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Abstract 

According to the Cancer Association of South Africa, breast cancer is currently the most common 

cancer among women worldwide and second to cervical cancer in South Africa. Although much 

progress has been made in the treatment of breast cancer, the key is early detection. Mammography 

is currently the most effective method of detecting breast cancer in its early stages, but the analysis 

of mammograms is sometimes difficult due to the complex and varying structure of the human 

breast. Adding to the complexity is the fact that abnormalities appear very rarely and radiologists 

that are tired or distracted may miss the signs of breast cancer, especially if the signs are very 

subtle. 

Computer-aided diagnosis (CAD) systems were introduced to consistently highlight those 

features that may be missed by a radiologist and studies have shown that a radiologist's perfor­

mance is enhanced when "prompted" by a CAD-system. However, the high number of false­

positive areas highlighted by current CAD-systems provides further distraction and wastes the 

radiologist's time. CAD-systems generally emulate the actions of a radiologist in interpreting 

a mammogram, however no CAD-system uses both standard mammographic views of the same 

breast to confirm the presence of abnormalities and reduce false-positives. 

This study uses texture-based image p~ocessing methods to investigate a method of analysis 

that matches a suspicious feature from one standard mammographic view to the same feature 

in the other mammographic view of the same breast. The matching algorithms employ grey­

level co-occurrence matrices (GLCMs), texture measures and similarity metrics (Euclidean and 

Mahalanobis distance, mutual information) for matching the information between mammographic 

views of the same breast. The algorithms are applied to 68 pairs of cranio-caudal and mediolateral­

oblique mammograms as well as stereotactic biopsy mammograms. Results are evaluated in terms 

of the area under the receiver operating characteristic curve (AROc) and contrast (Cjb). 

The best results for the pairs of mammograms were obtained for matching using texture 

measures and a Euclidean distance similarity metric, which achieved an average ARoc=O.80±O.17 

with an average Cjb=0.46±O.26 while mutual information with GLCMs achieved an average 

AROC=O.77±O.25 with an average Cjb=O.50±0.42. Mutual information with GLCMs performed 

remarkably well with the matching of malignant masses and achieved an average ARoC=O.96±O.05 

with an average Cjb=O.90±O.21. Results of applying the algorithms to match regions between 

stereotactic biopsy mammograms were significantly poorer than the results for the standard mam­

mograms and it was not possible to adequately demonstrate that the matching algorithms can 

improve localisation accuracy for biopsies. 
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Ode to a Mammogram 

For years and years they told me, Be careful of your breasts. 

Don't ever squeeze or bruise them. And give them monthly tests. 

So I heeded all their warnings, And protected them by law. 

Guarded them very carefully, And always wore my bra. 

After 30 years of astute care, My gyno, Dr. Pruitt, 

Said I should get a Mammogram. "0. K," I said, "let's do it. " 

"Stand up here real close" she said, (She got my boob in line), 

"And tell me when it hurts," she said, "Ah yes! Right there, that's fine. " 

She stepped upon a pedal, I could not believe my eyes! 

A plastic plate came slamming down, My hooter's in a vice! 

My skin was stretched and mangled, From underneath my chin. 

My poor boob was being squashed, To Swedish Pancake thin. 

Excruciating pain I felt, Within its vicelike grip. 

A prisoner in this vicious thing, My poor defenceless tit! 

"Take a deep breath" she said to me, Who does she think she's kidding?!? 

And woozy I am getting. "There, that's good," I heard her say, (The room was slowly swaying. ) 

"Now, let's have a go at the other one." Have mercy, I was praying. 

It squeezed me from both up and down, It squeezed me from both sides. 

I'll bet SHE'S never had this done, To HER tender little hide. 

Next time that they make me do this, I will request a blindfold. 

I have no wish to see again, My knockers getting steamrolled. 

If! had no problem when I came in, I surely have one now. 

Ifthere had been a cyst in there, It would have gone "kerpow!" 

This machine was created by a man, Of this, I have no doubt. 

I'd like to stick his balls in there, And see how THEY come out. 

-Anon. 
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Chapter 1 

Introduction 

1.1 A World of Pictures 
A picture is worth a thousand words. From drawing in the sand to cave paintings to the Sistine 

Chapel, Man has always expressed himself in pictures. Pictures have also served an important role 

in recording information, and even writing is an evolved form of capturing information in pictures. 

Pictures, moving and still, form a vital part of society from entertainment to security to health. 

In the field of medicine where the early diagnosis of diseases is crucial, medical imaging has be­

come a standard part of the diagnostic process, often giving physicians a non-invasive glimpse 

inside the human body. In the past few decades, medical imaging has evolved from only being 

used for visualisation and inspection of anatomic features, to becoming an important tool for sur­

gical and radiotherapy planning, intra-operative navigation and to track the progress of a disease. 

The modalities or methods of imaging have become equally diverse. Radiography, using x-rays 

to image internal body structures, is still the most common modality, but Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and ultra­

sonography are being increasingly used as complementary modalities to radiography [McInerney 

& Terzopoulos 1996]. 

The increased use of imaging for medical diagnosis, especially in the early detection of can­

cer, has led to an increase in the amount of information that has to be processed by physicians. This 

in turn, has led to the development of computer-based methods to assist physicians to consistently 

and efficiently process the extra information from images. 

1.2 Breast Cancer 
According to the Cancer Association of South Africa I , breast cancer is currently the most common 

cancer among women worldwide, and is second to cervical cancer among South African women. 

Whilst sometimes fatal, breast cancer can be successfully treated, provided it is detected early. 

The most common method of detecting breast cancer in its early stages is mammography, which 

uses low energy x-rays to image the human breast. X-rays were first used to study diseases of 

the breast in 1913, but mammography as a method of detecting breast cancer only started in the 

1970's [Tabar & Dean 1987, Gold et al. 1990, Elmore et al. 2005]. 

lhttp : //www.cansa.org .za/ 
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1.3 Mammography 

1.3.1 The Mammography Process 

During mammography, the breast is compressed between two parallel plates to an average thick­

ness ranging approximately between 4 cm and 6 cm [Highnam et al. 1998b] and is exposed to 

low energy x-rays along the direction of compression. The image that is created in a plane per­

pendicular to the direction of compression is a projection of the compressed breast. This image is 

known as a mammogram and is visually analysed by a radiologist for the signs of breast cancer. A 

schematic of the mammography process is shown in Figure 1.1. 

MLO 

low energy 
x·rays 

cc 
Figure 1.1: Schematic of the mammography process showing two standard mammographic views: 
mediolateral-oblique (MLO) and cranio-caudal (CC). The breast, compressed between two parallel 
plates, is exposed to x-rays along the direction of compression (indicated by arrows) and is imaged in 
a plane perpendicular to the direction of compression. The resulting image is known as a mammogram. 

1.3.2 Anatomy of the Human Breast and the Mammogram 

The human breast has a very complex structure that is composed of varying amounts of fibrous, 

glandular, fatty and lymphatic tissues (Figure 1.2). The structure of the breast varies with age 

and from patient to patient and this variability makes the analysis of mammograms a very difficult 

task. An important point to note is that there is no definitive normal, healthy breast, but that there 

is a wide range of features which make up a normal, healthy breast. 

The different tissues in the breast have different densities and consequently different x-ray 

attenuation factors. The differences in tissue density are seen as variations in brightness (or in­

tensity) on the mammogram because the high attenuation factor of a region with dense tissue 

causes fewer x-rays to reach the mammographic film resulting in a bright region on the film. Sim­

ilarly, the lower attenuation factor of an area with less dense tissue causes more x-rays to reach 

the mammographic film resulting in a dark region on the film [Huynh et al. 1998, Mudigonda 

et al. 2001, Bushberg et al. 2002]. 
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Figure 1.2: Anatomy of the breast with a mammogram inset [Yale 2002]. The human breast is 
composed of various tissue types that result in varying intensities in the mammogram. 

1.3.3 Screening and Diagnostic Mammography 

3 

There are two main uses for mammography: screening and diagnostic . Screening mammography 

is routinely performed on women not exhibiting symptoms of breast cancer to detect a potential 

cancer. Diagnostic mammography is performed on women exhibiting physical symptoms con­

sistent with breast cancer, or to further evaluate a specific finding, by obtaining mammograms at 

additional angles, magnifications and compressions. Diagnostic mammography is often comple­

mented by Ultrasonography to differentiate between benign cysts and malignant masses that have 

similar mammographic appearances [Bushberg et al. 2002, Majid et al. 2003]. 

Biennial mammograms are recommended for women older than 40 years and it has been 

shown that periodic screening can reduce breast cancer mortality [US Preventive Services Task 

Force 2002, Tabar et al. 2002, Feig 2005]. 

1.3.4 Standard Mammographic Views 

Figure 1.1 shows a schematic of the technique used to obtain two of the standard mammographic 

views, mediolateral-oblique (MLO) and cranio-caudal (CC). Two views are routinely taken as it 

has been shown that breast cancer is more effectively diagnosed with two views than with a single 

view [Wald et al. 1995, Chan et al. 1999, Paquerault et al. 2002]. Table 1.1 details the various 

mammographic views and the direction of compression for each view. Example CC- and MLO­

view mammograms are shown in Figure 1.4. 

1.3.5 X-ray Detector Technologies 

Three x-ray detector technologies are currently used in mammography: screen-film mammog­

raphy, computed radiography and full-field digital mammography. Traditionally, x-ray film was 
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Table 1.1: Possible mammographic views and directions of compression for each view 

I View I Compression Direction I Angle of compression I 
cranio-caudal (cq top to bottom 0° 
mediolateral-oblique (MLO) upper middle to lower side 60° 
mediolateral (ML) middle to side 90° 
lateromedial (LM) side to middle 90° 
compression/spot local -

directly exposed to x-rays, but film insensitivity meant that the patient received a very high dose 

of radiation. The current technologies all require significantly lower x-ray doses to achieve a 

clinically useful contrast between the different tissue types. 

1.3.5.1 Screen-film Mammography 

The film is placed in direct contact with a phosphor screen in screen-film mammography. The 

screen-film combination is placed inside a light-tight cassette made of a low x-ray attenuation ma­

terial and the cassette is placed in the mammography machine such that the x-rays pass through the 

cassette and film before interacting with the screen. The interaction between the phosphor and the 

x-rays causes light, in direct proportion to the intensity of the incident x-rays, to be emitted. This 

light exposes the film. The advantages of screen-film mammography (compared to radiographic 

film only) are the significantly lower dose, its good spatial resolution (which is only dependent on 

the crystal size in the screen and film and these can be made very small) and its low cost (which 

makes it widely available). However, the film has a limited exposure dynamic range and the con­

trast of the mammogram depends on the speed of the film that is used. Also, poor screen-film 

contact and film processing parameters adversely affect the quality of the mammogram [Bushberg 

et al. 2002]. 

1.3.5.2 Computed Radiography 

Computed radiography (CR) is the second most-common detector technology used in mammog­

raphy. The main components of a CR system are the image plate and the image plate reader. The 

image plate, which is placed in a light-tight enclosure, consists of a photostimulable or storage 

phosphor screen. X-rays incident on the screen cause charge to be trapped in metastable traps, 

creating a latent image, which is read out by raster scanning with a laser. When the screen is 

optically stimulated, the trapped charge is released from the metastable traps, triggering a process 

known as photostimulated luminescence where short wavelength light is emitted in an amount pro­

portional to the original incident x-ray intensity. The emitted light is collected with a light guide 

and detected by a photomultiplier tube. The photomultiplier tube signal is digitised to form the 

image on a pixel-by-pixel basis. The advantages of CR are that the detector has a large exposure 

dynamic range and that it has a digital nature. However, CR has a limited spatial resolution, which 

is dependent on the sampling frequency used during readout [Rowlands 2002]. 
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1.3.5.3 Full-Field Digital Mammography 

The third x-ray detector technology used in mammography is full-field digital mammography 

(FFDM) where a full field-of-view digital detector captures the transmitted x-rays. FFDM systems 

have only been in use since 2002. However, prior to that, small field-of-view detectors were used 

on biopsy units. The advantages ofFFDM are that it has a large exposure dynamic range and that it 

is a fully digital technology. However, because it is a relatively new technology, it is very expensive 

and is, therefore, not widely used. The spatial resolution of FFDM-systems is determined by the 

size of the pixel elements in the detector and this can be constructed to be close to that of a screen­

film system. However, small pixel sizes means higher storage requirements for the digital images 

[Bushberg et al. 2002]. 

1.3.6 Breast Compression 

Compression of the breast during mammography reduces overlapping tissue and decreases the 

effective thickness of the breast. The effect of the latter is to reduce the x-ray dose to the patient, to 

reduce the scatter of x-rays passing through the breast and to reduce blurring on the mammogram. 

A uniformly thick breast also means that a higher contrast film can be used because the dynamic 

range required for the exposure can be reduced [Huynh et al. 1998, Bushberg et al. 2002]. 

1.4 How a Radiologist Interprets a Screen-film Mammogram 

R L 
Temporal Temporal 

comparison comparison 

Examination mJ~ A ~g Examination 
of single view Bilateral of single view 

comparison 

Comparison of 
same breast, 

different views t t 
Temporal Temporal 

Comparison of 
same breast, 

different views 

Exa~ination 11~;L::~~I" ""m;M"", 

of Single view Bilateral of single view 
comparison 

Figure 1.3: Summary of how a radiologist interprets a mammogram. Symmetry of the human breast 
forms the basis of mammogram interpretation. Comparison of corresponding left and right views 
highlights bilateral differences. Comparison of CC and MLO views of each breast eliminates artefacts 
such as overlapping dense tissue that may mimic a mass in one view or confirms the presence of a 
suspicious region if it is present in both views. Comparison between prior and current mammograms 
identifies temporal changes. 

The discussion of how a radiologist interprets a mammogram is based on screen-film mam­

mography since this is the most common mammography detector technology and most studies 

have focussed on it. 
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(a) (b) 

Figure 1.4: A method of placing mammograms during analysis is shown, with bilateral mammograms 
placed as mirrored pairs, to facilitate easy comparison between breasts. The mammogram of the right 
breast is placed on the left and that of the left breast, on the right. (a) Placement of CC views. (b) 
Placement of MLO views. The pectoral muscle is visible in the upper left and right comers of the 
respective left and right MLO views. The bright white spot on the MLO view of the left breast is a 
radio-opaque marker indicating the position of a palpable mass. 

6 

Symmetry of the human breast forms the basis for the analysis of a mammogram (Figure 

1.3). Bilateral CC views and bilateral MLO views are placed as mirrored pairs on the view-box 

(Figure 1.4). These views are analysed simultaneously with corresponding regions on each image 

compared to identify any asymmetries between left and right breasts. If a suspicious region is 

found in one view, the radiologist will attempt to find the same object in other available views of 

the same breast to identify the object as a true or false mass. Radiologists consider the distance 

from the nipple to the centroid of the suspicious regions in one view and then search an annular 

region in the second view at about the same radial distance from the nipple. If prior mammograms 

are available, these are compared with the current set to identify any temporal changes in the breast 

[Huynh et al. 1998, Paquerault et al. 2002, Majid et al. 2003]. 

To further aid interpretation, radiologists also use magnifying glasses and spot lights to high­

light features . (Movson 2005, pers. comm.2). Radiologists look for the following signs of breast 

cancer [Martin et al. 1979, Goodsitt et al. 1998]: 

1. Direct signs 

o masses (spiculated and irregular) and microcalcifications (Figure 1.5), 

o focus of asymmetric breast tissue density, 

o architectural distortion, 

o skin or nipple thickening and/or retraction, 

o spiculation, and 

o ulceration. 

2. Indirect signs 

o a solitary dilated duct or an unusual complex of dilated ducts that extends 3 cm or more 

2Dr. I. 1. Moyson, Department of Radiology, Addington Hospital, P. O. Box 977, Durban, 4000 
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(b) 

Figure 1.5: Some common signs of breast cancer are shown. (a) Examples of masses. Malignant 
masses (spiculated at top left and lobular at top right) are usually brighter than the surrounding tissue, 
have a uniform density, are approximately circular in shape and have fuzzy edges. Benign masses (top 
middle) can have a structure that is composed of different amounts of normal compared to that of the 
surrounding tissue. (b) Examples of microcalcification clusters. Most microcalcification clusters are 
benign, but some clusters can indicate malignancy. 

within the breast, 

<> intraductal and intralobular calcifications, 

<> a progressive density in a specific area, 

<> bilateral asymmetry, and 

<> a benign appearing mass in a peri- or post-menopausal woman. 

7 

Mammograms are classified as normal if there are no signs of breast cancer or abnormal if 

there are suspicious features. If the mammogram is classified as abnormal then the features can ei­

ther be malignant, which is cancerous or benign, which is not cancerous. These signs of breast can­

cer manifest as the following radiographic and mammographic features [0' Doherty 1999, te Brake 

et al. 2000, Thurfjell et al. 2002]: 

1. brightness and contrast - the brightness and contrast of a mass is usually higher than that of 

surrounding tissue, 

2. isodensity - a mass is usually isodense and opaque, 

3. location of the mass, 

4. texture - lines radiating from a central area is suspicious, 

5. deformation of the skin-air interface or of the glandular tissue, 

6. appearance in both MLO and CC views, 

7. bilateral asymmetry, and 

8. temporal changes. 
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1.5 Problems with Visual Analysis of Mammograms 
The analysis of mammograms is a difficult task that involves identifying small features of low 

contrast superimposed on a non-uniform background. While there are many standard techniques 

that radiologists use to interpret a mammogram, part of the diagnosis is very subjective, often 

relying on the experience of the radiologist. This sometimes means that a mammogram that has 

been diagnosed as normal is not necessarily free of breast cancer. The causes of an incorrect 

diagnosis may be grouped into two categories: technical and interpretive [Yankaskas et al. 2001]. 

Problems are discussed with respect to screen-film mammography since most studies have 

focussed on problems associated with this mammography detector technology. 

1.5.1 Technical Problems 

There are two main groups of technical problems. The first group can be described as quality 

o/the mammogram and includes problems inherent to screen-film mammography (discussed in 

§ 1.3.5.1 on page 4), poor mammographic technique on the part of the radiographer, problems with 

the mammography machine and problems with processing of the film. The second group can be 

described by viewing conditions and includes problems with viewing equipment. This author is 

not aware of any studies that examine the effect of technical problems on diagnostic accuracy 

although Huynh et al. [1998] lists some examples of how poor mammographic technique resulted 

in missed cancers. 

The quality of the mammogram critically depends upon proper positioning of the breast. Ide­

ally, the breast should be positioned in a manner that allows the maximum amount of breast tissue 

to be imaged. The CC and MLO views should also contain as much complementary informa­

tion as possible. The breast must be adequately compressed to reduce scatter, radiation exposure 

and blurring due to motion. Adequate compression is particularly important in women with dense 

breasts. Exposure of the film also affects the quality of the mammogram. An under-exposed mam­

mogram prevents differentiation within areas of dense tissue while an over-exposed image lacks 

information on the subcutaneous or fatty tissues. Lack of sharpness of the mammogram can also 

result from poor screen-film contact. Poor positioning of the breast during mammography or poor 

exposure and processing of the radiographic film can mean that the cancer is not clearly visible on 

the mammogram [Huynh et al. 1998]. 

The quality of viewing conditions is crucial to the analysis of a mammogram. A view-box 

with a high luminance is necessary. The radiologist must be able to adequately mask unnecessary 

view-box light around the mammograms as well as be able to mask bright regions on the edges 

of mammograms, and the ambient lighting of the analysis environment must be low [Huynh et al. 

1998]. 
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1.5.2 Interpretive Problems 

Interpretive problems account for a significant amount of the research conducted into problems 

with mammography. The first set of interpretive problems occurs because subtle, unusual or small 

lesions can be easily missed. The second set of interpretive problems occurs when an abnormality 

is observed, but is misclassified. This can be as a result of radiologist inexperience, fatigue, 

inattention, not using all available views, not using prior images or judging an abnormality by its 

benign features only. Another common cause of misinterpretation is overlooking a subtle lesion 

in the presence of an obvious lesion [Huynh et al. 1998, Majid et al. 2003]. 

The main reason cited for cancers being missed in a screening mammography programme 

is the low occurrence rate of breast cancer in such an environment. Beam et al. [2002] estimates 

about 2 to 6 cancers are seen per 1 000 cases in a screening programme, and Yankaskas et al. [2001] 

quotes similar figures of 18 to 24 cancers per 6 000 cases per year. This means that radiologists 

who are tired or distracted can easily miss the signs of breast cancer. 

There is also significant variability in radiologists' performances when interpreting mammo­

grams. Quantitative information on the variability of radiologists' performances is unfortunately 

just as varied because results from these studies depend on the type of cases selected as well as 

the number and experience of the radiologists involved in the studies. Wirth et al. [1999] reported 

that between 10% and 20% of cancers are missed in current interpretations, and Astley & Gilbert 

[2004] reported that a typical breast-screening radiologist is likely to miss between 4% and 38% of 

cancers. Berg et al. [2002] reported on two studies in 1995 and 1996 that highlighted the variability 

in radiologists' performance. The 1995 study had ten radiologists (interpreting 150 mammograms, 

23 with cancer) recommending immediate clinical studies for 74% to 96% of women with can­

cer and 11 % to 65% of women without. The 1996 study had 108 radiologists (interpreting 79 

mammograms, 45 with cancer) recommending clinical studies for 47% to 100% of women with 

cancer and 1 % to 64% for those without. Yankaskas et al. [2001] re-examined 339 mammograms 

with cancers originally missed from a screening mammography programme, and found that 71 % 

of these were still missed. The main reason was the low occurrence rate of cancers in a screening 

mammography programme. Elmore et al. [2002] conducted a study on 24 radiologists. Masses 

were noted in 0% to 7.9% of the films examined and calcifications in 0% to 21.3%, while 55.1% 

to 83.6% of the films were classified as normal. This study also found that films interpreted by 

younger radiologists or those who had graduated within the past 15 years were more likely to 

incorrectly identify a feature as abnormal. 

The contributing factors to misdiagnosis can be summarised by [Berg et al. 2002, Elmore 

et al. 2002, Astley & Gilbert 2004]: 

1. search pattern might have missed part of the film, 

2. detected abnormality, but misclassified as normal, 

3. failed to detect because of: 
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<> low conspicuity, 

<> poor image quality, 

<> eye fatigue, 

<> oversight, 

<> distraction, 

<> mental fatigue, 

<> boredom, and 

<> inexperience. 

1.5.3 Overcoming the Problems 

10 

Problems with mammography occur because reading a mammogram is a highly demanding task 

involving a detailed visual search for signs that are often subtle or small and appear infrequently. 

Problems inherent to screen-film mammography may be overcome with CR mammography or 

digital mammography. Interpretive problems can be overcome with double reading of mammo­

grams (i.e. having two radiologists independently interpret the mammogram or the same radiol­

ogist interpreting the mammogram at different times), especially with arbitration where a third 

radiologist makes the decision when there is a lack of agreement between the first two [Astley 

& Gilbert 2004]. Double reading has been shown to be more effective at detecting abnormalities 

than a single interpretation by a single radiologist and can reduce recall rates [Warren-Burhenne 

et al. 2000, Dinnes et al. 2001]. In a review article, Bassett [2000] stated that double reading 

had the potential to effectively increase the sensitivity of mammography by about 10%. However, 

double reading means an even greater workload for (most likely, already overworked) radiologists. 

