct tests to mammogram such as ultrasound, positron emission mammography, electrical impedance, Computer-aided detection systems and others. In the present digital era it is even more important to use the best new techniques and systems available to improve the correct diagnosis and to prevent mortality from breast cancer. The first part of this book deals with the electrical impedance mammographic scheme, ultrasound axillary imaging, position emission mammography and digital mammogram enhancement. A detailed consideration of CBR CAD System and the availability of mammographs in Brazil forms the second part of this book. With the up-to-date papers from world experts, this book will be invaluable to anyone who studies the field of mammography

    Imaging of the Breast

    Get PDF
    Early detection of breast cancer combined with targeted therapy offers the best outcome for breast cancer patients. This volume deal with a wide range of new technical innovations for improving breast cancer detection, diagnosis and therapy. There is a special focus on improvements in mammographic image quality, image analysis, magnetic resonance imaging of the breast and molecular imaging. A chapter on targeted therapy explores the option of less radical postoperative therapy for women with early, screen-detected breast cancers

    Computer-aided diagnosis in mammography : correlation of regions in multiple standard mammographic views of the same breast.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, 2006.Abstract available in PDF file

    Enhancing the image quality of digital breast tomosynthesis

    Get PDF
    A novel imaging technology, digital breast tomosynthesis (DBT), is a technique that overcomes the tissue superposition limitation of conventional mammography by acquiring a limited number of X-ray projections from a narrow angular range, and combining these projections to reconstruct a pseudo-3D image. The emergence of DBT as a potential replacement or adjunct to mammographic screening mandates that solutions be found to two of its major limitations, namely X-ray scatter and mono-energetic reconstruction methods. A multi-faceted software-based approach to enhance the image quality of DBT imaging has the potential to increase the sensitivity and specificity of breast cancer detection and diagnosis. A scatter correction (SC) algorithm and a spectral reconstruction (SR) algorithm are both ready for implementation and clinical evaluation in a DBT system and exhibit the potential to improve image quality. A principal component analysis (PCA) based model of breast shape and a PCA model of X-ray scatter optimize the SC algorithm for the clinical realm. In addition, a comprehensive dosimetric characterization of a FDA approved DBT system has also been performed, and the feasibility of a new dual-spectrum, single-acquisition DBT imaging technique has also been evaluated.Ph.D
    • …
    corecore