1.5.4 Consequences of a Misdiagnosis 

There are two problems with a misdiagnosis: if a cancer is missed then early treatment may be 

unsuccessful while if a benign mass is incorrectly diagnosed as malignant, then the patient has to 

face the trauma of a biopsy to confirm the diagnosis. While the former is more costly, the latter has 

the consequence of women not returning for screening mammograms and this non-return could be 

detrimental over the long term. 

1.6 Computer-aided diagnosis (CAD) in Mammography 
1.6.1 Advantages of CAD-systems 

Since the consequences of errors in analysing mammograms are costly, there has been consider­

able interest in developing computer-based methods to assist radiologists . Computers have the 

following advantages [Chan et al. 1999, Bassett 2000, Astley & Gilbert 2004]: 

1. a well-defined objective, 
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2. no tiredness, boredom or distraction, and 

3. can consistently process images over a long period of time. 

Computer-aided diagnosis (CAD) was developed to consistently prompt or draw radiologists' 

attentions to suspicious regions in a mammogram that may be missed [Bassett 2000]. Commercial 

CAD-systems have been designed to be consulted after the radiologist has made an initial assess­

ment of the mammogram. So, provided the radiologist maintains the same unprompted perfor­

mance, the overall detection performance should not decrease with CAD [Astley & Gilbert 2004] 

and it has been shown that prompting by a CAD-system improves radiologists' detection per­

formance [Kegelmeyer et al. 1994, Chan et al. 1999, Warren-Burhenne et al. 2000, Freer & 

Ulissey 2001, Taft & Taylor 2001, Zheng et al. 2001, Marx et al. 2004]. 

1.6.2 Evaluating Detection Performance 

The most important aspect in the development of CAD-systems is the evaluation of the results. 

CAD algorithms are evaluated by comparing the outputs of the algorithms to corresponding histo­

logical evidence of exact locations of malignant or benign masses and microcalcification clusters 

on these mammograms. Keeping in mind that the aim of the CAD-system is to identify malignant 

regions, the first step of the evaluation is to label each mark made by the algorithm as belonging 

to one of the following four categories [Bushberg et al. 2002]: 

1. true-positive: identified as malignant and is malignant 

2. false-negative: identified as benign and is malignant 

3. false-positive: identified as malignant and is benign 

4. true-negative: identified as benign and is benign 

The second step ofthe evaluation is to combine the number of marks in each category as follows: 

1. True-Positive Fraction (TPF) : ratio of number of true-positives to number actually malig­

nant 

2. False-Positive Fraction (FPF): ratio of number offalse-positives to number actually benign 

Detection performance can then be described in terms of: 

1. sensitivity defined by the TPF 

2. specificity defined by l-FPF or 

3. the area under the curve of TPF vs. FPF. 

Sensitivity is the fraction of truly malignant regions in the mammogram that are diagnosed 

as malignant. Specificity is the fraction of truly benign regions on the mammogram that are 

diagnosed as benign. Both these quantities are usually quoted at a specific decision threshold 

[Bushberg et al. 2002]. 

A plot of TPF vs. FPF using varying thresholds is referred to as a receiver operating char­

acteristic (ROC) curve. A ROC curve has the advantage of examining the evaluation results at all 
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possible decision thresholds, compared to sensitivity and specificity, which only examine the re­

sults at a single decision threshold. The area under the ROC curve, AROC, is accepted as a complete 

description of detection performance. Since 0 ~ TPF ~ 1 and 0 ~ FPF ~ 1, this implies that 0 ~ 

AROC ~ 1. Detection performance is directly proportional to AROC, with higher values indicating 

better performance and AROC= 1 for the perfect detection algorithm [Bakic & Brzakovic 1997]. 

The use of ROC curves for evaluating algorithms is detailed in Chapter 7. 

The aim is to develop a CAD-system with a high sensitivity and a high specificity or a high 

value ofARoc. 

1.6.3 Detection Performance of Commercial CAD-systems 

The Food and Drug Administration (FDA) in the United States of America has approved three 

commercial CAD-systems (ImageChecker™, Second Look™, and MammoReaderTM) for use as 

second readers in that country. These systems are also being used in many other countries like the 

United Kingdom, Canada and Germany. Currently, to our knowledge, there are no mammographic 

CAD-systems in use in South Africa. 

ImageCheckerTM by R2 Technologies3 was the first CAD-system to receive FDA approval in 

April 2000. Prior to this, ImageCheckerTM had been used in Germany, Norway, Sweden, Finland 

and France. ImageChecker™ marks microcalcification clusters (with a sensitivity of 98%) and 

masses (with a sensitivity of 74.7%) [R2 Technology 1998]. Vybomy et al. [2000] reported that 

ImageChecker™had a sensitivity of 86% in identifying spiculated masses. 

Second Look™ by CADx Medical Systems Inc. (now iCAD4) received FDA approval in Jan­

uary 2002. Prior to this, Second Look™ had been marketed in Europe, Asia, Australia and Canada. 

Second LookTM detects calcification clusters and masses, and marks potential malignancies based 

on all the clusters or masses detected in the mammogram [CADx Medical Systems 2002]. Ac­

cording to its FDA Summary of Safety and Effectiveness document, Second Look ™ had an overall 

sensitivity of 85% and also marked 62.7% of previously missed cancers. Taft & Taylor [2001] 

conducted a study with Second Look™ and reported a sensitivity of 88% with 1.5 false-positive 

marks per image. Marx et al. [2004] compared diagnostic results with and without use of Second 

Look™ and reported a 2% improvement in sensitivity with CAD. Most importantly, there was a 

decrease in the number of unnecessarily recommended biopsies. 

MammoReader™ by Intelligent Systems Software, Inc. (now iCAD) received FDA approval 

in January 2002, and highlights microcalcification clusters, masses, architectural distortions and 

asymmetric densities. According to its FDA Summary of Safety and Effectiveness document, 

MammoReader™ had a sensitivity of91.0% ± 2.2% for calcification clusters and 87.4% ± 1.9% 

for malignant masses with 3.32 false-positive marks per normal case and 2.32 false-positive marks 

3http : //www .r2tech . com/ 

4http : //www.icadmed . com/ 
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per abnormal case [Intelligent Systems Software 2002). 

Overall, these CAD-systems improve the detection performance of radiologists, and micro­

calcification clusters are detected with a greater accuracy than masses. However, there is a rel­

atively high false-positive rate, which means that radiologists have to spend more time on these 

regions that have been incorrectly identified as warranting further attention. 

The mass detection performances and false-positive rates of ImageChecker™ and Second 

Look™ is summarised in Table 1.2 for a few studies and shows that there is scope for improve­

ment. No studies could be found evaluating the detection performance ofMammoReader™. 

Table 1.2: Summary of mass detection performance of commercial CAD-systems 

CAD-system MS. .. False-Positive Rate Year Reference ass ensltlVlty ( 19l • p' . 19l) avera e er Ima e 

2000 Warren-Burhenne et al. [2000] ImageChecker™ 75% 1.0 
2000 Vybomy et al. [2000] ImageChecker™ 86% 0.24 
2001 Freer & Ulissey [2001] ImageChecker™ 67% -

2001 Taft & Taylor [2001] Second LookTM 88% 1.5 
2004 Marx et al. [2004] Second Look™ 88.9% 1.04 

1.6.4 Detection Performance of Non-Commercial CAD-systems 

Studies in which the detection performances of non-commercial, research CAD-systems were 

evaluated also indicated an improvement in radiologist performance as well as that the mass de­

tection algorithms were not as efficient as calcification detection algorithms. 

Chan et al. [1999] reported on the evaluation of a non-commercial CAD-system by six radiol­

ogists analysing 253 mammograms from 103 patients. Detection performance was evaluated with 

ROC analysis. The CAD-system alone achieved AROC=O.92 from analysing a single view. Equiv­

alently, the radiologists achieved AROC=0.87 without a CAD-system and ARoc=0.91 with a CAD­

system. Using two standard views, the radiologists achieved AROC=O.92 without and AROC=0.96 

with a CAD-system. The CAD information from the two standard views was merely displayed 

together and it was up to the radiologist to best use the information. 

Zheng et al. [2001] examined how the sensitivity of the CAD algorithm affects detection 

performance. The sensitivity and number of false-positives per image was varied on a non­

commercial CAD-system (analysing a single view) and was tested on 209 mammograms from 

120 patients. It was found that while a high-performance system can significantly improve over­

all detection performance, a low performance system could be highly detrimental to radiologist 

performance. 

Lauria et al. [2003] described CALMA, a non-commercial CAD-system that detected micro­

calcifications and lesions. The mass detection algorithm was evaluated on 180 images of normal 

breasts and 145 images of abnormal breasts and yielded a sensitivity of 90% and a specificity of 

85%. The microcalcification detection algorithm was evaluated on 500 images of normal breasts 
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and 306 images containing microcalcifications. This test yielded a 92% sensitivity and 92% speci­

ficity. The detection perfonnances of three radiologists were also tested, with and without the 

CAD-system. The radiologists' performances, summarised in Table 1.3, show that there is an 

improvement of sensitivity with the CAD-system, but that the specificity is better without the 

CAD-system. This most likely means that the radiologists are being misled into believing that the 

incorrectly marked malignant areas are truly malignant, which is a disadvantage of a CAD-system 

with a high false-positive rate. 

Table 1.3: Detection perfonnance of radiologists on a non-commercial CAD-system, CALMA 

.. Sensitivity Specificity Experience 
Radiologist . hAD· h CAD . h CAD . h CAD (years) Wit C Wit out Wit Wit out 

A 94.3% 82.8% 87.5% 87.5% 5 
B 90.0% 80.0% 88.4% 91.7% 3 
C 87.1% 71.5% 70.9% 74.2% 2 

Helvie et al. [2004] evaluated a non-commercial system (using single-view analysis) on mam­

mograms from 2 389 patients, 11 of whom had been diagnosed with cancer. The CAD-system 

detected 10 out of 11 of the cancers, indicating a sensitivity of 91 %. No details of false-positives 

or specificity were given. 

1.6.5 Shortcomings of Current CAD-systems 

Despite the interpretive problems of a radiologist visually analysing a mammogram, it is impor­

tant to note that this combination of human vision and the ability to analyse the morphology and 

texture of the structures in the mammogram to render a diagnosis works very well under ideal con­

ditions [Paquerault et al. 2002]. The secret to successfully implementing a completely automated 

diagnostic algorithm relies on an exact emulation of the radiologist'S methodology and ability. 

While current CAD methods can achieve sensitivities up to 100% in identifying microcal­

cification clusters, the variable appearance of masses and their similarity to nonnal tissue means 

that masses are detected with a lower sensitivity [Astley & Gilbert 2004]. The danger of CAD al­

gorithms with low sensitivities is that radiologists could become complacent and could start using 

the lack of CAD marks as an assurance that the mammogram is normal [Alberdi et al. 2004]. 

On the other hand, CAD algorithms with high sensitivities have an associated increase in the 

number of false-positives per mammogram analysed (e.g. ranging from an 2.2 per image to an 5.3 

per image [Yin et al. 1991, Petrick et al. 1998, Petrick et al. 1999, Liu et al. 2001]). If these CAD­

systems were to be used in a screening environment with ~6 cancers per 1 000 cases screened, 

then there would be an average ranging between 367 and 883 false marks for each true cancer and 

all these additional marks also have to be evaluated by a radiologist. Such systems would not be 

very practical. 

Bassett [2000] states that experienced radiologists should be able to quickly differentiate 

between those marked areas that warrant further attention from those that do not, but the radiologist 
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would still spend more time analysing each mammogram than if there were no false-positives. 

1.7 Overview of Thesis 
The aim of any mass detection CAD-system should be to detect all masses with no false-positives. 

Based on evaluation results of current CAD-systems, mass detection performances can be im­

proved upon and the number of false-positives per image can be reduced. This study investigates 

a method that could be used to reduce the number of false-positive masses detected. 

As discussed in § 1.4 (page 5), radiologists use many methods to eliminate false-positives , 

including comparison between both standard mammographic views of the same breast. Most CAD 

algorithms analyse single mammographic views independently of others and multiple views are 

usually used for comparison between left and right breasts, and for comparison of the same breast 

over time. Information from multiple views of the same breast is usually combined at the end of the 

single-view analysis. While there have been a few studies indicating the usefulness of using two 

standard mammographic views for false-positive reduction [Chang et al. 1999, Paquerault et al. 

2002, Sun et al. 2004], these algorithms have not been incorporated into the systems described 

in § 1.6.3 (page 12) and § 1.6.4 (page 13). Most importantly, these dual-view algorithms do not 

simultaneously use information from both standard mammographic views to perform the analysis. 

The aim ofthis study is to apply standard image processing techniques to two standard mam­

mographic views of the same breast for template matching: matching a suspicious region of in­

terest (ROI), identified in one mammographic view, to the same region in another mammographic 

view of the same breast. Grey-level co-occurrence matrices, texture measures and grey-level his­

tograms are used to quantify the textural information in the image, while various similarity metrics 

(Euclidean distance, Mahalanobis distance, mutual information) are used to quantify the similarity 

between textural regions in multiple mammographic views of the same breast. Texture measures 

and distance metrics have been applied to the texture analysis of mammograms on numerous oc­

casions. Literature surveys have indicated that the full grey-level co-occurrence matrix has not 

been used with mutual information for purposes of texture matching in mammograms. Results are 

evaluated using the area under the ROC curve and a measure of contrast. 

The algorithms that are developed will also be applied to matching regions between stereo­

tactic biopsy mammograms to improve selection of points on each stereoscopic view to ultimately 

improve the localisation accuracy for the biopsy. 

The algorithms developed in this project have the advantage of slotting into existing CAD­

systems as a method of providing further information to reduce false-positives and to improve the 

localisation accuracy for stereotactic biopsies. 
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1.7.1 Summary of Thesis Structure 

Chapter 1 introduces mammography and its use in the diagnosis of breast cancer. CAD is in­

troduced as a means to assist radiologists by consistently highlighting abnormal regions for the 

radiologist to further analyse. The shortcomings of CAD led to the motivation for this study. 

Chapter 2 serves as a background for the remainder of the study and gives the reader a short 

overview of image processing methods that have been used in mammographic CAD. 

Chapter 3 places the goals of this study within the context of mammographic CAD. The 

matching problem is introduced together with the approach (image processing methods and mate­

rials) used in this study. 

Chapter 4 describes the pre-processing methods used in this study to remove the back­

ground, pectoral muscle and unneeded breast tissue from mammograms. 

Chapter 5 details the texture analysis image processing methods used. The calculation of 

grey-level histograms and co-occurrence matrices are described, together with the various texture 

measures used. 

Chapter 6 describes the distance metrics and mutual information, which are used as similar-

ity metrics. 

Chapter 7 describes the theory behind ROC analysis and defines the measure for contrast. 

Chapter 8 details the algorithms and parameters used. 

Chapters 9 and 10 contain the results of applying the matching algorithms to mosaic images 

and pairs of mammograms. 

Chapter 11 describes the application of the matching algorithms to matching similar regions 

in stereotactic biopsy mammograms. 

Chapter 12 summarises the research and provides directions for future research based on the 

outcomes of this study. 

An overview of the structure of the thesis is shown in Table 1.4. 

1.8 Summary 

Breast cancer is the most common form of cancer among women, worldwide. Successful treat­

ment relies on early detection. Currently, mammography is the most widely available method of 

detecting breast cancer, but suffers from the problem that radiologists, in their visual interpretation 

of the resulting mammograms, sometimes miss the subtle signs of breast cancer. Computer-aided 

diagnosis was introduced as a means to assist radiologists by consistently highlighting abnormal 

regions for the radiologist to further analyse. The shortcomings of CAD i.e. high false-positive 

rates, and the current lack of systems that fully utilise all available mammographic information, 

form the basis of the motivation for this research, which investigates various texture-based image 

processing methods of correlating information between two mammographic views of the same 
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Table 1.4: Overview of thesis structure 

I Chapter I Content 

Introduction to mammography and CAD. 
2 Review of image processing methods in mammography. 
3 Background to this project & introduction to the matching problem. 
4 Mammogram pre-processing. Description of a novel method to detect breast edge. 
S Details of the texture quantification methods to be used. 
6 Details of the various similarity metrics to be used. 
7 Description of ROC analysis & evaluation of results. 
8 Summary of the methods and details of the matching algorithms. 
9 Results, discussion and comparison of matching methods for mosaic images. 
10 Results, discussion and comparison of matching methods for mammograms. 
11 Application of matching algorithms to stereotactic biopsy mammograms. 
12 Summary, conclusions & directions for future research. 
A Detailed results from matching methods 
B Basic information about images 
C Information theory basics 
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breast. The algorithms developed in this study can ultimately be used to reduce false-positive 

detections in any CAD-system. 



Chapter 2 

Image Processing Techniques in 

Mammographic CAD 

Many image-processing techniques have been used in mammographic CAD. The overall method­

ology for the detection and classification of masses and some examples of the methods used to 

address this mammographic CAD problem are described in this chapter. While research directly 

relevant to this research is discussed in the chapters to follow, some important concepts are briefly 

introduced in this chapter, notably grey-level co-occurrence matrices, texture measures and mutual 

information. The terminology used to describe images is given in Appendix B (page 246). 

The detection of calcifications is not specifically considered in this study. For information 

on the processing methods used for detection and classification of calcifications see, for example, 

Shen et al. [1993, 1994], Ema et al. [1995], Qian et al. [1995], Hume & Thanisch [1996], Gurcan 

et al. [2001], Jiang et al. [2001], Lado et al. [2001], Nunes et al. [2001], Veldkamp et al. [2001], 

Gurcan et al. [2002] and Bocchi et al. [2004] . 

2.1 Detection and Classification of Masses 
One of the main aims of mammographic CAD is to consistently identify malignant masses. This 

requires that the mass is firstly detected in the breast tissue and is secondly classified as malignant. 

However, the detection accuracy for all masses is much lower than that for calcifications, and some 

masses do not get detected. This is most likely because [Wei et al. 1995, Qian et al. 2001]: 

1. Masses are of variable size, shape and density. 

2. Masses sometimes have poor image contrast. 

3. Masses are highly connected to surrounding tissue, especially with spiculated lesions. 

4. The non-uniform background tissue surrounding masses are often similar to the mass. 

In surveying the literature, it was found that the image processing techniques used in the 

detection and classification of masses in a mammographic CAD-system could be summarised by 

the five categories shown in Figure 2.1. Features that are not essential to the detection of masses 

are removed and the contrast of the remaining features are enhanced during pre-processing. The 

suspected masses are extracted from the breast tissue region during detection. Characteristics 

of the suspicious regions (texture, shape, size, location) are determined during quantification of 

image information and are used to discriminate between masses and normal tissue during false­

positive reduction. Characteristics from the remaining regions are then used to classify the mass 

as malignant or benign during classification and diagnosis. 

18 
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Pre-processing 

Segmentation: non-essential features 
Enhancement: to improve image quality 

Detection 

Segmentation: essential features 
(transforms & filters, temporal & bilateral comparison) 

Quantification of Image Information 

texture analysis, shape analysis, location analysis 

False-Positive Reduction 

texture analysis, shape analysis, location analysis 

Classification & Diagnosis 

statistical methods, similarity metrics, neural networks 

Figure 2.1: A summary of the image processing techniques used in mammographic CAD. Examples 
of some image processing methods, within each of the five categories are shown. 

2.2 Pre-processing 

The first step in mammographic CAD is the removal of non-essential features like the mammo­

gram background and pectoral muscle, to reduce the effective region to be analysed. This is 

followed by enhancement of features in the remaining tissue. 

2.2.1 Removal of Non-essential Features: Background 

The many methods used to detect the breast border are reviewed in detail in §4.1.2 (page 44). 

These methods include: 

1. thresholding [Tahoces et al. 1995, Mendez et al. 1996, Faizon & Sun 2000, Masek et al. 

2000, Blot & Zwiggelaar 2001]; 

2. thresholding and iso-intensity contours [Mudigonda et al. 2001]; 

3. tracking or connectivity algorithms [Yin et al. 1991, Bick et al. 1995, Tahoces et al. 1995, 

Mendez et al. 1996, Faizon & Sun 2000, Ferrari et al. 2001]; 

4. artificial neural networks [Suckling et al. 1995]; 

5. modelling background as a surface [Chandrasekhar & AttikiouzeI1997]; 

6. model guided edge-tracking [Morton et al. 1996, Goodsitt et al. 1998]; 

7. active contours [Ojala et al. 2001 , Wirth & Stapinski 2003]; 

8. B-splines [Ferrari et al. 2001 , Ojala et al. 2001]; 

9. Fourier transforms [Ojala et al. 2001] . 

A novel method of detecting the breast edge using iso-intensity contours is presented in 

Chapter 4. 
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2.2.2 Removal of Non-essential Features: Pectoral Muscle 

The pectoral muscle edge is essentially a straight line and straight-line detection methods, e.g. the 

Radon transform or the Hough transform are most often used to detect the edge of the muscle. 

The method of Karssemeijer [1998] for detecting the pectoral muscle using the Hough Transform 

is detailed in §4.2 (page 57). 

2.2.3 Enhancement to Improve Image Quality 

Image enhancement is necessary to improve the poor signal-to-noise ratio in most mammograms. 

Image quality can suffer as a result of the imaging procedure or breast motion during compression 

or positioning between the plates. Image details are also lost when the radiographic film is digitised 

because the spatial resolution of the scanning device seldom matches that of the film [Bovis & 

Singh 2002]. 

Image enhancement can be global (over the entire image) or local (over regions of the image). 

Global enhancement methods include those based on modifying the grey-level histogram [Morrow 

et al. 1992, Nunes et al. 2001, Bovis & Singh 2002] and for mammograms, image correction using 

the x-ray attenuation coefficients ofthe different type of breast tissue [Nunes et al. 2001]. 

Contrast enhancement expands the range of grey-levels over the full bit-depth of the image, 

and is a popular method of enhancing features in a mammogram. Adaptive contrast enhance­

ment is preferred to global contrast enhancement and has been based on region-growing and local 

statistics [Morrow et al. 1992], the wavelet transform (using dyadic, <I> and hexagonal functions as 

wavelets) [Laine et al. 1994], local entropy and the fractal dimension [Bovis & Singh 2002]. 

2.3 Detection 

Once the non-essential features have been removed and the remaining features have been en­

hanced, the next step is to extract potential masses. This is done by segmenting or isolating the 

potential masses from the background breast tissue. 

2.3.1 Segmentation of Essential Features: Transforms and Filters 

Transforms (e.g. Fourier and wavelet) are types of filters that highlight features that are similar 

to the basis functions of the particular transform. Fourier functions are localised in frequency, but 

not in space and are appropriate for analysis of periodic structures, while wavelet functions are 

localised in frequency and space and can be used to analyse structures at different scales [Sonka 

et al. 1999]. An overview of the use of wavelets in temporal and spatial processing of biomedical 

images is given in Laine [2000]. In mammographic CAD, the wavelet transform has been used to: 

1. detect spiculated masses [Liu et al. 2001]; 

2. extract a directional texture image with linear features to detect masses [Li et al. 2002]. 
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3. characterise linear oriented components for use in the bilateral comparison of mammograms 

[Ferrari et al. 2001] 

4. to detect and classify masses [Qian et al. 2001]. 

2.3.2 Segmentation of Essential Features: Bilateral & Temporal Comparison 

Figure 2.2: Bilateral mammographic views (top and bottom from different patients) showing asym­
metry. Comparison of bilateral views highlights signs of abnormality and is used to extract suspicious 
regions from mammograms 

Normal human breasts are highly symmetric and radiologists use bilateral asymmetry as a 

sign of abnormality (Figure 2.2). Mammograms can also be compared temporally, to identify 

changes in the breast over time. The general method of bilateral and temporal comparison is 

identical: accurately align or register the corresponding mammographic views and subtract one 

from the other to highlight differences. The most important and most difficult aspect of bilateral 

and temporal comparison is registration. 

The difficulty with registering mammograms is mainly due to the differences in positioning 

and compression of the breast between mammograms. The non-rigid and inhomogeneous physical 

properties of breast tissue would have to be accurately modelled to take into account how the breast 

tissue changes with changes in patient positioning and with compression. This would enable more 

accurate registration [Wirth et al. 1999]. 

Methods used to register mammograms have included: 

1. manual registration of the nipples and skin lines of bilateral mammograms [Yin et al. 1991]; 

2. establishing correspondence between temporal mammograms by using the intersection of 

elongated structures as control points for registration [Vujovic & Brzakovic 1997]; 

3. using thin-plate spline interpolation on boundary landmark points to register temporal mam­

mograms [Marias et al. 1999]; 
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4. using automatically identified landmarks internal to the breast to register temporal mammo­

grams [Marias et al. 1999]; 

5. using a regional registration method to align temporal mammograms [Sanjay-Gopal et al. 

1999]; 

6. using a multi-quadratic radial basis function in a nonrigid-body approach to automatically 

align bilateral and temporal mammograms [Wirth et al. 1999]; 

7. using thin plate splines and mutual information as a similarity metric to register bilateral 

and temporal mammograms [Wirth et al. 2002]; 

8. using Gabor filters to characterise linear oriented structures in the breast for use in bilateral 

registration [Ferrari et al. 2001]; 

9. using linear structures in the breast (extracted from local scale, orientation and position) to 

perform a point-by-point registration of bilateral and temporal mammograms [Marti et al. 

2001a]; 

10. using matched control points and a temporal tracking algorithm to track structures over time 

[Marti et al. 200lh]; 

11. automatically registering bilateral mammograms by registering the nipple by only using 

translation and then registering the entire breast by only using rotation about the nipple 

[Bovis et al. 2000]. 

2.3.3 Other Segmentation Methods 

2.3.3.1 Active Contours and Region Growing 

An active contour is an example of a deformable model that is fitted to the boundary of features in 

an image. External forces, based on the model, keep the contours moving outwards while internal 

forces, based on the data, keep the contours moving inwards. The solution is found by balancing 

the internal and external forces [McInerney & Terzopoulos 1996]. 

Region growing uses a pixel as a seed and expands the region according to specified criteria 

about neighbouring pixels. 

Active contours and region growing have primarily been used to segment masses from mam­

mograms [te Brake et al. 2000, Hadjiiski et al. 2001, Timp & Karssemeijer 2004]. 

2.3.3.2 Contrast Enhancement 

Contrast enhancement has also been used to segment features from a mammogram. 

Anguh & Silva [1997] used thresholding based on grey-level histogram moments to automat­

ically segment mammographic features. The enhanced features were then presented as a pseudo­

colour breast map to the radiologist for further examination. 

Petrick et al. [1998, 1999] used global density-weighted contrast enhancement to segment 

features of interest. 
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Mudigonda et al. [2001] segmented masses by sub-sampling and thresholding the image 

to identify isolated regions, in the form of closed iso-intensity contours. These contours were 

grouped or eliminated, yielding a segmented region corresponding to a mass. 

2.3.3.3 Removal of Normal Tissue 

Abnormalities in a mammogram are enhanced when the surrounding normal breast tissue is re­

moved. 

Liu et al. [1998] identified and removed normal tissue by assuming that normal regions in a 

mammogram contain quasi-parallel linear markings, which were approximately linear over short 

segments, between 1 mm and 2 mm long and between 0.1 mm and 1.0 mm wide. The algorithm 

used a set of correlation fi lters in 16 radial orientations to detect lines. 

Zwiggelaar & Rubin [1999] used the Fourier transform and fractal measures to remove nor­

mal mammographic texture from an image to enhance abnormalities. 

2.3.3.4 Miscellaneous Segmentation Methods 

te Brake & Karssemeijer [1999] compared single- and multi-scale mass detection methods by 

using a difference of Gaussians with the ratio between the cr of each successive Gaussian being 

~ 1.6. 

Zwiggelaar & Boggis [2001] used scale-orientation signatures for the detection of linear 

structures, to identify spiculated masses. 

Tourassi et al. [2003] developed a knowledge-based CAD-system for detection of masses. 

The database contained 455 biopsy-proven malignant masses, 354 benign masses and 655 normal 

regions, stored as ROIs of 512 x 512 pixels. Mutual information based on grey-level histograms 

was used as a similarity metric. The mutual information between two quantities is a measure ofthe 

amount of information one quantity contains about the other. Mutual information is a maximum 

when the quantities are identical and zero when the quantities have nothing in common. 

2.4 Quantification of Image Information 

Once the regions of suspicion have been extracted, the information contained therein must be 

quantified. Characteristics such as texture, morphology and location are used to quantify image 

information. 

2.4.1 Texture Analysis 

Texture, as an image characteristic (§5 .1 on page 63), forms the basis of most image processing 

applications. The aim of using texture for image processing is either to segment areas of similar 

texture (texture segmentation) or to identify similar textures (texture recognition) [Sonka et al. 

1999]. 
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The texture segmentation problem consists of identifying the boundaries between similar 

textures in a multi-textured image, using only the information contained in the image. In general, 

the aim of image segmentation, using texture, is to identify regions in an image that are uniform 

and homogeneous with respect to texture. The interiors of the identified regions should be simple 

with only a few small holes, while adjacent regions should contain considerably different textures. 

Boundaries of each segmented region should be simple, smooth and spatially accurate [Haralick 

& Shapiro 1985]. A simple example of a texture recognition problem is shown in Figure 2.3(a). 

The texture recognition problem can be summarised as finding the best match to an unknown 

single texture from a fixed set of known single textures. For example, a CAD-system that classifies 

an unknown sample of breast tissue by comparison to a set of previously classified breast tissues 

would use a texture recognition algorithm. A simple example of a texture recognition problem is 

shown in Figure 2.3(b). 

Input 
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Output 

Input Output 
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D 
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2 3 4 
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Figure 2.3: Examples demonstrating the main applications of texture in image processing. (a) Ex­
ample of perfect texture segmentation. The borders between texturally homogeneous regions in the 
image have been identified. (b) Example of perfect texture recognition. The input texture has been 
matched with reference texture 1. 

Both texture recognition and segmentation require that the textural information in the image 

be quantified in some manner. Once the information has been quantified, then a classifier is used 

to differentiate between textures. Table 2.1 lists some methods of texture quantification [Haralick 

et al. 1973, Haralick 1979, Gonzalez & Wintz 1987, Russ 1995, Sonka et al. 1999]. 

Texture measures are the most common characteristics used in image processing and are com­

monly extracted from grey-level co-occurrence matrices, Laws' texture filters or run-length matri­

ces. Texture measures summarise textural characteristics such as homogeneity, contrast, presence 

of spots, or information on linear structures as a function of grey-level. 

2.4.1.1 Grey-Level Co-occurrence Matrices 

The most common texture measures are those of Haralick et al. [1973], which are usually cal­

culated from grey-level co-occurrence matrices (GLCMs). GLCMs contain information on the 
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Table 2.1: Some methods of quantifying texture 

I Texture Quantification Methods 

statistical 
grey-level histograms 

structural 
grey-level co-occurrence matrices 
local covariance 
run-length matrices 
fractal dimension and lacunarity 
Laws' texture energy 

spectral 
Fourier transforms 
Wavelet transforms 

distributions of the grey-levels between two pixels in an image, positioned a distance d apart at a 

relative angle 8. Haralick's texture measures (e.g. correlation, entropy, angular second moment, 

inertia, inverse difference moment, sum average, sum entropy and difference entropy) generally 

contain information about the homogeneity, contrast, complexity, presence of organised structures 

and grey-level transitions within the image. It should be noted that a specific texture measure 

cannot be uniquely related to a specific image characteristic [Chan et al. 1995]. The calculation of 

GLCMs and Haralick's texture measures are detailed in Chapter 5. 

GLCM-based texture measures have been used: 

1. to discriminate between masses and normal tissue [Chan et al. 1995, Bovis & Singh 2000, 

Bovis et al. 2000]; 

2. as inputs to artificial neural networks for segmentation of mammograms into background, 

pectoral muscle, fibro glandular tissue and adipose tissue [Suckling et al. 1995]; 

3. as inputs to a genetic algorithm to reduce false-positives [Sahiner et al. 1996, Wei et al. 

1997]; 

4. to characterise masses as benign or malignant [Sahiner et al. (1998a, 1998b, 2001), Chan et 

al. 1999]; 

5. as inputs to artificial neural networks to classify ROls as normal or abnormal 

[Christoyianni et al. 1999]; 

6. to search for corresponding regions in temporal mammograms [Marias et al. 1999]; 

7. to analyse the region around the margins of masses to discriminate between malignant and 

benign masses [Mudigonda et al. (2000,2001), Sahiner et al. 2001]; 

8. for multi-scale analysis using wavelets [Wei et al. 1995, Petrick et al. 1998]. 

2.4.1.2 Laws' Texture Energy Measures 

K.L Laws [Laws 1980] derived Laws' texture energy measures to extract secondary features [av­

erage grey-level (L), edge (E), ripple (R), spot (S) and wave (W)] from natural microstructure 
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characteristics of an image that could then be used for segmentation and classification. Laws de­

rived five labelled vectors that could be combined to form matrices. The five vectors (L5, E5 , 

R5 , S5, W5) were derived from three vectors: L3 = [1,2 , 1] , E3 = [-1 ,0, 1] and S3 = [- 1,2, - 1] . 

When these three vectors are convolved with themselves and each other, the following result is ob­

tained: L5 = [1 ,4,6,4 , 1] , E5 = [-1 , - 2 ,0,2, 1], R5 = [1, - 4,6, -4, 1], S5 = [- 1,0,2,0, - 1] and 

W5 = [-1 ,2,0, - 2, 1] . MUltiplying these five vectors with each other yields 5 x 5 matrices which 

when convolved with an image, yields texture energy measures [Gupta & Undrill 1995, Sonka 

et al. 1999]. 

Laws' filters have been used by Miller & Astley [1992] to classify glandular tissue, by 

Kegelmeyer et al. [1994] to detect spiculated masses and by Gupta & Undrill [1995] and Undrill 

et al. [1996] to segment masses from mammograms. 

2.4.1.3 Run-Length Statistics 

Many neighbouring pixels of constant grey-level represent a coarse texture while a few neigh­

bouring pixels of constant grey-level represent a fine texture. The length ofthese runs of constant 

grey-level pixels can then be used as a measure of texture. A run-length is defined as a set of pixels 

of constant grey-level, g, located in a straight line at an angle, 9. If Pe(g, r) represents the proba­

bility offinding features with length, r, of grey-level, g and in the direction, 9, then the following 

texture measures based on run-length statistics can be computed [Sonka et al. 1999]: long run 

emphasis, short run emphasis, run-length non-uniformity, run-length percentage and grey-level 

non-uniformity. 

Run-length statistics have been used by Chan et al. [1999], Hadjiiski et al. [2001] and Sahiner 

et al. [2001] to discriminate between malignant and benign masses. 

2.4.1.4 Fractal Analysis 

Fractal-based texture analysis relies on a correlation between the fractal dimension and texture 

coarseness [Sonka et al. 1999]. The fractal dimension is the rate at which the perimeter or surface 

area of an object increases as the measurement scale gets smaller [Russ 1995]. A small fractal 

dimension implies a fine texture while a large value implies a coarse texture. Unfortunately, the 

fractal dimension alone is insufficient to uniquely describe textures, and lacunarity measures have 

to be used. Lacunarity measures describe characteristics of textures that have the same fractal 

dimension, and are small for fine textures and large for coarse textures. 

Marchette et al. [1997] used the fractal dimension to improve detection of masses by auto­

matically determining the sizes of sampling windows so that the windows contained homogeneous 

textures, while Zwiggelaar & Rubin [1999] used information contained in the Fourier space of an 

image combined with a fractal measure to segment normal mammographic texture out of an image 

to enhance abnormalities. 
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2.4.2 Morphological Analysis 

Shape and size information also help characterise masses. Morphological analysis of boundaries 

is used to characterise malignant and benign masses because malignant masses generally have 

complex boundaries while benign masses generally have smooth boundaries [Menut et al. 1997, 

Rangayyan et al. 1997 a, Rangayyan et al. 2000]. Morphological information has been used: 

1. to classify regions as masses or normal tissue [Petrick et al. (1996, 1999)]; 

2. as inputs to a genetic algorithm to discriminate between masses and normal breast tissue 

and between malignant and benign masses [Sahiner et al. (1996, 2001)] ; 

3. to classify benign and malignant masses based on shape and acutance characteristics. Acu­

tance is a measure of the gradient between light and dark regions in an image. [Rangayyan 

et al. (1997, 2000)]; 

4. as inputs to an artificial neural network to discriminate between malignant and benign 

masses [Huo et al. 1999]. 

2.4.3 Location Analysis 

Chang et al. [1999], Paquerault et al. [2002] and Sun et al. [2004] used the correlated locations of 

potential masses in the MLO and CC views of the same breast to reduce false-positives. 

2.4.4 Fourier Transforms 

Transformed images have also been used to quantify information. The Fourier spectrum is ideal 

for describing the directionality of periodic or almost periodic two-dimensional patterns in an 

image, which are difficult to determine using spatial techniques as these techniques are usually of 

a local nature [Gonzalez & Wintz 1987]. 

2.4.4.1 The Fourier Spectrum 

The Fourier transform ofa function f(x, y) is defined by [Bracewell 1965]: 

F(u, v) = i~i~f(x,y)e-i21t(XU+YV) dxdy (2-1) 

F(u , v) is referred to as the Fourier spectrum and is a useful tool in texture analysis. The following 

properties of the Fourier spectrum are useful for texture description [Gonzalez & Wintz 1987]. 

1. Prominent peaks in the spectrum give the principal direction of texture patterns 

2. Location of peaks in the frequency plane gives the fundamental spatial period of the patterns 

3. By filtering out periodic components, the remaining non-periodic image components can be 

analysed using statistical approaches 

Josso et al. [2005] described a method of extracting the orientation of texture in images with a 

confidence indicator that provided some insight to the randomness of the arrangement of structures 

in the image, using the Fourier transform and principal component analysis. 
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Zwiggelaar & Rubin [1999] used the infonnation contained in the Fourier space of an image 

combined with a fractal measure to describe texture in an image. This was then used to segment 

nonnal mammographic texture out of an image to enhance abnonnalities. 

2.5 False-Positive Reduction 
The classification of a suspected mass as malignant or benign is made simpler if the total number 

of potential masses is as low as possible. The elimination of nonnal tissue regions from the set of 

potential masses is known as false-positive reduction and the following methods have been used 

to discriminate between masses and nonnal tissue: 

1. GLCM texture measures [Chan et al. 1995, Bovis & Singh 2000, Bovis et al. 2000]; 

2. morphological filtering and eliminating features smaller than a specified size [Yin et al. 

1991]; 

3. morphological features [Petrick et al. (1996, 1999)]; 

4. genetic algorithms & artificial neural networks with GLCM texture measures as inputs 

[Sahiner et al. 1996, Wei et al. 1997, Christoyianni et al. 1999]; 

5. the arc and Cartesian methods between the MLO and CC views of the same breast [Chang 

et al. 1999, Paquerault et al. 2002, Sun et al. 2004]; 

6. region specific features (size, average grey-level, contrast, compactness) as inputs to an 

artificial neural network [te Brake et al. 2000]; 

7. size, shape and difference in homogeneity and entropy in the regions identified by bilateral 

comparison [Bovis et al. 2000]; 

8. a knowledge base of previously classified suspicious regions [Chang et al. 200 I]. 

Apart from the work of Chang et al. [1999], Paquerault et al. [2002] and Sun et al. [2004] 

(discussed in detail in §3.5 on page 36), which use two mammographic views, all the other studies 

use a single mammographic view for false-positive reduction. 

2.6 Classification and Diagnosis 

The textural, morphological and location features extracted from the regions remaining after false­

positive reduction fonn a feature vector that summarises the various characteristics of each region. 

The feature vector is subject to feature selection where only those features that provide unique 

information are retained. The reduced feature vector is passed to a classifier to make the final dis­

tinction between the region being malignant or benign. Some examples of classification methods 

are shown in Table 2.2. Popular classification methods in mammographic CAD include linear 

discriminant analysis, binary classification trees and artificial neural networks. 
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2.6.1 Feature Selection 

Table 2.2: Some methods of classification 

I Classification Methods 
linear and quadratic classifiers 
nearest neighbour classifiers 
minimum distance 
decision trees 
artificial neural networks 
mutual information 
maximum likelihood 
Bayes classifier 

In general, the feature vectors are multi-dimensional with only a few features providing useful 

infonnation for any given image. An important step before classification is feature selection, 

which is the selection of those few features from the feature vector that provide unique information 

about the region. The main idea behind this step is to reduce the dimension of the classification 

problem. The following methods have been used for feature selection: 

1. step-wise feature selection with linear discriminant analysis [Petrick et al. 1998, Petrick 

et al. 1999, Wei et al. 1997, Sahiner et al. 1996, Sahiner et al. 1998a, Sahiner et al. 1998b, 

Sahiner et al. 2001, Chan et al. 1999, Bovis & Singh 2000, Mudigonda et al. 2000, Hadjiiski 

et al. 2001]; 

2. binary classification trees [Kegelmeyer et al. 1994, Liu et al. 2001]; 

3. genetic algorithms [Sahiner et al. 1996, Sahiner et al. 1998b]; 

4. mutual information [Tourassi et al. 2001]; 

5. principal component analysis [Bovis et al. 2000]. 

2.6.2 Linear Discriminant Analysis 

Linear discriminant analysis is a statistical technique for classifying samples as one of a set of 

predefined classes, using a discriminant function that is a linear combination ofthe features of each 

sample. The classifier must first be trained on a set of samples with known classes to detennine 

the coefficients or weights of the discriminant function. 

The disadvantage of linear discriminant analysis is that only linear combinations are consid­

ered and the classifier requires training. 

Linear discriminant analysis has been used as a classifier: 

1. for mass segmentation [Petrick et al. 1998, Zwiggelaar et al. 1997, Petrick et al. 1999]; 

2. to discriminate between masses and normal tissue [Chan et al. 1995, Wei et al. 1995, Sahiner 

et al. 1996, Wei et al. 1997, Zwiggelaar et al. 1997, Sahiner et al. 1998a, Sahiner et al. 2001, 

Bovis et al. 2000, Helvie et al. 2004]; 

3. to classify masses as malignant or benign [Chan et al. 1999, Mudigonda et al. 2000, Hadji­

iski et al. 2001, Mudigonda et al. 2001]. 
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2.6.3 Binary Classification Trees 

Binary classification or decision trees use the concept of branches in a tree to separate objects into 

classes. The classes are the tips of the branches and decisions are made at the branch points by 

examining various object properties [Hand 1981] . In a binary classification tree, only two branches 

are allowed at each node. At the first node, all input data is divided into two classes. At the next 

node, each of the first two classes is further divided into two classes. This continues until the 

maximum number of allowed classes is reached. The branching is defined according to a training 

set of data. A simple example of a binary classification tree is shown in Figure 2.4 . 

• 0.0 
branch 1 = colour 

•• 00 

• • o o 
Figure 2.4: Example of a binary classification tree. The aim is to place the four objects into four 
classes. The decision at the first branch point is made according to colour, and at the second branch 
point, according to shape. 

Binary classification trees have the following advantages: automatic feature selection, is 

robust with respect to outliers and misclassified points in the training set, the final classifier can be 

compactly stored, new data is efficiently classified and provides easily understood and interpreted 

information regarding the predictive structure of the data [Liu et al. 2001]. The disadvantage is 

that binary classification trees require training [Kegelmeyer et al. 1994]. 

Binary classification trees have been used: 

1. to differentiate between normal and abnormal tissue [Kegelmeyer et al. 1994]; and 

2. to identify spiculated lesions [Liu et al. 2001]. 

2.6.4 Artificial Neural Networks 

2.6.4.1 Background to Artificial Neural Networks 

Artificial neural networks represent one of many approaches to create a machine capable of 

human-like thought processes. The most important components of an artificial neural network 

are neurons, which, like their biological counterparts, can accept inputs and generate an appropri­

ate output based on the value of the input and the nature of the connections between the inputs. 

An artificial neural network has to be first trained on a set of known data, which should 

span the range of data of interest. This process yields the values of the weights between the 

inputs and outputs obtained by minimising some error function. There are two types of training: 

supervised and unsupervised. In supervised training, the network is presented with inputs and 

the corresponding known outputs. The weights are determined based on this information. In 
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unsupervised training the network is presented with inputs and the network is allowed to discover 

to which (of a number of classes) each input belongs [Masters 1993]. 

An important part of the training process is cross-validation. Cross-validation is necessary to 

prevent over-training (i.e. creating a model that over fits the data). The set of data used for cross 

validation must be separate to the training data and like the training data, must span the range of 

the data for it to be meaningful. Once the artificial neural network has been trained, it can be 

applied to the general population of data [Masters 1993]. 

2.6.4.2 Application to Mammographic CAD 

A fundamental problem of using standard image processing algorithms in mammography is that 

a description of what is normal and abnormal is needed. However, because of the significant 

variability between both, general-purpose algorithms are not sufficiently adaptable to cope suc­

cessfully. Since artificial neural networks are non-parametric pattern recognition systems that can 

generalise by learning from examples, they are useful in problems where decision rules are vague 

and there is no explicit knowledge about the probability density functions governing sample distri­

butions. This makes them ideal for application to mammographic CAD[Bakic & Brzakovic 1997]. 

Artificial neural networks have been used: 

1. for segmentation [Suckling et al. 1995] 

2. to discriminate between normal and abnormal tissue [Christoyianni et al. 1999, Bovis & 

Singh 2000, Bovis et al. 2000] 

3. to assign measures of malignancy based on characteristic features extracted from the mam­

mogram [Huo et al. 1999, te Brake et al. 2000] 

4. to detect and classify masses [Qian et al. 2001, Lauria et al. 2003] 

5. for false-positive reduction [Sun et al. 2004] 

2.7 Summary 

The detection accuracy of CAD-systems for microcalcification clusters is higher than that for 

masses. The appearance of masses in mammograms is very varied and many image-processing 

approaches have been used to detect and classify masses as malignant or benign. Methods of 

segmenting suspicious regions from the surrounding breast tissue include removal of normal tissue 

structures, contrast enhancement, the Wavelet transforms, active contours, symmetry between left 

and right breasts and changes in the breast over time. Once these suspicious regions have been 

identified, morphological, geometrical and textural information are extracted and used to reduce 

false-positives, i.e. separate any normal tissue regions from truly abnormal regions. This reduced 

set of regions is then passed to a classifier like linear discriminant analysis, a binary classification 

tree or an artificial neural network that performs the final discrimination between whether the 

region is benign or malignant. 



Chapter 3 

Multiple Mammographic-View Analysis 

One of the concerns regarding current CAD algorithms is the high false-positive rate, which 

arises as a consequence of the requirement that the algorithms have a high sensitivity [Astley 

& Gilbert 2004]. When a radiologist interprets a mammogram, all available views of the patient 

are examined in conjunction with each other. The radiologist uses the inherent symmetry between 

left and right breasts to identify abnormalities and then uses the MLO and CC views of the same 

breast to confirm presence ofthe abnormality or to eliminate a false-positive detection. 

This chapter details the motivation behind this study and outlines the image processing meth­

ods, based on texture analysis, that are applied to the problem of matching a suspicious ROI in one 

mammographic view to the same region in the other mammographic view of the same breast. The 

output of the matching algorithm can then either be used to confirm the presence of an abnormality 

or to indicate a false-positive detection. 

3.1 How CAD-systems Treat Multiple Views of the Same Patient 
The various CAD algorithms that have been listed in Chapters 1 and 2 handle different views of 

the same patient in one of the following methods: 

1. Each view of the same patient is analysed independently as if there is no correlation between 

them. The CAD outputs, for each view, are then independently presented to the radiologist. 

If the output of the classifier is a number, which is related to the likelihood of malignancy, 

then taking the average, minimum or maximum of the classifier output yields a combined 

output for each patient [Liu et al. 2004, Sun et al. 2004]. 

2. For bilateral comparison algorithms, CC views of left and right breasts and MLO views of 

left and right breasts are analysed together. 

3. For temporal comparison algorithms, current CC views of a single breast and previous CC 

views of the same breast are analysed together. Similarly for the MLO views. 

These methods show that apart from bilateral and temporal comparison algorithms, multiple 

views of the same patient are not analysed simultaneously. 

3.2 Mass Detection Performance of CAD-Algorithms 

Table 3.1 summarises the sensitivity and/or specificity or the area under the ROC curve, AROC, for 

a few mass detection studies. The false-positive rates, where available, have also been listed. Two 

points are clear from this data: the mass detection accuracy is not very high and where it is very 

high, the false positive rate is also very high. It is therefore logical for mass detection algorithms to 

32 
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have as high sensitivities as possible, and to then reduce the false-positive detections. This would 

at least ensure that all masses are detected. 

Table 3.1: Summary of sensitivity and/or specificity or ARoc and false positive rates (if reported) for 
a few mass segmentation studies in mammographic CAD. 

I Reference I Sensitivity I Specificity I AROC I False-positives/image I 
Yin et al. [1991] 100% - - 5.3 
Chan et al. [1995] - - 0.82 -
Petrick et al. [1998] 90% - - 4.4 
Petrick et al. [1998] 80% - - 2.3 
Petrick et al. [1999] 90% - - 4.2 
Bovis & Singh [2000] - - 0.74 -
Warren-Burhenne et al. [2000] 75% - - 1 
te Brake et al. [2000] 70% - - 0.1 
Liu et al. [2001]a 84.2% - - < 1 
Liu et al. [2001]a 100% - - 2.2 
Qian et al. [2001] - - 0.93 -

a Liu et al. [200 I] quote two separate sensitivities for two different false positives per image. 

3.3 Multiple Views and False-Positive Reduction 

In contrast to current CAD algorithms, radiologists often use images of the same patient from 

different orientations or different modalities to provide complementary information. The use of 

all available information to perform a computer-aided diagnosis has been shown to improve sensi­

tivity and reduce false-positives [Wen et al. 2004] and spot compression magnification views have 

been used to improve classification between malignant and benign over using MLO and CC views 

alone [Huo et al. 2001]. 

If all methods described in Chapter 2 were to be incorporated into a single CAD-system, 

this system would still not completely emulate the actions of a radiologist, especially regarding 

the use of multiple views and false-positive reduction. 

Most of the methods of false-positive reduction described in §2.5 (page 28) compare abnor­

mal and normal regions from the same view. Very few false-positive reduction methods use both 

standard views of the same breast. Similarly, very few methods use both standard views of the 

same breast to confirm the presence of an abnormality. The lack of research into the use of multi­

ple views of the same breast is due entirely to the difficulty with finding correspondence between 

multiple views of the same breast. 

3.4 Correspondence between Multiple Views of the Same Breast 
3.4.1 Problems 

An x-ray intensity image can be described as a transmission image while a light intensity image 

can be described as a reflective image. The main difference between these two types of images 

relates to objects that are placed in a line between the light/x-ray source and the detector. In a 
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reflective image, objects (or parts of objects) obscured by the object closest to the detector, are not 

seen in the image, while all objects (depending on x-ray energies or x-ray attenuation factors) can 

be seen in an x-ray image. For all images, photographs of an identical scene from slightly different 

angles, allows for three-dimensional information to be extracted. This is known as stereovision. 

The main complication with finding correspondence between different mammographic views 

of the same breast is that the mammogram is a two-dimensional projection of a compressed, vari­

ably elastic three-dimensional structure, with the exact geometry of each view being determined 

by how the radiographer has positioned the breast. Conventional stereovision theory cannot be 

applied to find correspondence between objects in standard mammographic views, because the 

compression of the breast changes for each view. 

In summary, problems associated with determining correspondence between mUltiple views 

of the same breast are [Vujovic & Brzakovic 1997, Highnam et al. 1998b, Wirth et al. 1999]: 

1. breast tissue has a complex, inhomogeneous, anisotropic nature, 

2. compression may obscure abnormalities, 

3. compression may cause dense tissue to overlap, creating apparent abnormalities, 

4. compression may distort the variably elastic breast tissue, 

5. there may be differences in positioning and compression between views, 

6. there is a lack of clearly defined landmarks, and 

7. there is a changing geometry between views. 

3.4.2 Current Approaches 

There have been two approaches to determine the correspondence between two mammographic 

views of the same breast: breast compression models and geometric models. 

3.4.2.1 Breast Compression Models 

Kita et al. [1998, 2001, 2002] described a model-based method to find the distorted epi-polar 

line in one view corresponding to a point in the other view as a precursor to using information 

available in two views of the same breast to improve detection and diagnosis of breast cancer. The 

model used information on compressed and uncompressed breast shapes to predict the movement 

of points on the surface of the breast. These movements were then interpolated to within the breast. 

This model relies on patient specific information for its implementation. 

Other breast compression models are based on finite element analysis, which divides the 

breast into finite elements. Physical properties of each element are defined according to the type 

of tissue the element represents and the elements are connected together in a manner representative 

of how the tissues are connected together. Kinetic theory defines the motion ofthe elements. Finite 

element analysis has been used: 

1. to model deformation of the breast during mammography [Samani et al. 1999]; 
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2. in a virtual reality system for guiding breast biopsy with MRl [Azar et al. 2001] ; 

3. to study deformation of the breast for registration ofmammograrns and MRI images [Ruiter 

et al. 2002] ; 

4. to model compression to fuse information from different modalities and to assist with biop­

sies [Pathmanathan et al. 2004]. 

The breast compression models of Kit a et al and the finite element models have the disadvan­

tage of being patient-specific. Finite element models have the further disadvantages of depending 

greatly on the physical characteristics of the various tissue types present in each breast and being 

computationally intensive. These models are therefore not practical for use in a CAD-system. 

3.4.2.2 Geometric Models 

There are two geometric models to determine correspondence between mammographic views of 

the same breast: the arc method and the Cartesian straight-line method. For an ROI, either au­

tomatically identified by a CAD-system or manually marked by a radiologist, the arc method is 

based on the distances between the nipple and the centroid of the ROI (aee and aMLO in Figure 

3.1). Similarly, the Cartesian straight-line method is based on the distances between the nipple 

and the centroid of the ROI along a line perpendicular to the chest wall (cee and CMLO in Figure 

3.1). Paquerault et al. [2002] found that there was a linear correlation between aee and aMLO. 

chest wall 

cc MLO 

Figure 3.1: Geometry of the arc method (a) and the Cartesian straight-line method (c). [aec, aMw] 
represents the location, in the CC and MLO-views respectively, of the ROI as determined by the arc 
method and [cCC , CMW] represents the location, in the CC and MLO-views respectively, of the ROI as 
determined by the Cartesian straight-line method. 

The arc and Cartesian straight-line method have been used to determine the arc and Carte­

sian distances in the MLO and CC views. These distances are then used together with other 

morphological and textural features as inputs to e.g. an artificial neural network for false-positive 

reduction [Chang et al. 1999, Sun et al. 2004]. Paquerault et al. [2002] used the arc method to 

define a smaller search region to reduce false-positives, while radiologists apply the arc method 

during analysis of mammograms by considering the distance from the nipple to the centroid of the 

suspicious region in one view and then searching an annular region in the second view at about 

the same radial distance from the nipple for a similar suspicious feature. 
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While the geometric models offinding correspondence are more general than the breast com­

pression models, the best that can be done is to define a smaller region of the breast within which 

the ROI most likely occurs. The geometric models cannot be directly used for determining corre­

spondence between multiple views of the same breast. 

3.5 Review of Multiple View Analysis to Reduce False-Positives 

The three studies investigating the use of multiple mammographic views for false-positive reduc­

tion are described. 

3.5.1 Chang et al. [1999] 

Chang et al. [1999] applied the arc method and the Cartesian straight-line method to two stan­

dard mammographic views to reduce false-positives. Each view was independently analysed to 

search for potential suspicious regions and then values of [ace, aMw] and [cee, CMW] , as detailed 

in Figure 3.1 were extracted. The method was tested on 571 pairs ofCC and MLO mammograms, 

containing 290 masses on both views. A mass detection algorithm identified all masses and 3 992 

false-positive objects. Identified objects from both views were paired with each other. ROC anal­

ysis was used to evaluate performance levels for each method in determining, based solely on 

location, whether a pair of suspicious regions represented a true mass or a false-positive combina­

tion. ARoe=0.79 was obtained for the arc method and ARoe=0.78 was obtained for the Cartesian 

straight-line method. At 90% sensitivity, the arc method eliminated ~48% of false-positives while 

the Cartesian method eliminated ~4 7%. Results were comparable, but the arc method was pre­

ferred because it only needed nipple position and was easier to implement. 

3.5.2 Paquerault et al. [2002] 

Based on an object's location in one mammographic view, Paquerault et al. [2002] used the arc 

method to define an annular search region in the other view, in an extension of the work of Sanjay­

Gopal et al. [1999], to reduce false positives. Sanjay-Gopal et al. used a regional technique 

to register temporal mammograms. The registration method was based on registering a small 

region containing a suspected mass with a previous mammogram. The border and nipple position 

were used to globally register the current and previous mammograms, via a series of translations 

and rotations of the previous mammogram with respect to the current mammogram. Once the 

mammograms were globally aligned, the nipple and centroid of the breast region were used to set 

up a frame of reference (Figure 3.2). The positions of suspicious features identified in the current 

mammogram (either automatically or manually) were then used to zoom in on the corresponding 

region in the previous mammogram. The template search, performed on the zoomed-in region to 

identifY the same feature in the previous mammogram, identified 85% of corresponding regions 

in prior mammograms. 
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current previous 

Figure 3.2: Frame of reference used for regional comparison of temporal mammograms. The position 
of the mass on the current view is used to define a reduced search region in the previous view. The 
shaded region on the previous mammogram indicates the reduced search region. [Sanjay-Gopal et al. 
1999] 

Paquerault et al. compared one and two view algorithms for false-positive reduction. The 

algorithms were tested on 169 pairs of mammograms with masses on CC and MLO views from 

117 patients. The one-view algorithm used a density weighted contrast enhancement filter [Petrick 

et al. 1998] to enhance mammographic structures. False-positives were reduced by use of mor­

phological features, overlap of detected regions and texture features in a three-step process, which 

also restricted the number of objects per image to three. These methods had the unfortunate side 

effect of reducing the sensitivity of the detection scheme. 

The two-view algorithm used the results of the one-view algorithm as the input image. A 

geometric model, based on the arc method (§4.3.l on page 59), was used to define an annular 

search region in one mammographic view, based on a reference object selected in the other mam­

mographic view. The reference object was then paired with all objects that were located within 

the annular region, because an object located in one view cannot be uniquely paired with a single 

object in the other view. Morphological and textural features were determined for each object and 

similarity measures (absolute difference and mean) were determined for each pair. 

Available cases were divided into training and testing sets in a 3: 1 ratio. Two separate lin­

ear discriminant analysis classifiers with step-wise feature selection were trained to differentiate 

between the true and false pairs using the morphological and textural similarity measures, respec­

tively. The scores from each classifier were then averaged to get a single "correspondence" score 

for each pairing. This yielded a case-based sensitivity of 75% for all masses and the number of 

false-positives per image was reduced from 1.5 for one-view analysis to 1.13 for two-view analy­

sis. When the subset of malignant mass mammograms was examined, false-positives were reduced 

from 1.5 to 0.5 at a case-based sensitivity of 85%. 

3.5.3 SUD et al. [2004] 

Sun et al. [2004] used the same basic idea as Chang et al. [1999]. Potential masses were auto­

matically segmented from each view by fuzzy C-means clustering. Various characteristic features 
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describing texture, shape and location, including the arc and Cartesian straight-line distances, were 

extracted from each segmented area. Concurrent features were extracted by examining character­

istics of ROIs segmented from one view paired with all ROIs segmented from the other view. A 

genetic algorithm was used for feature selection and the selected features were used as inputs to an 

artificial neural network, trained on 60 images and tested on 40. It was not clear as to whether the 

images were paired or not for input to the artificial neural network. Free-response ROC analysis 

was used to test performance of the CAD-system. A clear increase in specificity was reported. 

Since the characteristics ofthe detected ROIs in one view were paired with the characteristics 

of every detected ROI in the other view, the analysis was not truly concurrent. However, the 

analysis of the paired regions did provide information on similarity. 

3.5.4 Discussion 

These studies show that there is potential in using multiple mammographic views to correlate the 

complementary information that is present in these views. Since CAD algorithms often analyse 

multiple views independently of each other, the complementary information is not considered 

during the processing, but is usually examined at the end [Liu et al. 2004]. For these studies, each 

view is still independently analysed and then objects detected in both views are paired with each 

other in a multiple-view analysis. Classification also relies on a trained system to discriminate 

between the true mass pairs and the false pairs for false-positive reduction. 

The pitfalls of using a trained classification system are numerous. The first significant prob­

lem arises from the cases used to train the classification system. If the training set does not cover 

the full range of possible input data, then the classifier will be inadequately trained. Such a classi­

fier will not be able to handle those cases that fall outside the scope of the training. This is most 

important for mammography where there is significant variation between mammograms. The sec­

ond significant problem arises from the requirement of a large set of input data in order to get a 

single result, since most of the cases are used for training the classifier. 

This study was inspired by these shortcomings of current mUltiple-view analysis methods. 

3.6 Description of This Project 
3.6.1 Basis 

The minimum requirements of a CAD-system should be to completely emulate the actions of a 

radiologist. As shown in Figure 3.3, most methods used by radiologists in interpreting mammo­

grams have been implemented in many CAD algorithms, mostly for the detection of abnormalities. 

Very few studies have compared the similarity of features between standard mammographic views 

of the same breast, as used by radiologists to confirm presence of abnormalities and to eliminate 

false-positives. 

This project is concerned with the application of texture-based image processing methods 



CHAPTER 3. MULTIPLE MAMMOGRAPHIC-VIEW ANALYSIS 

Temporal Temporal 

Examination lmR ~~~:~~g'" L ""m'o.'"" 

of single view Bilateral of single view 
comparison 

Comparison of 
same breast, 

different views tmp~1 Tom"","! 
Comparison of 
same breast, 

different views 

Examination IJR ~';L::~~[I" L ""mo."" 
of single view Bilateral of single view 

comparison 

+-+~ 
Radiologist Only Radiologist and CAD 

39 

Figure 3.3: Schematic of the methods used by a radiologist during the interpretation of a mammogram. 
The methods indicated by black arrows have been implemented in CAD-systems. Very little research 
has been done into implementing the methods indicated by the grey arrows. The implementation of 
the latter methods will complete the basic emulation of how a radiologist examines a mammogram, in 
software. 

to match a suspicious feature found in one mammographic view to the same feature in other 

mammographic views of the same breast, to further emulate the actions of a radiologist in software. 

3.6.2 Hypothesis 

Texture analysis methods used with suitable similarity metrics will allow a suspicious feature from 

one mammographic view to be matched with the same suspicious feature in other mammographic 

views of the same breast. 

3.6.3 Assumptions 

For this project, the following are assumed to hold true [Paquerault et al. 2002]: 

1. At least two mammographic views of the breast are available. 

2. A mass is visible in at least two mammographic views. 

3. A mass has similar image characteristics in all mammographic views. 

Wellman et al. [1999] measured mechanical properties of normal and abnormal breast tissue, 

under compression immediately after excision and investigated the stiffness behaviour of tissues at 

various strain rates. It was found that the stiffness behaviour of cancerous tissue varies non-linearly 

with strain and that cancerous tissue was much stiffer than fat or normal glandular tissue. 

This means that a mass is not very compressible, as is widely known by radiologists reading 

mammograms, and the image characteristics of a mass should be similar in each mammographic 

view as required by Assumption 3. Any change in orientation that may exist from changing the 

direction of compression is addressed in the textural analysis. 
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3.6.4 Description of the Matching Method 

The template matching method described here can be summarised as a hybrid of texture classi­

fication and texture segmentation (§2.4.1 on page 23). Regions of interest (ROIs) are manually 

extracted from a reference image (as for texture classification) and are matched to a port~on ofthe 

breast in a test image (as for texture segmentation). 

Radiologists consider the distance from the nipple to the centroid of the suspicious region in 

one view and then search an annular region in the second view at about the same radial distance 

from the nipple. This basic idea is implemented by using the location ofthe reference ROI and the 

arc method to identify an annular region of the breast in the test image that is searched for a match. 

This reduces the number of potential matches by reducing the search area. Textural characteristics 

of the ROls are extracted using grey-level histograms, GLCMs and GLCM-based texture measures 

and are compared using distance metrics and mutual information as measures of similarity. This 

is done using two methods. 

The first method uses GLCM-based texture measures to quantify textural information and 

distance metrics as measures of similarity, and is referred to as texture measure matching. The 

second method uses probability density functions (grey-level histograms and GLCMs) to quantify 

textural information and mutual information as a measure of similarity, and is referred to as mutual 

information matching. 

3.6.5 Output of the Matching Algorithm: The Matching Map 

The results of using the similarity metrics are arrays of distance and mutual information values, 

and are referred to as distance and mutual information maps, respectively. Distance is inversely 

proportional to similarity since similarity increases as distance decreases, while mutual informa­

tion is proportional to similarity. Therefore the distance maps indicate an optimal match at a 

minimum of distance while the mutual information maps indicate an optimal match at a maxi­

mum of mutual information. To avoid confusion, only matching maps are presented as results of 

the matching algorithm, in this thesis. A matching map is defined as a map, which has an optimal 

match at a maximum intensity. Distance and mutual information maps are appropriately converted 

to matching maps. 

Figure 3.4 illustrates the differences between a distance map, a mutual information map 

and their corresponding matching maps for an 8-bit checkerboard image. The reference ROI and 

test image are also shown. The maximum image/map intensity is indicated by white and the 

minimum image/map intensity by black. It can be seen that the distance map (Figure 3.4(c» has 

minimum intensities (i.e. the best match) for the same positions that the corresponding matching 

map (Figure 3.4(e» has maximum intensities. It can also be seen that the mutual information 

map (Figure 3.4(d» has maximum intensities for the best match and this map is identical to the 

corresponding matching map (Figure 3.4(f). 
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Figure 3.4: Example of the output of the matching algorithm for an 8-bit checkerboard test image 
created in Microsoft Paint. For all images and maps shown, the maximum intensity is indicated by 
white and the minimum intensity is indicated by black. (a) 2 pixels x 2 pixels reference ROI extracted 
from bottom left of test image. (b) Checkerboard test image. (c) Distance maps showing minima 
where the reference ROI matches exactly with the test image. (d) Mutual information map showing 
maxima where the reference ROI matches exactly with the test image. (e) Matching map from distance 
map showing maxima where the reference ROI matches exactly with the test image. (t) Matching map 
from mutual information map showing maxima where the reference ROI matches exactly with the test 
image. 

3.6.6 Evaluation of Matching Results 

The accuracy of the matching algorithms is evaluated by comparing the matching maps to ground­

truth maps. In this study, ground-truth maps are generated from regions manually marked by a 

radiologist. Matching accuracy (K) is defined as a combination of two quantities: the area under 

the ROC curve (AROc) and contrast (Cfb). For ROC analysis, the matching and ground-truth maps 

are compared at various decision thresholds and values for the TPF and the FPF are computed 

at each threshold. The sets of TPF and FPF values are used to generate the ROC curve and 

the area under the curve is used as an indication of what proportion of the matched region was 

actually matched. Contrast gives an indication of how well the matched area stands out from the 

background of the matching map. Ideally, the matched regions should be the brightest objects in 

the matching map. 

3.6.7 Where this Project Fits into Current CAD Algorithms 

The algorithms developed in this study can be easily incorporated into existing CAD-systems. Cur­

rent CAD-systems analyse both standard mammographic views, independently, and then combine 

the outputs. The matching algorithms developed in this study can slot in between the indepen­

dent outputs and the combination of the results, as a method of providing more information for 

false-positive reduction. 

3.7 Summary of Methods to be Used 

A schematic of the template matching algorithm is shown in Figure 3.5. A reference ROI (or 

template) is identified in the reference image. The template is compared to sub-images extracted 
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Figure 3.5: Schematic of the matching algorithm. The location of the reference ROI is used to define 
an annular search region in the test image. Textural characteristics of the reference ROI are compared 
to textural characteristics of equivalently sized sub-images in the reduced search region in the test 
image. The result of this comparison process is a similarity map referred to as a matching map. The 
brighter the regions on the matching map, the greater the similarity. 

by sampling windows that move over a reduced search region in the test image and computing 

a similarity metric at each position. The position with the highest similarity corresponds to the 

region in the test image that best corresponds to the reference template. The steps and methods 

used in the matching algorithm are summarised, following the methodology used in Chapter 2. 

1. Pre-processing of test image 

(a) Removal of mammogram background using iso-intensity contours. 

(b) Removal of pectoral muscle using the Hough transform. 

(c) Definition of annular segment of breast tissue, containing ROI, using the arc method. 

2. Detection 

(a) ROls identified by a radiologist are used to define the reference region. 

3. Quantification of image information using: 

(a) grey-level histograms, 

(b) GLCMs, and 

(c) GLCM-based texture measures. 

4. ROls between views are compared using: 

(a) distance metrics, and 

(b) mutual information 
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3.8 Computational Environment 
A PC with an AMD AtWon XP 2.4GHz processor, with 500 Mb of RAM, running Microsoft Win­

dows 2000 was used for the software development. All algorithms were developed in IDL 6.11
, an 

interactive programming environment providing mathematical functionality and a graphical inter­

face. Graphs were created in IDL and figures were created in CorelDraw 1 02
. The thesis document 

was typeset using MikTex3, a TIYC implementation for Microsoft Windows. 

3.9 Images and Ground Truth Data 
The matching algorithms were applied to three sets of images. The first set of images was con­

structed from a set of single texture images. These mosaic images were used to evaluate the 

matching algorithms under matching conditions where the exact position and transformation of 

the reference image in the test image was known. The second set of images consisted of pairs of 

mammograms (CC- and MLO-views) and the third set of images consisted of stereotactic biopsy 

mammograms. The image sets, ground truth data and selection of reference sub-images are de­

scribed in detail in the respective results chapters. 

3.10 Summary 

One of the concerns regarding current mass detection CAD algorithms is the high false-positive 

rate, which arises as a consequence of the requirement that the algorithms have a high sensitivity. 

Radiologists use all available mammographic views of a single breast for diagnosis, but very lit­

tle research has been done into the use of multiple single-breast mammograms for confirmation 

of abnormalities and false-positive reduction in CAD-systems. This study is concerned with the 

development of an analysis technique that uses both standard mammographic views of the same 

breast with the aim of confirming the presence of abnormalities and ultimately to eliminate false­

positives. The algorithms developed employ standard image processing methods based on texture 

analysis, including grey-level co-occurrence matrices, texture measures and the use of an infor­

mation theory measure, mutual information. All algorithms developed can be easily incorporated 

into existing CAD-systems. 

Ihttp://www.rsinc.com/ 

2http:/ /www.co rel.com/ 

3http://www .miktex . org/ 



Chapter 4 

Mammogram Pre-processing 

One of the first steps in CAD is the segmentation of the mammogram into background, breast 

tissue and pectoral muscle. This has the advantage of simplifying further processing of the image, 

by reducing the area of the image to be processed, and also provides a reference for the alignment 

of views when two views are being compared. 

Additionally, this study uses the arc method to define an annular region in one view of the 

breast based on a reference region selected in the other view of the same breast, to further reduce 

the area of the breast tissue to be processed. 

4.1 Detection of the Breast Edge 

4.1.1 Introduction 

Although many methods have been developed to detect the breast edge in mammograms, very 

few researchers use borders drawn by radiologists to evaluate the automated fits and even fewer 

quantitatively evaluate the results. A method using areas enclosed by iso-intensity contours is 

presented as an improvement to the basic grey-level thresholding algorithm. The effect of various 

pre-processing methods on the accuracy of automated borders is investigated. The algorithms de­

veloped are tested on 25 mammograms, for which automated borders are quantitatively compared 

to manual borders drawn by three radiologists. 

4.1.2 Overview of Breast Border Detection Methods 

Many methods have been used to detect the breast border in mammograms, including threshold­

ing, tracking, artificial neural networks and modelling (of background and breast border). These 

methods are briefly described. 

4.1.2.1 Thresholding 

For mammograms, thresholding usually involves selecting a single grey-level from an analysis 

of the grey-level histogram, to segment the mammogram into background and breast tissue. All 

pixels with grey-levels less than the threshold are marked as background and the rest as breast. 

Thresholding uses only the grey-level histogram and no spatial information is considered. There­

fore, the major shortcoming of thresholding is that there is often an overlap between the grey-levels 

of objects in the breast and the background. 

Blot & Zwiggelaar [200 I] described a global thresholding algorithm where a peak detection 

method was used to automatically determine the threshold from the grey-level histogram. An 

44 
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evaluation of the results was not described. 

Masek et al. [2000] described how to combine the outputs of two breast border detection 

algorithms to improve the results. The method, based on a minimum cross entropy thresholding 

algorithm, was tested on 161 pairs of images from the Mammographic Image Analysis Society! 

(MIAS) database. Although results using the multi-algorithm approach were described as being 

better than using any single algorithm, no quantitative evaluation of results was presented. 

4.1.2.2 Tracking 

Tracking the breast border involves implementing a tracking algorithm that marks a pixel as a 

border pixel if it satisfies certain criteria. 

Yin et al. [1991] used a 4-connectivity tracking algorithm to identify the border. The results 

were not evaluated. 

Bick et al. [1995] identified unexposed and direct-exposure regions in the mammogram and 

generated a border surrounding the valid breast border by combining grey-level histogram analy­

sis with morphologic filtering. A closed, 8-connected border was generated from this processed 

image. The algorithm was tested on 740 digitised mammograms. The two radiologists and two 

medical physicists, who visually evaluated the results, rated 97% of the results as acceptable for 

use in a CAD scheme. Problems with the remaining mammograms were attributed to digitisation 

artefacts or poor mammographic technique. The merit of this research was that the algorithm was 

tested on a large set of mammograms, but since the evaluation results were not quantified, this 

algorithm cannot be compared with any other breast border detection algorithm. 

Mendez et al. [1996] and Tahoces et al. [1995] described a semi-automatic method of detect­

ing the breast border, utilising the gradient of grey-levels in 3 user-selected regions. The algorithm 

used thresholding and pair-wise pixel differences in specific directions to detect the breast border. 

Two radiologists and one physicist evaluated results and were required to categorise the fits as 

follows: 

1. Automated border agreed exactly or almost exactly with a radiologist's estimated border 

2. Automated border did not agree exactly and small deviations may be observed 

3. Automated border clearly disagreed with a radiologist's border although it may be accept­

able for future purposes 

Of the 156 mammograms tested, 89% were classified as either category I or 2. 

Faizon & Sun [2000] described a method using thresholding and tracking to identify the 

breast border, but no discussion of the accuracy of the results was presented. 

Ferrari et al. [2001] used the chain-code method and cubic B3 splines to detect an approximate 

border. The true border was found by further examining a region around the points making up 

the approximate border. A total of 66 images from the miniMIAS database were analysed and 

I http://www.wiau.man.ac.uk/servicesIMIASIMIAScom.html 
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borders were accurately detected in 61 images. The results were evaluated according to a protocol 

established by an expert radiologist, but no details of the protocol or quantitative results were 

given. 

Mudigonda et al. [2001] used a fixed-width Gaussian kernel to smooth the mammogram and 

generated iso-intensity contours by thresholding this image at a grey-level close to zero. The 

contour enclosing the largest area was selected as the breast border. The method was tested on 56 

images and all borders were described as being "successfully detected". However, neither details 

of threshold selection nor evaluation of results was given. 

4.1.2.3 Artificial Neural Networks 

Suckling et al. [1995] used multiple, linked self-organising neural networks to segment the breast 

into four components: background, pectoral muscle, fibro glandular tissue and adipose tissue. This 

method had the advantage of simultaneously identifying the background and pectoral muscle, but 

no evaluation of the background segmentation results were given. 

4.1.2.4 Models of the Background 

Chandrasekhar & Attikiouzel [1997] used the Weierstrass approximation theorem as a basis for 

fitting a surface to the background [Lancaster & Salkauskas 1986]. The method was tested on 58 

images and results were evaluated by visual comparison with the original images using pseudo­

colour. The algorithm [Chandrasekhar & Attikiouze12000] was further tested on 28 images from 

the MIAS database, where all images gave clear breast-background segmentation. Results were 

again not evaluated by a radiologist. The fully automated method [Chandrasekhar & Attikiouze1 

2001] was tested on the full MIAS database. The results, evaluated by non-radiologists, indicated 

acceptable segmentation in 95% of the MIAS images, but results were not quantitatively evaluated. 

4.1.2.5 Models of the Breast Border 

Morton et al. [1996] and Goodsitt et al. [1998] reported on a breast border detection algorithm us­

ing a two-pass, model-guided edge-tracking algorithm which, when compared to manually traced 

out borders, yielded an average root-mean-square difference of 1.4 mm. The algorithm was tested 

on more than 1 000 mammograms and the border was accurately found in about 95% of the im­

ages. It was not stated whether radiologists traced out the manual borders. 

Ojala et al. [2001] used grey-level histogram thresholding and morphological filtering to 

obtain an initial estimate of the breast border. A smooth border was obtained by three methods: 

active contours, Fourier transforms and B-splines. The models were tested on two sets of 10 

images each and the results were compared to manually drawn borders. The error, ME, between 

the manual and automated borders was as: 
1 n ~-----------------

ME = ;; L V (xm; - xaY + (ym; - YaY 
i= 1 

(4-1) 
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where [xm,ym] and [Xa,Ya] were points on the manual and automated breast borders, respectively. 

n = 10 was the number of points used for the error calculation. The best overall results were 

obtained for the active-contour modelling method, which had an error of 1.8 mm±2.0 mm and 

2.6 mm± 1.4 mm for the first and second sets of images, respectively. It was not stated whether 

radiologists drew the manual borders. 

Wirth & Stapinski [2003] used active contours to identify the breast border, but no details of 

accuracy were given. 

4.1.3 Iso-intensity Breast Edge Detection 

Very few researchers have used borders drawn by radiologists to quantitatively evaluate the results 

of the automated borders. Of the two research articles [Goodsitt et al. 1998, Ojala et al. 2001] 

encountered where quantitative evaluation results were quoted, it was not specified whether or not 

radiologists drew the reference borders. This is important if the breast edge in a mammogram is 

not clear, as is the case of most of the images used in this study. 

4.1.3.1 Basis of the Method 

(a) (b) (c) 

Figure 4.1: Schematic of CC-view mammography showing the breast edge. (a) The breast during 
mammography with dark shaded area representing the dense interior. The light shaded area represents 
the generally fatty, outer edges of the breast. X-rays along line D image the breast edge. (b) The 
mammogram shows that the grey-level in the image is proportional to x-ray attenuation in the breast. 
There is very little attenuation of the x-rays along arc D. (c) A surface plot of a mammogram with 
grey-levels represented as height. The breast edge can be clearly seen as the transition between the 
background and the breast. [Adapted from [Highnam et al. 1998a]] 

The breast and background form the two largest contiguous regions on a mammogram, with 

the background dominating at the low grey-levels. Highnam et al. [1998a] (Figure 4.1) provides 

a good description of the breast edge based on how the breast is compressed during mammogra­

phy. The portion of the breast between the compression plates is of equal thickness, but some of 

the breast bulges out towards the edges. This bulge is mostly composed of fat, except near the 

nipple, and does not form a straight vertical edge. Figure 4.1 shows a schematic of this for a CC 

mammogram. An x-ray along line D (Figure 4.1(a» experiences very little attenuation, but the 

attenuation should be uniform and arc D (Figure 4.1(b» should be a smooth iso-intensity curve, 

representing the breast edge with respect to the x -ray source [Highnam et al. 1998a]. 
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As the x-ray attenuation increases, the grey-levels in the mammogram increase. Therefore the 

areas of regions enclosed by iso-intensity contours would decrease as grey-level increases. This is 

the main idea behind the breast border detection method presented here. The optimal grey-level 

threshold is selected by analysing the area enclosed by iso-intensity contours at various grey-levels. 

While this method may be categorised as thresholding, spatial information about structures in the 

mammogram is taken into account, thereby overcoming some of the disadvantages of thresholding 

discussed in §4.1.2.1. 

4.1.3.2 Iso-Intensity Contouring 

This novel method of selecting the optimal grey-level threshold for the breast border is based on 

the fact that there is often a sharp transition in grey-levels between the background and the breast 

in a mammogram. If this transition grey-level, go, can be identified, then a contour at go will yield 

the breast border. go is determined by analysing the areas enclosed by iso-intensity contours at 

various grey-levels (Figure 4.2). The areas enclosed by the contours should decrease sharply at 

the breast edge. 

(b) 

Figure 4.2: (a) Examples of iso-intensity contours at a single grey-level indicated by the white solid 
lines, including many small contours in the background. (b) Contours drawn at various grey-levels 
(g=5, ... , 250) have different enclosed areas. For each image, the contour with the largest area at the 
indicated grey-level is shown on contrast-enhanced images. 

4.1.3.3 Analysis of Area vs. Grey-Level 

A set of closed iso-intensity contours (Figure 4.2(a» is generated at a single grey-level. There 

is a set of contours because there are many non-homogeneous regions in the background and in 

the interior of the breast that correspond to any particular grey-level. The aim of this algorithm is 
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Figure 4.3: The plot shows the largest area enclosed by a contour as a function of that contour's 
grey-level. The contours were generated at grey-level increments of 2. Two straight lines (dotted, 
A, and dashed, B) are fitted to specific straight-line regions of the curve. The intersection of A and 
B (indicated by a 0) determines go, the grey-level threshold corresponding to the breast edge. The 
grey-level values were incremented in steps of2. 

to identify the breast edge by examining the change in area enclosed by a contour as grey-level 

changes, only the contours with the largest areas are selected from the set of contours. A typical 

graph of the areas enclosed by iso-intensity contours, plotted as a function of the contour grey­

level, is shown in Figure 4.3. The transition grey-level, go , is chosen as the point at which the area 

stops its sharp decrease and is determined by calculating the intersection (0 in Figure 4.3) of two 

straight lines (A,B) that are automatically fitted to portions of area curve, as follows: 

1. Determine the derivative of the area with respect to grey level value. Identify the grey-level 

that corresponds to the derivative of the area with the steepest slope (* in Figure 4.3). 

2. A straight line (dotted line A in Figure 4.3) is fitted to a region on either side of *. The 

method used to select the optimal number of data points used for this fit is described in 

§4.1.3.4. A minimum of three data points is used. 

3. A second straight line (dashed line B in Figure 4.3) is fitted to the approximately horizontal 

region immediately following the region used to fit line A. The number of data points used 

for this fit is described in §4.1.3.4. 

The derivative was determined by using IDL's DERIV function, which implements a 3-point 

Langrangian interpolation to determine the derivative numerically. 

The number of points used for the fitting of the two straight lines was automatically deter­

mined for each image, because the characteristics of the step in the plot of area vs. grey-level 

varied from image to image. 
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4.1.3.4 Optimising the Number of Data Points 

Often data follows some general behaviour (e.g. linear) for a certain amount of data points and 

then deviates (e.g. becomes non-linear). It is therefore sometimes desirable to fit the model to that 

small subset of the data which best describes the model. A novel method is presented that selects a 

subset of data points to be used for the fit. The method assumes that the data points are ordered in a 

manner such that the subset is located at the beginning or end of the data. Figure 4.4 illustrates an 

example of fitting a linear model to an arbitrary set of data. Start with a minimum number of data 

points (4 in the example), perform a least squares fit which yields an £2 goodness-of-fit statistic. 

Increase the number of data points and determine a value of £2 for each fit. Normalise the £2 -values 

by dividing by the number of data points used for the fit. The minimum of the normalised £2 , as a 

function of the number of data points, yields the optimal number of data points (5 in the example) 

that should be used to perform the fit. The method can be applied to any model or data. 
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Figure 4.4: Example of fitting a linear model (using least-squares minimisation) to a set of arbitrary 
data points to illustrate method used to optimise the number of data points used for a fit. The solid line 
represents the best fit with 5 points, the dotted line represents the best fit with 7 points and the dashed 
line represents the best fit with 9 points. 

4.1.3.5 Pre-processing Methods 

Pre-processing is necessary to remove the effects of noise and artefacts that might adversely affect 

the automatic border detection algorithm. Popular pre-processing methods include convolution or 

smoothing, median filtering and morphological operators. However, the choice of pre-processing 

method can also affect the accuracy of the automated breast borders. For the set ofmarnmograms 

used in this study, preliminary investigations showed that convolution (or smoothing) with a top 

hat or Lorentzian kernel improved the performance of the automatic border detection algorithm, 

but results were dependant on the smoothing widths used. Mammograms with clear breast edges 

required less smoothing than those with grainy breast edges. In the latter case, the smoothing 
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served to merge the grey-levels of the breast edge pixels into a contiguous region as required for 

the iso-intensity contour analysis. 

A more detailed investigation was, therefore, carried out into the effects of varying the widths 

of the smoothing kernels, according to the clarity of the breast edge, on accuracy of the automated 

iso-intensity contour borders. 

4.1.3.6 Determination of Widths of Smoothing Kernels 

The defining characteristic of a smoothing kernel is its width. Since the breast edges ofthe mam­

mograms used in this study varied from very clear to very grainy, the concept of clarity of the 

breast edge was used to define the width of the smoothing kernel. This was based on the assump­

tion that a profile ofthe breast edge is adequately modelled by the tail of a Lorentzian, Lprojile as 

defined in Equation 4-2, with a2, the width ofthe Lorentzian, quantifying the clarity of the breast 

edge. a2 should be small for a clear breast edge and large for a grainy breast edge. 

ao 
Lprojile = 2 + a3 

1+(~) 
(4-2) 

The parameters for Lprojile were determined by fitting Lprojile to a profile ofthe breast edge, over 

an optimised number of pixels as described in §4.1.3.4. The first point for the fit is determined 

manually. An example of a breast edge profile with Lprojile overlaid is shown in Figure 4.5. The 

Lorentzian has a better fit for the optimised number of pixels (Figure 4.5(b)) than the fixed number 

of pixels (Figure 4.5(a)). 

The profile of the breast edge is selected as the average of the 21 rows centred on that row 

at half the image height. The average of 21 rows were used, as this corresponded to approxi­

mately 0.5 cm and this was assumed to be a sufficient distance for the edge of the breast to be 

approximated by a straight line. 
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Figure 4.5: Breast ~rofile (dotted) with a Lorentzian Lprojile , overlaid (solid). (a) Lprojile is fitted to 
a fixed number of pIxels. (b) Lprojile is fitted to an optimised number of pixels. The breast profile is 
selected as the average of 21 rows centred on that row at half the image height. 
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4.1.3.7 Details of the Pre-processing Methods 

The width of the Lorentzian, Lprojile, (a2 in Equation 4-2) was then used to define two smoothing 

kernels, a top-hat kernel (Equation 4-3) and a Lorentzian kernel (Equation 4-2), in one and two 

dimensions. The one-dimensional kernels were applied in the horizontal direction only, and the 

two-dimensional kernels were applied in the horizontal and vertical directions. The various pre­

processing methods are detailed in Table 4.1. 

To = { 1 if Ixl ~ ¥ for width=cr 
o otherwise 

(4-3) 

Table 4.1: Pre-processing methods, using two smoothing kernels, for detection of the breast edge. 
Kernel widths are calculated from a Lorentzian, Lprojile, fitted to a profile of the breast edge. In all 
cases, d = 1 refers to the kernel applied to the horizontal image plane only, while d = 2 refers to a 
two-dimensional kernel applied to the image. 

I Method I Kernel I Description 

Td,OI top-hat T with <J( = a2 . 

Td,02 top-hat T with <J2 = 4a2. 

Ld,OI Lorentzian L with <J( = a2 
Ld 0, Lorentzian L with <J2 = :}a2. 

4.1.3.8 The Algorithm 

The algorithm to determine the breast edge is described in Algorithm 4.1. 

Algorithm 4.1: Determination of breast edge 

Data: Mammogram, I 

Result: Mask, P, corresponding to breast tissue 

1. Orient mammogram such such that the breast points to the right. 

This is done manually. 

2. Take the average of 21 rows centred on the row at half the mammogram height. 

This is the breast profile. 

3. Fit a Lorentzian, Lprojile , to this breast profile to determine the width of the top-hat, T (a in 

Equation 4-3), 

and the Lorentzian, L, smoothing kernels. 

4. Pre-process image using these smoothing kernels to enhance the breast edge. 

5. Determine the largest area enclosed by the various contours, at each grey-level. 

6. Fit straight lines to the area vs. grey-level data (Figure 4.3) and determine go. 

7. Contour image at go and extract contour with largest area to create a binary mask. 

8. Post process mask (according to Masek et al. [2000]) to remove non-breast regions. 

The result is a mask, P, corresponding to the breast tissue. 

4.1.3.9 Materials 

The algorithm, applying the various pre-processing methods, was tested on 25 mammograms (13 

CC and 12 MLO), obtained from Addington Hospital (Durban, South Africa). The radiographs, 
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were digitised at a bit-depth of 14 bits and a spatial resolution of 0.042 mm per pixel on an Epson 

Expression 1640XL scanner. The images were resampled to a bit-depth of 8 bits and a spatial 

resolution of 0.254 mm per pixel for analysis. The resulting images were approximately 800 

pixels x 1200 pixels with a file size of 1.8Mb. 

Automated borders were compared with borders drawn independently by three radiologists 

in their daily working environment. The borders were drawn on a transparent sheet placed over 

the mammogram. The radiologists were allowed to use all methods and equipment used during 

routine mammographic diagnosis to identify the breast border. The radiologists' borders were 

digitised and manually registered with the digitised mammograms. The accuracy of the automated 

borders was quantified by calculating the average root-mean-square difference (Xrms) between the 

automated and manual borders for each mammogram using: 

Xrms = (4-4) 

with n being the number of points on the border used for the evaluation. For this study, 50 evenly 

spaced points along the border were used. r is the radial distance from the origin, for the automated 

(a) and manual (m) borders, at specific angles 0, as shown in Figure 4.6. The origin of the polar co­

ordinate system was selected as [0,Ydim/2] where Ydim is the height ofthe image of the breast. The 

start and ends points for the evaluation were determined by the detail available in the radiologist's 

borders. In the cases of the poor quality images, the borders did not extend to the edge of the 

image. Therefore, 1800 was only covered if the radiologist data was available. If the data was not 

available, then the maximum angular extent was selected. 

o 

-- automated 

Figure 4.6: The polar co-ordinate system used to evaluate the accuracy of the automated borders 
(solid) compared to borders drawn by radiologists (dashed). r is the radial distance from the origin, for 
the automated (a) and manual (m) borders, at specific angles 9. The origin was selected as [O ,Ydim/2] 
where Ydim is the image height. 

The 25 images were divided into two sets: Set 1 contained 10 images with clear breast edges 

(clearly seen) and Set 2 contained 15 images with poor breast edges (grainy, poorly defined as a 

result of poor contrast between tissue and background). The allocation of images to Sets 1 and 2 

was based on an analysis of the variation between the manual borders of the three radiologists for 

each image. A large variation in manual borders was taken to indicate an indistinct breast edge and 
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manual borders that varied only slightly were taken to indicate a clear breast edge. The average 

X 'x ) for each method was determined for Set 1 and Set 2, for each of the radiologists. rms ~J..rms 

A poorly defined breast edge implies poor contrast between the breast tissue and the back-

ground signal. The following factors affect contrast, and therefore the clarity of the breast edge 

(Rae 2005, pers. comm.2): 

1. Patient related factors 

(a) The patient is very thin, but has relatively dense breasts, with gradual tapering to skin. 

(b) The breast has very dense central objects or breast tissue overlying automatic exposure 

control thus causing overexposure of the skin edge. 

(c) The patient has very thick breasts thus causing overexposure of the skin edge. 

2. Technical factors 

(a) Any poor setting on the mammography machine causing overexposure 

(b) Positional, with a portion of the breast edge off the image 

(c) Poor setting of the processor with overexposure 

3. Faulty equipment 

(a) Degeneration of old film 

(b) Poor processing offilm 

(c) Increased background fog on film 

4.1.4 Results and Discussion 

4.1.4.1 Results 

The algorithm was completely automatic and running times depended on the pre-processing method 

used. Running times varied from 20s per image (for a one-dimensional top-hat kernel) to 500s per 

image (for a two-dimensional Lorentzian kernel). Results are presented in Figure 4.7 and the 

evaluation results for the 3 best pre-processing methods applied to Set 1 and Set 2 can be seen in 

Table 4.2. 

Figure 4.7 shows that automated borders for Set 1 were generally more accurate for pre­

processing with a top-hat kernel than with a Lorentzian kernel, although the most accurate result 

for Set 1 of 3.0 mm±0.3 mm was obtained by using a Lorentzian kernel (for method Ll ,cr2). 

Also for Set 1, the one-dimensional kernels generally yielded more accurate results than the two­

dimensional kernels. The results for the two-dimensional Lorentzian kernel yielded results as 

accurate as those without pre-processing because the Lorentzian kernel most likely smoothed the 

edge more than was required. 

Figure 4.7 shows that automated borders for Set 2 were generally more accurate for pre­

processing with a Lorentzian kernel than a top-hat kernel. The most accurate result for Set 2 of 

2Dr. W.I.D. Rae, Department of Medical Physics, Addington Hospital, P. O. Box 977, Durban, 4000 



CHAPTER 4. MAMMOGRAM PRE-PROCESSING 55 

Table 4.2: Evaluation results of the 3 best pre-processing methods applied to Set 1 containing 10 
images with clear breast edges and Set 2 containing 15 im~ges .with indistinct breast edges. The 
average root-mean-square differences are shown for each radIOlogist (A,B,C) and the average for the 
three radiologists. 

,....... 
E 
E 

10 

8 

'-" 6 
E 

>< 
(l) 

8' 4 .... 
(l) 

~ 
2 

Pre-processing 
Radiologists Average I 

A(mm) B(mm) C(mm) (mm) J 
Set 1 

None 5.5± 1.5 4.9±1.5 4.9± 1.4 5.l ± 0.8 
L1 ,02 3.2± 0.6 2.9± 0.5 2.8± 0.5 3.0± 0.3 
T2,01 3.3± 0.6 2.9± 0.5 2.9± 0.5 3.l±0.3 
T202 3.7± 0.7 3.2± 0.6 3.0± 0.5 3.3± 0.4 

Set 2 
None 7.9±1.5 8.3±1.6 7.6±1.5 7.9± 0.9 
L2,02 5.l± 0.9 5.0± 0.9 4.4± 0.8 4.8± 0.5 
L2,01 5.2± 1 5.l ± 0.9 4.9± 0.9 5.0± 0.5 
L101 6.6± 1.1 6.8± 1.2 6.1± 1 6.5± 0.6 

-----1--1----------- --------
f. ~ .~. I_.~ . ~ . ~ . ~ - .~ .. ~. ~ ~ . ~ . -f .~. ~ . 1 ~ .~.-- ~ . ~ . ~ . ~. -
1 ...... 

1 
...... 

1 
.... ......... ....... ... ... .. .... .. ........ . l ...... l .. .... . 

~ ~ ~ , 
Iset 1 * I 
Set 2 <> 

OL----L __ ~~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ -L ____ L-__ ~ 

None T1"
1 T1" 2 T2" 1 T2" 2 L1"1 L1" 2 

Pre-processing Method 

Figure 4.7: Average Xrms for different pre-processing methods for smoothing with a top-hat kernel (T) 
and a Lorentzian kernel (L). The horizontal dotted and dashed lines indicate the extent of the average 
Xrms with no pre-processing. 

4.8 mm±O.5 mm was obtained for method L2,cr2. For Set 2, there was no clear dependence on the 

dimensionality of the kernel on the accuracy of the results. 

4.1.4.2 Discussion 

Using the areas enclosed by iso-intensity contours to select a threshold aims to improve upon 

those thresholding methods that only use the grey-level histogram to threshold a mammogram for 

purposes of segmentation. The advantages of the iso-intensity contour method are that it is simple, 

requires no complex models of the breast or background and takes very little time to compute. 

The method works acceptably well on mammograms with clear breast edges, but performs less 

successfully on mammograms with unclear breast edges. The effects of different smoothing pre­

processing methods were investigated to improve the results for images with unclear borders. Two 

smoothing kernels (top-hat and Lorentzian) were used with the smoothing widths determined by 
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fitting a Lorentzian to a profile of the breast edge. 

The automated borders with pre-processing were at worse, as accurate as those without 

pre-processing, but were often more accurate. Pre-processing with a Lorentzian smoothing ker­

nel yielded the most accurate borders. The best results for Set 1, containing clear borders, of 

3.0 mm±0.3 mm was obtained for method Ll ,cr2 ' The best results for Set 2 of 4.8 mm±0.5 mm 

was obtained for method L2,cr2' If the results are averaged over both image sets, method L2,cr2 

performs best at 4.8 mm±0.3 mm. 

Results were more accurate for pre-processing with a Lorentzian kernel because the spread 

in the breast edge is more similar to the shape of the Lorentzian than to the shape of the top-hat 

kernel. 

Examples of the fits can be seen in Figure 4.8. There is significant variation between the 

radiologists' borders with unclear breast edges, while those for clear breast edges are quite similar. 

Automated borders are shown as solid lines. 

(4) {I} 

Figure 4.8: Examples of borders. Automated borders are shown as solid lines while those of the 
3 radiologists are shown as dotted, dashed and dotted-dashed lines. The mammograms have been 
histogram equalised for display purposes. (a-c) Examples of3 radiologists' borders for mammograms 
with clear breast edges. (d-f) Examples of 3 radiologists' borders for mammograms with unclear 
breast edges. There is significant variation between the radiologists' borders with unclear breast edges, 
while those for clear breast edges are quite similar. 

A significant factor affecting the accuracy of automated borders is the quality of the ground 

truth data, which can strongly affect the evaluation results. This is most obvious when looking at 

radiologists' borders for Sets 1 and 2. There are minor variations between the radiologists' borders 

for clear breast edges (Figure 4.8(a-c» and significant variations for unclear breast edges (Figure 

4.8(d-t). This probably means that the error bars for the results of Set 2 should be adjusted to 

take into account the variability in the radiologists' borders. This might bring these results into 

line with those for image Set 1. 

Another factor, which might affect the accuracy of the automated borders, is the assumption 

that the clarity of the breast edge is uniform around the entire breast. The clarity of the breast edge 

is determined at one point, selected as the average of21 breast edge profiles centred on that row at 
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half the image height. Therefore, any variation in the clarity of the breast edge profile around the 

breast would affect the overall accuracy of the automated borders, since X rms is determined over 

most of the breast. 

The best results (3.0 mm±0.3 mm) for mammograms with clear breast edges can only mean­

ingfully be compared to the algorithms of Goodsitt et al. [1998] and Ojala et al. [2001] by testing 

the iso-intensity border algorithm on the identical data sets used by Ojala et al. [2001] and Goodsitt 

et al. [1998]. 

4.2 Detection of the Pectoral Muscle 
If a radiographer follows the accepted guidelines for positioning the breast during mammogra­

phy, then the pectoral muscle should be seen in the mediolateral and mediolateral-oblique views. 

Since the muscle contains no features of interest to this study, it was removed to reduce the re­

gion of computation. The edge of the pectoral muscle can be approximated by a straight-line and 

a straight-line detection method based on the Hough transform (Figure 4.9) was used to iden­

tify the edge of the pectoral muscle. The algorithm is based on that described by Karssemeijer 

[1998], where full details can be obtained. The algorithm is semi-automatic and is summarised in 

Algorithm 4.2. Examples of the various steps of the algorithm are shown in Figure 4.10. 

x p 
H(p',a') 

y 
Cartesian Space Hough Space 

Figure 4.9: The Hough transform is used as a straight-line detector. Each point (x' ,y') on a straight 
line oriented at an angle 9', placed a distance p' away from the origin, in Cartesian space, generates a 
parametric curve in Hough space, corresponding to p = x' cos 9 + y' sin 9. The set of parametric curves 
intersects at the point (p' ,9') which corresponds to the location of the straight line in Cartesian space. 

The mammogram is oriented such that the breast points to the right. The breast border mask 

is applied to the image to remove the background of the mammogram. The breast region to the 

upper left of the centroid of the breast is used as a reduced search area for the detection of the 

pectoral muscle. The Hough transform is applied to a gradient image of the reduced search region. 

The set of straight lines in the original image that correspond to maxima in Hough space are 

determined. The line that best corresponds to the edge of the pectoral muscle is manually selected 

and is used to generate a mask that excludes the pectoral muscle from the mammogram. 
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Figure 4.10: Example of implementation of detection of pectoral muscle edge. (a) MLO mammogram 
with pectoral muscle in top left comer. (b) Breast tissue mask excluding background. (c) Mammogram 
with breast tissue mask applied. (d) Hough transform of mammogram. (e) 5 highest peaks in the 
Hough transform. Heights relative to the highest peak are shown above each point. (1) Set of possible 
lines that correspond to pectoral muscle edge. (g) Set of possible lines that correspond to pectoral 
muscle edge overlaid on mammogram. (h) Mask with pectoral muscle removed. (i) Mammogram 
with pectoral muscle and background removed. 

Algorithm 4.2: Determination of pectoral muscle edge 

Data: MLO mammogram, I 

Result: Mask, P, corresponding to breast tissue 

1. Ensure that mammogram is oriented such that the breast points to the right. 

2. Apply breast border mask to I 

3. Find centroid of breast tissue 

4. Find region above line of gradient 1.5 passing through centroid of breast 

5. Find gradient image using, e.g. Sobel operator 

6. Use amplitudes of gradient image as weighting factors to normalise gradient image 

7. Find Hough transform, H, of normalised gradient image 

8. Find maxima in moving sampling windows in Hough space, H. 

9. Determine set of lines on mammogram that correspond to identified peaks in H. 

10. Manually select the line that (visually) best corresponds to pectoral muscle edge, from the set of 

lines. 

11. Use line to generate a mask of breast tissue, P, that excludes pectoral muscle. 
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4.3 Application of the Arc Method to Refine the Search Region 

The geometric method developed by Paquerault et al. [2002], based on the relationship between 

the arc distances in the CC and MLO views, was used to define an annular search region in the 

test image, based on a reference region in the reference image. The positions of the nipple in 

both standard mammographic views and the centroid of the selected ROI in one view were used 

to extract that portion of the breast in the other view where the ROI could possibly lie. 

4.3.1 Paquerault Geometric Model 

Paquerault et al. [2002] developed the geometric model to reduce the search region (for false­

positive reduction) on 177 objects identified on the CC and MLO views by a radiologist. The 

locations of the nipples on both views were also marked. The polar co-ordinate system detailed 

in Figure 4.11 was determined for each mammogram. The location of each object in polar co­

ordinates was determined for each mammographic view. An analysis of the correlation of the 

radial and angular components in each view showed that there was a high linear correlation be­

tween the radial components, but poor correlation for the angular components. The 177 objects 

were then used to determine the parameters for a linear model to predict the radial position of an 

object in one view based on its radial location in another view. The error associated with the deter­

mined radial value resulted in an annular search region defined by r ± Ilr. r is the distance of the 

object from the nipple in one view and /).r the error determined from the training set. Paquerault 

et al. fixed Ilr at 80 pixels, which reduced the search region in large breasts, but not to the same 

degree for small breasts. It was suggested that /).r be chosen as a percentage of the breast area. 

o 

cc MLO 

Figure 4.11: Geometry used by Paquerault et al. [2002] to study the relationship between the arc 
distances in the CC and MLO views. Drawing concentric circles to intersect with the breast border 
with the nipple as origin, determined the polar co-ordinate system used for the analysis . The locus of 
the midpoints of the concentric arcs with the nipple as origin determined the co-ordinate system. The 
location of each object in polar co-ordinates was determined for each mammographic view. 

4.3.2 Applicability of Paquerault Geometric Model to this Study 

To test the applicability of the Paquerault model to the mammograms used in this project, the 

position of the nipples were identified and the centroids of the ROIs were determined from the 
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borders drawn by the radiologist. The arc distances (distance from nipple to ROI centroid) were 

determined in the CC and MLO views. These distances are plotted in Figure 4.12 to investigate 

whether the correlation between the arc distances in the CC and MLO views is similar to the 

correlation obtained by Paquerault et al. 

Two linear models were fitted to data to determine correlation: the first model had a Y­

intercept of 0 (dotted line) and the second had a non-zero y-intercept ( solid line). The correlation 

coefficients for these models are 0.93 and 0.94 respectively, which compare well to the value of 

0.94 obtained by Paquerault et al. It was therefore concluded that the Paquerault geometric model 

could be applied to the mammograms used in this study, to reduce the region searched for a match. 
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Figure 4.12: Justification of use of Paquerault model for the mammograms in this study. The corre­
lation coefficient, p, between the distances from nipples to ROI centroids in the CC and MLO views 
was determined to investigate the applicability of the Paquerault geometric model to the set of mam­
mograms used in this study. p compares well to the 0.94 obtained by Paquerault et al. [2002]. Data 
points correspond to mammograms diagnosed as: benign (B), indeterminate (I), malignant (M) and 
normal (N). 

4.3.3 Geometric Model used in this Study 

The Paquerault model was modified slightly for this study. Since the correlation coefficient was 

close to 1, a one-to-one correspondence was assumed between the arc distances in the CC and 

MLO views. Any error in determining the radial distance was taken into account with a variable 

tv, that was extracted from the size of the ROI in the reference view. This meant that the area 

of the annular region would depend on the size of the ROI selected. The algorithm is described 

in Algorithm 4.3 and in Figure 4.13. In summary, given the position of the nipple in the CC 

view, [nxcc ,nycc], the position of the nipple in the MLO view, [nxMw ,nYMw], the position of the 

centroid of the ROI, [xm,Ym] and the maximum extent of the ROI, tv, in the CC view, draw two 

arcs (of radii r + 2~r and r - 2tv) in the MLO-view, using the nipple as origin, with the breast 
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Algorithm 4.3: Definition of annular region to reduce area of computation. The algorithm is described 
for a known ROI in the CC-view, but can be applied for a known ROI in any view. 

Data: MLO mammogram, I and breast border mask, B 

Result: Mask, P, corresponding to breast tissue 

1. Find the positions of the nipple in the MLO [nxMw,nYMw], and CC views, [nxcc,nycc]. 

2. Find the position of the centroid of the ROI in the CC-view, [xm,Ym] 

3. Determine the distance, r, from the nipple to the centroid of the ROI, in the CC-view. 

4. Determine the maximum extent of the ROI from the centroid, fu-, in the CC-view. 

5. In the MLO-view, define the annular search region by using the nipple as centre and drawing two 

arcs of radii r + 2flr and r - 2flr, bounded by the breast border. 

6. Generate a mask for the MLO-view, based on the region enclosed by the arcs. 

61 

border bounding each. The region enclosed between the arcs and the breast border defines the 

annular, reduced search region that contains the ROI in the MLO-view. 

cc MLO 

Figure 4.13: Geometry of the arc method used to reduce the search region in the test image. The 
position of the nipple in the CC view, [nxcc,nycc], the position of the nipple in the MLO view, 
[nxMw,nYMw] , the position of the centroid of the ROI, [xm,Ym] and the maximum extent of the ROI, 
flr, in the CC view are required to locate the ROI in the MLO view. 

4.4 Overall Results 

An example of the overall result of pre-processing a mammogram is shown in Figure 4.14 for a 

mammogram of a right breast. The final processed image contains significantly less breast tissue 

that has to be searched for the ROI than the original unprocessed test image. 

4.5 Summary 

A novel, simple method of finding the breast edge using areas enclosed by iso-intensity contours 

was presented that improves on traditional thresholding methods for segmentation, by incorporat­

ing spatial information into the segmentation. The method does not rely on models of the breast or 

background and borders. Results were evaluated by comparison to breast borders drawn by three 

radiologists in their normal working environment. The effect of various pre-processing methods 

on the accuracy of the automated borders was investigated. Results were generally good for those 
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Figure 4.14: Example of the result of applying the pre-processing methods to a mammogram. (a) 
Reference image. (b) Test image. (c) Result of pre-processing test image. (d) Breast tissue mask 
excluding background. (e) Mask excluding pectoral muscle. (t) Mask of reduced search region. All 
processing is performed with the breast pointing to the right. 

images containing clear breast edges. It was found that smoothing with a Lorentzian kernel as a 

pre-processing method, with the width automatically determined for each mammogram worked 

acceptably well for those with clear breast edges. The best results for mammograms with clear 

breast edges was 3.0 mm±0.3 mm. 

The semi-automatic algorithm used to remove the pectoral muscle was based on the work 

of Karssemeijer [1998]. The arc method was used to define an annular, reduced search region, 

by using the position of the ROI in one standard mammographic view and the positions of the 

nipple in both views, following the work ofPaquerault et al. [2002]. The overall result of the three 

pre-processing steps is a significantly reduced region in the test image, which is searched for a 

match. 



Chapter 5 

Quantification of Image Texture 

The ability to quantify the characteristics of image texture forms the foundation of this project. 

The concept of texture and different methods of quantifying texture are discussed in this chapter. 

5.1 What is texture? 

An important characteristic of images is texture and while texture has no universally accepted 

definition, it is common to find words like smooth, fine , grainy and coarse used to describe it 

[Gonzalez & Wintz 1987, Sonka et al. 1999]. Image texture can also be described as the variation 

in grey-level from pixel to pixel or region to region. If the grey-level is interpreted as an elevation 

on a surface then texture is a measurement of the surface properties [Haralick 1979, Russ 1995, 

Sonka et al. 1999]. Some examples of different textures and the corresponding texture viewed as 

a surface are shown in Figure 5.1. 

(0) (b) (c) (d) (e) 

Figure 5.1: Examples of different types of image texture. Texture has no universal definition, but 
words like smooth, fine, grainy and coarse are used to describe it. In an image, if the grey-levels are 
interpreted as elevations on a surface then texture is a measurement of the surface properties. The 
texture images, shown in the top row, are represented as surfaces in the bottom row, to demonstrate 
the variation in surface properties with image texture 

5.2 Texture Quantification Methods 

In order to compare textures, there must be some method of quantifying textural characteristics, 

i.e. extracting how the grey-levels in an image are arranged, relative to each other. Many methods 

have been developed to quantify texture and some of these are briefly discussed. There are three 

categories of methods to quantify texture in an image [Gonzalez & Wintz 1987]: 

1. statistical methods that only examine the distributions of the grey-levels without taking spa­

tial information into account, e.g. grey-level histograms; 

2. structural methods where locations of pixels and grey-levels are taken into account, e.g. 

grey-level co-occurrence matrices; and 

63 
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3. spectral methods, e.g. the autocorrelation function. 

The results of the above methods are often an estimate of a probability density junction, 

which incorporates information about the frequency of the grey-levels, pixel location and scale 

information. These probability density functions generally require large matrices and are memory­

intensive during computation. Therefore, statistical measures are calculated from the probability 

density functions to reduce computation and memory requirements. For example, if the probability 

density function is a histogram then the mean, variance, skewness and kurtosis extracted from 

the histogram are examples of the statistical measures that summarise the general shape of the 

histogram. 

5.3 Probability Density Functions 

LetX = [xo , . .. ,Xn- d be a discrete random variable with a finite number of states, n. X is governed 

by a discrete probability distribution, that is an assignment of a probability, P(Xi) , to each state, Xi 

(for i = O, I, .. . ,n -1), denoted by: 

P(X) = [P(xo) ,p(Xd ,p(X2)" " ,P(Xn- I)] (5-1) 

P(X) is referred to as the probability density function. 

5.4 Statistical Methods of Texture Quantification 

Statistical approaches to quantifying texture are based on probability density functions of only the 

grey-levels in the image [Gonzalez & Wintz 1987]. 

5.4.1 Grey-level Histograms 

The most common probability density function used for statistical textural description is the grey­

level histogram. For a random variable X = [XO,XI , . .. ,xq-d with an origin, Xo, and a bin width, 

h, define the bins of the histogram to be the intervals [Xo+mh,xo+(m+1)h)] for mE Z. If there are 

n = max (X );min (X) bins, then the histogram, Ph (X) is defined as [Silverman 1986]: 

with (5-2) 

(X.) = number of entries in same bin as Xi . . . _ (5-3) 
Ph I nh foreachx,Ill X, I-O, ... ,q - l 

The bin width controls the amount of smoothing inherent in the histogram. 

While histograms are computationally simple, they are not ideal for estimating probability 

densities because the reSUlting function is not continuous. The discontinuous nature of histograms 

causes problems when derivatives are required. There are other methods of estimating probability 

density functions, which do not suffer from the problems associated with histograms, but these 

methods are more computationally intensive than histograms. Some examples are [Silverman 

1986]: 
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1. Naive estimators using Parzen windows 

2. Kernel estimator 

3. k-nearest neighbours 

4. Adaptive kernel estimator 

5.5 Structural Methods of Quantifying Texture 
Statistical methods of quantifying texture are limited by the fact that spatial information about the 

locations of the pixels is not taken into account. Structural methods of texture quantification take 

spatial information into account. 

5.5.1 Grey-Level Co-occurrence Matrices (GLCMs) 

A popular structural method of quantifying texture is to use grey-level co-occurrence matrices 

(GLCMs), which has the advantage of including information about the relative positions of pixels 

in an image [Haralick et al. 1973, Gonzalez & Wintz 1987]. GLCMs are also known as spatial 

grey-level dependence (SGLD) matrices and incorporate information about the distributions of the 

locations of pixels and their grey-levels. 

Consider an image, I, of bit-depth, I bits and of dimensions M x N. Let I = 2lbi/s represent the 

number of grey-levels. Also letl[j,k] = m andI[j - dsine,k+dcose] = n, with m,n E [0, ... ,1] . 

Then the element ofthe GLCM, Ga,d[m , n], for two pixels of grey-levels m and n, located a distance 

d apart in the direction e, can be defined as: 

where 

M- \N-\ 

Ga,d[m ,n] = L L o(I[j ,k] =m,![j-dsine,k+dcose] =n) 
) =0 k=O 

o(x ) = { 1 ifx=y 
,Y 0 if x # y 

A schematic of the calculation of the GLCM is shown in Figure 5.2. 

Image GLCM at S,d 

N-1[LJ I I [ ::0 1-10 ::J I I [ ::0 
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(5-4) 

(5-5) 

Figure 5.2: Schematic of GLCM (Ge ,d) calculation, at a distance d in the direction e, for an M x N 
image, I, with I grey-levels. IU,kJ = m and IU - dsine ,k+dcoseJ = n, with m,n E [O , . .. ,IJ 

Ga,d[m ,n] is an estimate of the probability that a pair of pixels at an angle e relative to each 

other and d pixels apart, will have values [m , n]. Ge,d is therefore dependent on the location and 
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grey-level of the pixels and texture measures based on Ge,d will have some information relating to 

the relative positions of the pixels [Gonzalez & Wintz 1987]. 

For digital images, define Gd as the Ge,d over all angles, such that: 

However, 

Gl80o,d = G~o,d 

G22So ,d = G~oo ,d 

G270° ,d = GIso ,d 

G31so,d = GfW ,d 

Now, Equation 5-6 can be simplified to: 

- 1 T T GT G GT ) Gd = g(Goo,d+Goo,d+GW ,d+G4so,d+G90o,d+ 90o,d+ lW,d+ lW,d 

= ~ [(Goo,d +G4so,d + G90o,d+G1W ,d) + (Goo,d +G4so,d + G90o,d+ G1W,d)T] 

which shows that Gd is a symmetric matrix of size I x I with non-negative elements. 

5.5.1.1 GLeM Algorithm 

Ge,d[m,n] = Ge,d[n,m] 

Ge,d[m,n] ~ 0 

(5-7) 

(5-8) 

The calculation of the GLCM is based on Equation 5-7 with e E [0,45°, 90°, 135°] and drestricted 

to integer multiples of the pixel separation [Chan et al. 1995] . The algorithm is detailed in Algo­

rithm 5.1. The algorithm uses two IDL functions (SHIFT and HISL2D explained in Appendix D) 

and is explained schematically in Figure 5.3. Since the GLCM examines the relationship between 

pixels in an image, A, separated by a distance, d, at a relative angle, e, the SHIFT function is used 

to create an image, B, which is the image A with the pixels shifted by d and e towards the refer­

ence pixels. The HISL2D function is then applied to portions of images A and B resulting in the 

GLCM of A at the distance, d, and relative angle, e. This algorithm is considerably quicker than 

traditional loop-based algorithms to calculate the GLCM and a comparison of computation times 

is shown in Figure 5.4. 
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A BO=shift(A,-l) 
1 2 3 4 2 3 4 1 
1 2 3 4 2 3 4 1 
1 2 3 4 2 3 4 1 
1 2 3 4 2 3 4 1 

Go.,I(A) = HIST_2D(partial matrices) 

Figure 5.3: Schematic of the new IDL GLCM algorithm using IDL's HISL2D and SHIFT. The algo­
rithm is demonstrated on an image A. B is the image A with the columns shifted to the left by 1 pixel. 
The GLCM is computed by taking HISL2D of the matrices bordered in thicker lines at for 8 = 0° and 
d=1. HISL2D and SHIFT are described in Appendix D. 
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Figure 5.4: Comparison of computational time between the new IDL GLCM algorithm and a loop­
based algorithm. 

Algorithm 5.1: Calculation of average GLCM for 8=[0° ,45° ,90°,135°] based on Equation 5-7. 

Data: Image A, distance in GLCM calculation, d, bit-depth of images, nbits, size of images, sz 

Result: GLCM G of image A averaged over 8=[0° ,45° ,90°,135°]. 

; IDL's SHIFT and HIST_2D functions simplify the GLCM calculation 

maxi = 2nbits - 1 

; 0° calculation 

BO = SHIFT(A,d,O) 

cO = HISL2D(A[d:sz[Oj-l, *j, BO[d:sz[Oj-l, *j, max = maxi, min = 0) 

; 45° calculation 

B45 = SHIFT(A,d,d) 

c45 = HISL2D(A[d:sz[Oj-l,d:sz[1j-Ij, B45[d:sz[Oj-l,d:sz[lj-Ij, max = maxi, min = 0) 

; 90° calculation 

B90 = SHIFT(A,O,d) 

c90 = HISL2D(A[*,d:sz[1j-Ij, B90[*,d:sz[1j-Ij, max = maxi, min = 0) 

; 135° calculation 

B135 = SHIFT(A,d,-d) 

c135 = HISL2D(A[d:sz[Oj-I,O:sz[lj-d-Ij, B135[d:sz[Oj-I,O:sz[1j-d-Ij, max = maxi, min = 0) 

c = cO+c45+c90+c135 

G = (C+TRANSP OSE(c» /8 
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5.5.1.2 GLCM Example 

The GLCM, Ga,d, with 9=00 and d=l , for the following 4 x 4 image, 1, with 4 grey-levels is given 

by: 

0101 [0303] 1 212 303 0 
1 = 2 3 2 3 GO,I = 0 3 0 3 

303 0 303 0 

5.5.2 GLCM-based Texture Measures 

The dimensions of Ga,d depend only upon the number of grey-levels in the image [Gonzalez & 

Wintz 1987] which for an 8-bit image, means a 256 x 256 matrix. Working with these large 

matrices is made easier by the use of texture measures, which are extracted from the GLCMs 

and generally contain information image characteristics, like homogeneity, contrast, complexity, 

presence of organised structures and grey-level transitions within the image. 

The point to note is that a specific texture measure cannot be uniquely related to a specific 

image characteristic [Chan et al. 1995]. So, while some texture measures describe certain physical 

textural characteristics, most cannot be directly related to such a characteristic. Robert Haralick's 

[Haralick et al. 1973, Haralick 1979] texture measures are detailed and used in this study. 

Calculate a probability density function, P, by normalising Ga,d determined from an image 

with I grey-levels: 

P= Ga,d 
~/- I~/-IG ( .. ) 
L..i=O L.. j =O a,d I, } 

(5-9) 

The following texture measures can then be defined [Haralick et al. 1973, Haralick 1979] (a de­

scription, where appropriate, is given of the physical textural characteristic that a texture measure 

describes): 

1. Maximum Probability in P: gives the strongest response to the position operator defined 

by d and 9 that is used to construct the GLCM. 

maxpi " 
ij } 

(5-10) 

2. Entropy, H: The entropy of a random variable is a measure of the uncertainty associated 

with the random variable. It is a measure of the amount of information required (on average) 

to describe the random variable. As a result entropy can be taken to be a measure of non­

uniformity in the image. Entropy is at its maximum when all elements of the GLCM are 

equal [Abramson 1963, Bradley et al. 1995, Mudigonda et al. 2000]. Entropy is discussed 

in greater detail in Appendix C (page 247). 

1- 1/- 1 

H = - L LPijlog2(Pij) 
i=Oj =O 

(5-11) 

3. Second Angular Moment/Energy: The second angular moment (or energy) is a measure 

Cll \\\)m.\)~et\e\t'j. 1\\e secami angu\ar moment has its lowest value when all elements of 
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12. Difference Entropy: 
2n-2 
L Px-y(k) 10g2(Px-y(k)) 
k=O 

13. Information Measure of Correlation 1: 

where 

/ -1/-1 

HI = - L LPij 10g2(pAi)py(j)) 
i= Oj=O 

/-1/-1 

Hx = - L L Px(i) log2 (Px(i)) 
i=Oj=O 

/ -1/-1 

Hy = - L L Py(j) log2 (Py(j)) 
i=Oj=O 

14. Information Measure of Correlation 2: 

where 
/ -1 / - 1 

H2 = - L LPx(i)py(j)log2(pAi)py(j)) 
i=Oj= O 
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(5-21) 

(5-22) 

(5-23) 

In most medical imaging applications, texture measures are extracted from GLCMs, which 

are good at quantifying the spatial relationship between tonal pixels and are invariant to monotonic 

grey-level transformations. However, GLCM-based texture measures do not consider primitive 

shapes and are not appropriate if the texture consists of large primitives. Another limiting factor 

is the memory requirements [Sonka et al. 1999]. 

5.5.2.1 Categorising of Texture Measures 

Gotlieb & Kreyszig [1990] put Haralick's texture measures into 4 classes as follows: 

1. Classifiers that express visual textural characteristics 

(a) second angular moment or homogeneity 

(b) contrast 

(c) correlation 

2. Classifiers that are based on statistics 

(a) inverse difference moment 

(b) sum average 

(c) sum variance 

(d) difference variance 

3. Classifiers that are based on information theory 

(a) entropy 
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(b) sum entropy 

(c) difference entropy 

4. Classifiers that are based on information measures of correlation 

(a) information measure of correlation 1 

(b) information measure of correlation 2 

(c) maximal correlation coefficients 
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Gotlieb & Kreyszig [1990] found that contrast, inverse difference moment and entropy appeared 

most often in the classification of various types of textures. 

5.6 Spectral Textural Approaches 
For statistical methods like histograms, the only information that is encoded into the probability 

density function is the number of times a grey-level appears in the image. For structural methods 

like GLCMs, information about neighbouring pixels and grey-levels are encoded, but no informa­

tion about large-scale structures or periodicity of structures is taken into account. 

Spectral approaches of quantifying texture examine the periodic and scale properties of the 

image. 

5.6.1 The Autocorrelation Function 

The autocorrelation function (ACF) of a function I(x,y) , denoted by 1*1, is the self-convolution 

of I(x,y) and is defined as [Bracewell 1965]: 

1*1= i~i~/(u,v)/(x-u ,y-v) dudv (5-24) 

If however, I(x,y) is not periodic and has a finite length, kx, ky then the autocorrelation function, 

y(u, v), of this function Ikx,ky (x ,y) , which is zero outside of the finite length is: 

J~gt)~;tyfkx,k/U , V)lkx,ky(X+U ,y+v) du dv 
y( u , v) = 0 5k 0 5k 

!-0.51) -0.5t fkx ,ky (u , V)fkx,ky ( u, v) du dv 
(5-25) 

The ACF finds linear spatial relationships between texture primitives. If texture primitives are 

large, then the ACF decreases slowly as distance increases and decreases quickly if the primitives 

are small. If the texture primitives are periodic, then the ACF changes periodically with distance 

[Singh & Singh 2002]. 

The ACF of an image can be used to determine scale sizes within which there is correlation 

in the image. If the sums of the components of autocorrelation function in the horizontal and 

vertical directions are examined, the minima indicate the scale lengths in each direction. These 

scale lengths can then be used as an indication of the characteristic lengths of the textures in the 

image. An example of the ACF of an image is shown in Figure 5.5. 
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Figure 5.5: Example of the autocorrelation function of an image. (top-left) The original image. (top­
right) The sum of the vertical components of the ACF. The minima indicate the scale sizes in the 
horizontal direction in the image and correspond to the widths of the bricks in the original image. 
(bottom-left) The sum of the horizontal components of the ACF. The minima indicate the scale sizes 
in the vertical direction in the image and correspond to the heights of the bricks in the original image. 
(bottom-right) The autocorrelation function. The periodic nature of the structures in the image are 
reflected in the autocorrelation function. 

5.7 Summary 
The analysis of texture forms an important part of image processing. Textural information must be 

quantified before images can be compared. The main quantification methods are statistical, struc­

tural and spectral. Statistical methods (like grey-level histograms) only incorporate the number of 

grey-levels in an image. Structural methods (like grey-level co-occurrence matrices) incorporate 

numbers of grey-levels and information about the location of the pixels in the image. Spectral 

methods (like the autocorrelation function) examine the periodic and scale properties of an image. 



Chapter 6 

Similarity Metrics 
Similarity metrics quantify how similar two quantities are to each other and are a critical compo­

nent of texture analysis algorithms where textures are being compared. Two types of similarity 

metrics are discussed: distance metrics and information theory metrics. 

6.1 Distance Similarity Metrics 

6.1.1 Introduction 

The distance between two quantities is a simple indication of how similar the two quantities are, 

with similarity increasing as distance decreases. Common distance metrics are the Euclidean 

distance metric and the Mahalanobis distance metric. 

6.1.2 Euclidean Distance Metric, DE 

The Euclidean distance metric, DE, is the most commonly used metric to calculate distance. DE 

between two points, x andy, in n dimensions is defined as [PlanetMath 2006]: 

n- i 

DE(x,y) = L(Xi - Yi)2 (6-1) 
i= O 

The strength of using DE as a similarity metric is that it is a simple calculation, but suffers from 

the weakness that a single value can dominate the result. 

6.1.3 Euclidean Distance Metric with Standardised Variables, DES 

The standardised Euclidean distance metric, DES, differs from the traditional Euclidean distance 

in that the inputs are standardised to a normal distribution with a mean of zero and a variance of 

one. This has the advantage over Equation 6-1 in that the inputs are scaled to the same range and 

problems resulting from a single variable dominating the DE calculation do not arise. DES between 

two points, x and y, in n dimensions is [De Maesschalck et al. 2000]: 

n- i 

DES(X,y) = L (Xi - Yi)2 (6-2) 
i= O 

where X and Y represent x and y that have each been standardised to a normal distribution with a 

mean of zero and a variance of one. 

6.1.4 Mahalanobis Distance Metric, D M 

A slight modification on the Euclidean distance metric is the Mahalanobis distance metric, DM . 

In 1936, P. C. Mahalanobis derived the formula for the Mahalanobis distance, which consid­

ers correlations between the inputs. The Mahalanobis distance between the i1h sample of two 
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variables, X and Y, in n dimensions, with m samples, i.e. X = [XO ,XI ,X2, .. ' ,Xm-d and Xi = 

[Xi ,O, Xi , I, Xi ,2, ... ,Xi,n-I] with covariance matrix C is [De Maesscha1ck et al. 2000]: 

DM(Xi , ij) = J(Xi - ij)C-I (Xi - ij). (6-3) 

The covariance matrix C is an n x n matrix and contains the sample covariances between each 

variable. The sample covariances are calculated over all samples of a specific variable. For two 

observations, X and y, with m samples, X = (xo, XI , X2, ... ,Xm-I) and y = (yo ,YI ,Y2, ... ,Ym-I), with 

means of x and y respectively, the covariance between X and Y is defined as: 

C _ If=ol (Xi -X)(yi -.Y) 
xy - m-l (6-4) 

6.1.5 Differences between Distance Metrics 

A significant problem with DE is that a single value can dominate the final result. The inputs to 

the DE-calculation are standardised, resulting in DES, to overcome this problem. However, the 

standardisation process does not consider any correlations between inputs, which is addressed by 

DM. 

6.1.6 The Use of Distance Metrics as Similarity Metrics 

In medical imaging applications, distance metrics often appear in classifiers like the linear dis­

criminant analysis classifier, where the distance metrics are used to compute the distance between 

classes. For example, Rangayyan et al. [1997a], used the Mahalanobis distance metric in a clas­

sifier to classify masses as malignant or benign, while Chan et al. [1995] used the Mahalanobis 

distance in a linear discriminant analysis classifier to discriminate between normal and abnormal 

tissue. The algorithm to compute the various distance maps using texture measures as inputs is 

detailed on page 75. 

6.2 Information Theory Similarity Metrics 

6.2.1 Introduction 

In 1948 Claude E. Shannon published a paper entitled A Mathematical Theory of Communication 

where he described the problem of encoding a message such that the capacity of a channel to 

transmit the message at a given rate is a maximum [Shannon 1948]. Shannon introduced two 

quantities: entropy, a measure of the uncertainty associated with a received message and mutual 

information, a measure of the information shared between the transmitter and receiver at either end 

of the communication channel. Since then, both quantities have been applied to many problems 

outside of the field of communication, notably in image processing. 

Mutual information is described as an information theory similarity metric. 
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Algorithm 6.1: Calculation of distance maps 

Input: tm, ncols, nrows, loc 

Output: MOE, MOES, MOM 

tm - array of texture measures 

MOE - Euclidean distance map 

MOEs - Standardised Euclidean distance map 

MOM - Mahalanobis distance map 

DE = ntarr(ncols,nrows) 

DES = ntarr(ncols,nrows) 

DM = ntarr(ncols,nrows) 

Ref = tm[*,nrows·ncols] ; Extract reference texture measures 

tmO = STANDARDIZE(tm) ; Standardise array 

ReID = tmO[*,nrows·ncols] ; Extract reference texture measures 

C = COVARIANCE(tm) Calculate covariance matrix 

C1 = INVERT(C) Invert covariance matrix 

; Calculate distance maps 

for k = 0 to nrows·ncols-l do 

DE[k] =TOTAL(tm[* ,k] -Ref[*])2 

DES[k] =TOTAL(tmO[*,k] -ReID[*]? 

DM[k] =TOTAL«tm[*,k] -Ref[*])·C1· (tm[*,k]-Ref[*])) 

endfor 

MOE = SQRT(DE) 

MOES = SQRT(DES) 

MOM = SQRT(DM) 

6.2.2 Mutual Information 
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Shannon [1948] introduced the concept of mutual information as a measure of the information 

content between the transmitter and receiver across an information channel. More generally mu­

tual information can be interpreted as a measure of the information that two quantities have in 

common. Mutual information is defined as: 

where 

is the entropy and 

MI(X· Y) = H(X) - H(XIY) 

= H(Y) - H(YIX) 

= H(X)+H(Y)-H(X·Y). 

n-I 

H(X) = - L P(Xi) logp(xi) . 
i= O 

n- ln- l 

(6-5) 

(6-6) 

(6-7) 

(6-8) 

H(XIY) = - L LP(xi'Yj)logp(xiIYj) (6-9) 
i= O j =O 

is the conditional entropy. Entropy was introduced as a measure of the uncertainty associated with 

a set of probabilities and the conditional entropy H(XIY) is a measure of the uncertainty inX given 
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knowledge of Y [Shannon 1948]. A detailed description of entropy is given in Appendix C. 

Equation 6-5 describes mutual information as the uncertainty of the source less the uncer­

tainty of what was lost to noise given what was received, Equation 6-6 describes mutual informa­

tion as the uncertainty of what was received less the uncertainty of what was lost to noise given 

what was sent and Equation 6-7 describes mutual information as the total uncertainty of what 

was sent and received less the joint uncertainty between what was sent and received. The latter is 

depicted in Figure 6.1. 

Joint Entropy 

MI(X'Y) 

Mutual Information 

Figure 6.1: The mutual infonnation between two quantities can be interpreted as the total uncer­
tainty associated with each quantity less the joint uncertainty between each quantity, as is depicted. 
[Studholme et al. 1999] 

Mutual information can also be defined as [Abramson 1963]: 

n- \n- \ P(Xi 'Yj) 
MJ(X·Y) = I Ip(xi 'Yj)log ( 0) (y o) 

i= O j =O P XI P } 
(6-10) 

It can be shown that Equation 6-10 is equivalent to Equation 6-7. 

n- \ P(Xi 0Yj) 
MJ(X·Y) = Ip(xi 'Yj)log (-) (y o) 

i,j =O P XI P } 

n- \ n- \ n- \ 

= I P(Xi . Yj) logp(xi . Yj) - I P(Xi 0 Yj) logp(xi) - I P(Xi ' Yj) 10gp(YJ 
i,j=O i,j=O i,j=O 

~ - H(X . Y) - :~ t~ P(x; Yj) ]IOgP(X') - % [:~ p(x, Y+OgP(yj) 

n-\ n-\ 

= -H(X· Y) - I P(Xi) logp(xi) - I p(Yj) 10gp(Yj) 
i= O j =O 

= -H(X · Y) + H(X) + H(Y) 

Similarly, by using Equation 6-9, it can be shown that Equation 6-10 is equivalent to Equa­

tions 6-5 and 6-6. 

The most obvious characteristic of mutual information is that it depends on both X and Y . 

If MI(X 0 Y) is the information in X about Y, then any information that X contains about Y Y , 
also contains aboutX. Therefore, MI(X· Y) = MI(Y 0 X), which shows that mutual information is 

commutative [Abramson 1963]. 
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The chain rule is used to determine the mutual information between more than two quantities: 

Ml(X\ . X2 . f) = Ml(X\ . f) + Ml(X2 . flx\) 

Ml(X\ . X2 . X3 . f) = Ml(X\ . f) + Ml(X2 . flx\) + Ml(X3 . flx\ . X2) 

6.2.2.1 Mutual Information Algorithm 

The algorithm for the calculation of mutual information is detailed in Algorithm 6.2. 

Algorithm 6.2: Calculation of mutual information 

(6-11) 

(6-12) 

Data: Probability density functions associated with random variables X and f, Px and Py and the joint 

probability density function associated with random variables, Px.y 

Result: Mutual information between X and f, Ml 

; Check that dimensions of Px, Py and Px.y correspond 

if dimensions of input matrices do not correspond then 
print, 'Dimensions of inputs are incompatible ' 

break 
endif 

Ml=O 

for i=O to /-1 do 

endfor 

endfor 

returnMi 

6.2.2.2 Properties of Mutual Information 

The following properties of mutual information, MI, make it a reasonable similarity metric 

[Abramson 1963]: 

1. MI'2 0 unless the two quantities are completely independent then MI=O. 

2. Ml increases as dependency between two quantities increases. 

3. MI is independent of the actual value ofthe probability. 

Maes et al. [1997] summarised the following properties of mutual information: 
non - negativity: Ml(X · f) '2 0 
independence: Ml(X· f) = 0 ~ P(X · f) = P(X) . P(f) 
symmetry: Ml(X · f) =Ml(f·X) 
self - information: Ml(X ·X) = H(X) 
boundedness: Ml(X· f) ::; Ml(H(X) ,H(f)) 

::; HH(X) +H(f)) 
::; max(H(X) ,H(f)) 
::; H(X · f) 
::; H(X) + H(f) 
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6.2.2.3 Theoretical Maximum of Mutual Information 

Consider two quantities X and Y. The theoretical maximum of MI(X · Y) is given by Inn where n 

is the number of states of X and Y. 

max(MI(X ·Y)) = max(H(X))+max(H(Y))-max(H(X·Y)) 

= 1on+lnn-1on 

= Inn 

6.2.2.4 Examples of Mutual Information 

Consider three 2-bit images, X, Y and Z. 

0011 0011 

X=OOII y=OOII 
0222 0222 
223 3 223 3 

223 3 

Z=0222 
o 0 1 1 
o 0 1 1 

Using grey-level histograms, the corresponding probability density functions are: 

P(X) = [1
5
6' I~ ' t6' ?6] [~ ~ ~ ~] [~ I} ~ ~] 

P(Y) = [1
5
6' I~ ' 1

5
6 ' 1

2
6] P(X ·Y) = 0 ~ ~ 0 P(X ·Z) = ~ ~ 2 2 

P(Z) = [1
5
6' I~' 1

5
6' 1

2
6] l ~ 0 0 1.. 0 11

36
6 ~ 

16 16 

The mutual information between X and Y and X and Z is then: 

MI(X· Y) = 1.33 

MI(X ·Z) = 0.740 

It is clear that the mutual information for equal input probabilities (i.e. between X and Y) is higher 

than the case when the input probabilities are not equal (i.e. between X and Z). This example 

has a maximum mutual information of 1.33 when X = Y. The theoretical maximum of mutual 

information for a 2-bit system is 10(22) = 1.39 which only applies when all states have equal 

probabilities, which is not the case for the example above. 

6.2.3 Probability Density Estimation 

The strength of using mutual information as a similarity metric lies in how the probability densi­

ties are estimated for the mutual information calculation. There are two methods of estimating a 

probability density function: parametric and non-parametric. Parametric methods are used when 

the general functional form of the density is known and the problem is one of determining the 

parameters that exactly describe the data at hand. For example, if the data has a normal distribu­

tion then all that is required to describe the distribution is to determine the amplitude, offset and 

standard deviation [Silverman 1986]. 

Nonparametric methods are used to estimate probability density functions when there is no 

known functional form. The following are examples of non-parametric methods of probability 

density function estimation [Silverman 1986]: 
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1. histograms 

2. Naive estimators using Parzen windows 

3. Kernel estimator 

4. k-nearest neighbours 

5. Adaptive kernel estimator 

For images, there are no known functional forms so non-parametric methods of estimating 

probability density functions have to be used. Some examples of non-parametric image-based 

probability density estimates are histograms and grey-level co-occurrence matrices. For more 

information on the different methods of estimating probability functions see Silverman [1986]. 

6.2.4 The Use of Mutual Information as a Similarity Metric 

In medical imaging, mutual information has been highly successful at registering images from 

different modalities and has also been used in the selection of features, stereo matching and model 

(template) matching. 

6.2.4.1 Registration of Images 

In diagnostic medical imaging, each modality provides some information on the same patient's 

anatomy. Therefore there should be some information in common between the modalities. In 

general, the aim of any registration algorithm is to find a spatial transformation that results in two 

images being perfectly aligned. The registration of multi-modal medical images is an important 

aid to surgery. For example in microsurgery, the tumours are identified with MRI imaging while 

the stereotactic technology uses CT. It is then useful to transfer the co-ordinates of the tumour 

from the MRI image to the CT image [Wells et al. 1996]. 

Mutual information has been shown to be a robust similarity metric and has been successfully 

used to register multi-modal medical images [Wells et al. 1996, Maes et al. 1997, Wirth et al. 

2002]. The mutual information for two images X and Y that have been aligned through some 

geometric transformation is maximal [Maes et al. 1997]. X and Y can describe the behaviour of 

any of the following properties related to images, but most of the methods used thus far involve 

grey-levels: 

1. intensities or grey-levels 

2. texture measures 

3. scale 

4. any shape signature 

Hutton & Braun [2003] and Maintz & Viergever [1998a, 1998b] described some of the meth­

ods used to register images and Pluim et al. [2003] gave an overview of the use of mutual infor­

mation to register medical images. 
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Viola & Wells [1995] and Gilles [1996] used Parzen windows with a Gaussian kernel to 

estimate the probability density function and mutual information to register medical images from 

different modalities. Gilles found that mutual information was more robust than normalised cross 

correlation. 

Wells et al. [1996] used the maximisation of mutual information to register MRI, CT and 

PET images. Parzen windows were used to estimate the probability density functions. The mutual 

information was maximised by using a stochastic analogue of gradient descent. The technique 

described is quite general as it does not require segmentation or any assumptions about the nature 

of the signals used. 

Wirth et al. [2002] used thin plate splines together with mutual information to register mam­

mograms for bilateral and temporal comparison. The probability density functions were estimated 

from grey-level histograms. Results were described as 'promising' , but the changeable nature of 

the breast under compression led to some problems. 

6.2.4.2 Feature Selection 

Feature selection is the extraction of a reduced set of features to reduce the dimensionality of any 

classification problem. 

Fisher & Principe [1998] and Tourassi et al. [2001] used mutual information to optimise the 

features extracted from medical images. The reduced set of features was then fed into a classifica­

tion scheme (e.g. artificial neural networks). 

6.2.4.3 Segmentation 

Tsai et al. [2004] used shape-based active contours coupled with mutual information to segment 

pelvic MRI images. No quantitative evaluation of results was presented and results were described 

as "performing very well in segmenting the anatomical regions of interest." Parzen density esti­

mation was used to estimate the probability density function. 

6.2.4.4 Template/Object Matching 

Mutual information has been used as similarity metric for template matching [Sista et al. 1995, 

Egna12000, Shams et al. 2001]. Tourassi et al. [2003] used mutual information as a similarity met­

ric for template matching in a knowledge-based mammographic CAD-system for discrimination 

of masses from normal tissue. Histograms were used to determine the probability density func­

tions. An Az=0.88±0.01 was achieved for discrimination between malignant and normal tissue 

and an Az=0.86±0.01 was achieved for discrimination between benign and normal tissue. 

Filev et al. [2005] compared the effectiveness of twelve similarity metrics in matching the 

correspondence between masses in temporal mammograms. The size of the search region was 

varied and the average template size was 17 mm x 17 mm. The similarity metrics were: 
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1. Pearson's correlation coefficient 

2. cosine coefficient 

3. Goodman and Kruskal 's gamma coefficient 

4. Pearson's correlation coefficient standardised by median 

5. mutual information (scaled) with histogram values linearly scaled between minimum and 

maximum of the grey-level 

6. mutual information (unsealed) with histogram computed from original pixel values 

7. ordinal measure 

8. increment sign correlation coefficient 

9. pattern intensity 

10. rank transform 

11. extended Jaccard transform 

12. gradient difference 

Pearson's correlation coefficient, the cosine coefficient and Goodman and Kruskal 's gamma coef­

ficient performed best and were the most robust. While mutual information was robust, it was 6th 

best, and the scaled mutual information consistently performed better than the unsealed mutual 

information. Also, mutual information did not perform well for small template sizes. 

6.3 Comparison of Similarity Metrics 
Distance metrics are simple to compute while the probability density functions required by mutual 

information can be time-consuming to compute. One significant advantage of using distance sim­

ilarity metrics and mutual information for classification is that no training is required unlike other 

methods of classification e.g. artificial neural networks or linear discriminant analysis. 

6.4 Summary 
Similarity metrics quantify how similar two quantities are to each other. The similarity metrics that 

are used in this research are: Euclidean distance, Mahalanobis distance and mutual information. 

The Euclidean distance similarity metric suffers from the problem that a single input can dominate 

the final distance value, if this input is considerably larger than the other inputs. Standardising the 

inputs to a normal distribution with a variance of 1 and a mean of 0 solves this problem. However, 

standardisation does not consider correlations between inputs. Hence, the Mahalanobis distance 

similarity metric is often preferred. 

Mutual information has been shown to be a robust similarity metric in image registration 

problems, but has also been applied to template matching, feature selection and segmentation 

problems. 



Chapter 7 

Evaluation of Results 
Consider a medical diagnostic test to determine the presence of a disease. The results of the 

diagnostic test are analysed by a physician who classifies the results and delivers a diagnosis as to 

whether the disease is present or not. 

Mammography is a radiological diagnostic test and a radiologist interprets the resulting mam-

mogram and delivers a decision that summarises the mammogram as normal or abnormal. This 

task is simplified when there is no uncertainty in the image characteristics of the mammogram 

and the radiologist can state with certainty that the mammogram is normal or abnormal. However, 

when there is some overlap between the image characteristics of normal and abnormal breasts, 

then the radiologist may shift his decision threshold to err on the side of caution and classify 

the mammogram as abnormal. This type of decision would most likely be followed by further 

diagnostic tests which would be used to deliver a more certain diagnosis. 

A mammographic CAD-system analysing a mammogram fills the same role as the radiol­

ogist in classifying the mammogram, and the methods used to evaluate the accuracy of medical 

diagnostic tests can therefore be applied to evaluate the accuracy of CAD-algorithms. 

For this study, the accuracy of the algorithms is evaluated on two levels. Firstly, the area of 

the matched region in the matching map is compared with the region marked by a radiologist in 

the original test image, by using the area under the receiver operating characteristic curve, ARoc 

[Bushberg et al. 2002]. Secondly, the matched region in the matching map is compared with 

surrounding regions, to determine contrast, Cfb. 

7.1 Evaluation Terminology 
The results of any diagnostic test must be compared to the truth to evaluate the accuracy of the test. 

The terminology used to describe how the diagnosis relates to the truth is summarised in Table 

7.1 and forms the basis of determining the accuracy of any diagnostic test [Bushberg et al. 2002]. 

Table 7.1: Terminology used during evaluation to describe how the diagnosis relates to the ground 
truth data. 

Two quantities are required to evaluate the performance of a diagnostic test, the true-positive 

fraction and the false-positive fraction [Bushberg et al. 2002]. 

The true-positive fraction, TPF, (also known as sensitivity) is the fraction of abnormal cases 
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that is actually diagnosed as abnormal and is defined in Equation 7-1. 

TP 
TPF = TP + FN 
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(7-1) 

The false-positive fraction, FPF, is the fraction of normal cases diagnosed as abnormal and 

is defined in Equation 7-2. 
FP 

FPF = FP + TN (7-2) 

The true-negative fraction (TNF) (also known as specificity) is the fraction of normal cases 

that is actually diagnosed as normal and is defined in Equation 7-3. 

TN 
TNF = FP + TN (7-3) 

The perfect diagnostic test has TPF=I, FPF=O and TNF=1 for all decision thresholds. Di­

agnostic tests are often described in terms of their sensitivity and specificity, but this has the 

disadvantage of examining the decision space at a single decision threshold. The effect of deci­

sion threshold on sensitivity and specificity is illustrated in Figure 7.1 where the histograms of the 

results of two hypothetical medical diagnostic tests, X and Y, are shown. 

15 

10 

5 

- - - - - normal -- abnormal 

y 

decision 
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X X 

o~~~~~~~wu_ 

0 .0 0.2 0.4 0.6 

y 

0 .8 
Possible Results of Diognostic Test 

1. 

Figure 7.1: Effect of decision threshold on sensitivity and specificity. The histograms of the results 
of two hypothetical medical diagnostic tests, X and Y, to test for the presence of a disease, are shown. 
The solid line indicates positive results (i.e. that the disease is present) and the dashed line indicates 
negative results (i.e. that the disease is not present). (Adapted from Bushberg et al. [2002]) 

Test Y can be considered to be the perfect test as results for patients having the disease 

(solid line) and patients not having the disease (dashed line) are well separated. Ifthe decision 

threshold is set at 0.5, then test Y will have a sensitivity of 100% and a specificity of 100%. 

Test X is more realistic, with the results for diseased and undiseased patients overlapping. In this 

case, any decision threshold will lead to some undiseased patients being classified as diseased and 

vice-versa. If a low decision threshold is selected, the number of false-negative results decreases 

(higher sensitivity), but the number of false-positive results increases (lower specificity). Selecting 



CHAPTER 7. EVALUATION OF RESULTS 84 

a high threshold increases the number of false-negative results (lower sensitivity) and decreases 

the number of false-positive results (higher specificity) [van Erkel & Pattynama 1998, Bushberg 

et al. 2002]. 

The dependence of sensitivity and specificity on the decision threshold makes it difficult to 

compare the discriminating power of diagnostic tests. Fortunately, there is a method of evaluating 

the accuracy of diagnostic tests that is independent of the decision threshold: receiver operating 

characteristic analysis. 

7.2 Receiver Operating Characteristic (ROC) Analysis 
Receiver operating characteristic (ROC) analysis originated in signal theory as a model of how 

well a receiver is able to detect a signal in the presence of noise, by using the distinction between 

hit rate (or TPF) and false alarm rate (or FPF) as two separate performance measures. ROC 

analysis is now widely used in medical data analysis to study the effect of a decision threshold 

on the overall accuracy of a diagnostic test and has been widely accepted as the most effective 

method of quantifying the performance of a diagnostic test (e.g. a CAD algorithm). The keystone 

of ROC analysis is the ROC curve - a plot of TPF vs. FPF at various decision thresholds, which 

describes the balance between sensitivity and specificity [Bradley 1997, Liu et at. 2004]. ROC 

analysis further allows for different tests to be compared and ranked, using the area under the 

ROC curve as a measure of how discriminating a test is. 

7.3 Example: Determination of the ROC Curve 

A simple example to determine the ROC curve is detailed. Consider the matching map shown at 

the top left in Figure 7.2. The ground truth region is enclosed by the red square. The matching map 

is a 3-bit map (i.e. 8 grey-levels). Table 7.2 shows details of the various steps of the determination 

of the ROC curve. The various steps are also shown graphically in Figure 7.2(a) with the ROC­

curve shown in Figure 7.2(b). 

Table 7.2: Example: calculation of values for the ROC curve for matching map in Figure 7.2(a). 

I Notes I Grey-level I TP I FP I TN I FN I TPF I FPF I 
Start below minimum o and above 16 128 0 0 1 1 

1 and above 16 4 124 0 1 4/128 
2 and above 8 3 125 8 8/16 3/128 
3 and above 7 2 126 9 7/16 2/128 
4 and above 6 1 127 10 6/16 1/128 
5 and above 5 0 128 11 5/16 0 
6 and above 4 0 128 12 4/16 0 
7 and above 3 0 128 13 3/16 0 

St~ above maximum 8 and above 0 0 128 16 0 0 
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Figure 7.2: Example demonstrating the calculation of values for the ROC curve. (a) Detailed match­
ing maps, at each decision threshold, used to calculate FP and TP for the ROC curve. (b) ROC curve. 

7.4 Area under the ROC Curve, AROC 

An entire ROC curve is needed to describe the performance of a diagnostic test and the area 

under the ROC curve has been proven to be a powerful index for assessing the performance of a 

diagnostic test [Bradley 1997]. It provides a useful summary ofthe performance of a test and can 

be interpreted as the average value of sensitivity over all specificities or vice versa [Liu et al. 2004], 

with a larger AROC indicating that a higher TPF (and correspondingly a smaller FPF) has been 

achieved. The area under the curve varies between 0.5 (corresponding to a random test) and 

1.0 (corresponding to a perfect test) [van Erkel & Pattynama 1998, Bushberg et al. 2002, Homg 

et al. 2002, Van Schalkwyk 2003, Fawcett 2004, Flach 2004]. Values for the area between 0 and 

0.5 correspond to a negative correlation between the test results and the truth. In terms of a medical 

diagnostic test, this means that if a truth value of x corresponds to the disease being present, the 

test indicates that for a value of x that the disease is not present. 

Consider four medical diagnostic tests to test for the presence of a disease, to illustrate the 

use of ROC curves to compare diagnostic tests. The histogram of the results of the various tests 

are shown in Figure 7.3 as A, B, C and D. The part of each distribution indicated by the solid 

line represents positive test results while the dashed line indicates negative test results . Figure 

7.3(a) shows that each test has a varying degree of overlap between positive and negative results. 

The ROC curves for each test are shown in Figure 7.3(b). Test A has an area under the ROC 

curve of 0.5, which is expected since there was no separation between the results of the test being 

negative and positive. For Test B, which has a slight separation between negative and positive 

results, the area under the ROC curve is slightly higher at 0.71. For Test C, the area under the 

ROC curve is 0.92 and for diagnostic test D, which has the best separation, AROC= 1.0 [van Erkel 

& Pattynama 1998, Bushberg et al. 2002]. 



CHAPTER 7. EVALUATION OF RESULTS 

10 

5 

- - - - normal 
-- abnormal 

. 
I 

I 
I 

I 
I 
I 
I 
I . 
I 
I 

.' • I . \ 
I 
\ 
I 

I 
I 
I 
I 
I 

A-­
B -­
C 
0 --

o ' 
0.0 0.2 

Possible Results of Diagnostic Test 

(a) 

1.0 

1.0 

0.8 

0.0 0.2 

A - A.oc;O.50 -­
B - A.oc-Q,7 1 --

D - A.oc=l ,bb --

0.4 0.6 0 .8 1.0 
FPF 

(b) 

86 

Figure 7.3: Comparison of four diagnostic tests using ROC analysis. (a) Histogram of the results of 
four tests. The solid line indicates the positive results and the dashed line indicates the negative results. 
(b) The ROC curves are obtained by plotting TPF and FPF at various decision thresholds. The area 
under each curve is used as an indication of how discriminating each test is, with an area of 0.5 being 
no better than random. (Adapted from Bushberg et al. [2002]) 

Greiner et al. [2000] categorised ranges of AROC as follows: 

1. non-informative (AROC=0.5) 

2. less accurate (0.5 <AROC:S 0.7) 

3. moderately accurate (0.7 <AROC:S 0.9) 

4. highly accurate (0.9 <AROC< I) 

5. perfect (ARoc=l) 

7.S Calculating the Area under the ROC Curve 

The area under the ROC curve can be calculated using two methods. The first is to use basic 

integral calculus methods to directly calculate the area and the second is to fit a model to the data 

and calculate the area under the fitted curve, analytically. 

7.5.1 Trapezoidal Rule 

If there are n points on the ROC curve, a=TPFand ~=TNF, then I-~=FPF, then ARoc can be 

calculated using the trapezoidal rule for integration. 
n 

ARoc = L (1 - ~i) ·~a + 0.5· [~(I - ~) ·~al (7-4) 
i= O 

where ~(I -~) = (I - ~i) - (1 - ~i- J) and ~a = ai - ai- I. 

7.5.2 Binormal Model of ROC Analysis 

A successful model for fitting data to ROC curves is the binormal model, which assumes that the 

decision variable can be transformed to a pair of normal distributions with [Liu et al. 2004]: 

f(xlnegative) = ~exp (- Xl) (7-5) 
v27t 2 
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for true-negative cases and 

b (bx-a)2 
f(xlpositive) = J21t exp (- 2 ) (7-6) 

for true-positive cases. Following Liu et al. [2004] , let N(Ii, cr) represent a normal distribution with 

mean Ii and standard deviation cr. Then Equation 7-5 becomes N(O , 1) and Equation 7-6 becomes 

N(alb , lib) . Using the binormal model, the TPF, FPF, andARoc can easily be computed. Ifxc 

is a critical value then a case is diagnosed as positive if and only if x > xc. TPF is then given by 

100 b (bx-a)2 
TPF(xc) = ~exp(- )dx=<I>(a-bxc) (7-7) 

Xc V 21t 2 
and FPF is given by: 

100 1 x2 

F PF(xc) = ~ exp (--) dx = <1>( -xc) 
Xc v 21t 2 

(7-8) 

where <I>(z) is the cumulative standard normal distribution function. As Xc varies from -00 to 

00, TPF(xc) and FPF(xc) sweeps out the ROC curve. The area under this binormal ROC curve, 

denoted by Az (with z indicating the use of the binormal model) can be expressed as: 

Az =<I>(~) (7-9) 

Liu et al. [2004] gives full details of the derivation of Equation 7-9. 

7.6 ROC Analysis in Mammographic CAD 

ROC analysis has been widely used in the evaluation of mammographic CAD algorithms, for 

example, Miller & Astley [1992], Chan et al. [1995], Wei et al. [1995], Rangayyan et al. [1997b], 

Wei et al. [1995], Chan et al. [1999] , Huo et al. [1999], Chang et al. [2001], Mudigonda et al. 

[2001], Qian et al. [2001], Tourassi et al. [2001,2003]. 

7.7 Contrast, Cjb 

Contrast is the local change in brightness and is defined as the ratio of the average brightness of 

an object to the average brightness of the background (Equation 7-10) [Sonka et al. 1999]. 

f-b 
Cfb = f +b (7-10) 

f is the average grey-level of the foreground, b is the average grey-level of the background and 

-1 :S Cfb :S 1. Negative values arise when the foreground is darker than the background and 

positive values arise when the foreground is brighter than the background. A contrast of 0 means 

that the object cannot be seen against the background. 

For this study, f and b are determined from the two regions indicated in Figure 7.4. The 

centroid and maximum extent of the ROI (dmax) from the centroid are used to define three circles 

of radii dmax , 1.05dmax and 1. 1 Odmax . The average of the grey levels within the smallest circle 

defines f and the average of the grey-levels in the region between the two outer circles defines b. 

Figure 7.5 shows some examples of contrast values. Generally, contrasts above 0.5 indicate 

that the foreground (white square) can be easily seen against the background. 
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II background (b) D foreground (f) ~ ROI 

Figure 7.4: Schematic (not to scale) showing which regions are used to determine the foreground (j) 
and background (b) values for the contrast calculation. The grey-levels within the shaded regions are 
averaged to obtain values for f and b. dmax represents the maximum extent, from the centroid, of the 

ROJ. 

Figure 7.5: Images showing examples of contrast. Generally, contrasts above 0.5 indicate that the 
foreground (white square) can be easily seen against the background. 

7.8 Example: Evaluation of Matching 

Figure 7.6 shows an example to illustrate the evaluation methodology. The reference ROJ was 

matched to the test image by using a mutual information similarity metric with GLCMs. The 

matching map (Figure 7.6(d»), generated for a sampling window size of 80 pixels, at a bit-depth 

of 8 bits and for d=l, shows that the match is generally quite good. All three instances of the 

reference region are well matched, with high intensities in the matching map. The right-most 

reference region, which has been rotated by 90°, is not as well matched as the two, unrotated, 

reference regions, and shows that the matching algorithm is not invariant to rotation. There are 

also matches to other textures, which appear to be similar to the reference texture at the scale of the 

reference ROJ of 80 pixels. The detected regions in the matching map have a contrast of Cjb=O.63. 
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The ROC extracted from the matching map (Figure 7.6(e)) has AROC=O.97. This is, therefore, an 

example of a good match with high ARoc and a reasonably high Cjb. 

(c) 

1.0 

0 .8 

0.6 

... 
a. 
>-

0.4 

0 .2 

0.0 
A_ = 0.97 

0 .0 0 .2 0.4 0.6 0 .8 1.0 

(e) 

Figure 7.6: Example to illustrate the evaluation algorithm (a) Reference image with reference ROI of 
80 pixels marked by white square in bottom left comer. (b) Test image. (c) Ground truth image. (d) 
Matching map at a sampling window size of 80 pixels, a step size of 20 pixels, a bit-depth of 8-bits 
and d= 1. The contrast of the detected regions compared to the background of the matching map is 
0.63. (e) ROC curve with AROC=0.97. 

7.9 Summary 
ROC analysis is a standard method of evaluating and ranking medical diagnostic tests. To perform 

any evaluation, the 'truth' must be known so that it can be compared with the output ofthe test. The 

evaluation and ranking of the CAD algorithms developed here is analogous to that of a standard 

medical diagnostic test and is therefore perfectly suited to the use of ROC analysis. For this study, 

the accuracy of the matching maps is evaluated by using ROC analysis and contrast. The area 

under the ROC curve gives a measure of how much of the ROI has been matched while contrast 

gives a measure of how well the matched ROI stands out in the matching map. 



Chapter 8 

Matching Methods 
The aim of this study is to investigate whether using texture analysis methods with suitable sim­

ilarity metrics allows a suspicious feature from one mammographic view to be matched with the 

same suspicious feature in other mammographic views of the same breast. Two texture analysis 

methods are investigated in this research: texture measure matching (hereafter referred to as TM­

matching) and mutual information matching (hereafter referred to as MI-matching). The exact 

details of these methods are described in this chapter and are based on the theory described in 

Chapters 4 to 7. 

The method, shown schematically in Figure 3.5 (page 42), is as follows: The location ofthe 

reference ROI is used to define an annular search region in the test image. Textural characteristics 

of the reference ROI are compared to textural characteristics of equally sized sub-images from 

the annular region in the test image. The result of this comparison process is a map of similarity 

called a matching map, with the brighter regions on the matching map corresponding to a greater 

similarity between those regions in the test image and the reference ROJ. 

8.1 Effect of Algorithm Parameters on Matching Accuracy 

The effect of various matching parameters (sampling window size, sampling window step size, d 

in the GLCM, bit-depth and number of bins in the grey-level histogram) is investigated for each 

of the matching methods. The matching parameters are depicted in Figure 8.1. The choice of 

the values of the parameters used in this study is based on the many mammographic CAD studies 

using texture analysis, some of which are listed in Table 8.1. 

8.1.1 Sampling Window Size, w 

A sampling window of size M x N placed at position [x, y] in a large image extracts an M x N 

sub-image from that large image. For texture analysis, sampling windows are needed because 

texture is described as a variation of grey-level from pixel to pixel or region to region. Therefore 

individual pixels cannot be used for texture analysis as, individually, they do not contain non-local 

information. The sampling window must be large enough for the extracted sub-image to exhibit 

similar characteristics to those of the region in the image from where it was extracted. At the same 

time, the sampling window must be as small as possible to enable accurate detection of borders 

between neighbouring textural regions [Wang et al. 1996] . 

Sampling windows are defined by their size and position. In mammographic texture anal­

ysis, square sampling windows centred on a feature of interest, are often used with window 

90 



CHAPTER B. MATCIUNG METHODS 91 

sampling window step size 

• w"'" 

d in GLCM calculation 

• pixelatd= 0 

• pixels at d = 1 

• pixels at d = 2 

Figure 8.1 : Parameters affecting matching accuracy. All examples (except sampling window step 
size) increase from bottom to top. Sampling window step size increases from top to bottom. 

Table 8.1 : Summary of a few studies and the matching parameter values that have been used for 
mammographic textural analysis. 

Reference 
Spatial Resolution Bit-depth d w 

(um/pixel) (bits) (pixels) (pixels) 

Yin et al. [1991] 400 8 - -

Kegelmeyer et al. [1994] 280 10 - -

Laine et al. [1994] 200 10 - -

Suckling et al. [1995] 50 8 - 16,64 
Tahoces et al. [1995] 350 10 - -

Wei et al. [1995] 100 8 1- 16 256 
Petrick et al. [1998] 100 12 1-48 256 
Rangayyan et al. [1997a] 50 8 - -

Rangayyan et al. [1997b] 124 10 - -
Karssemeijer [1998] 200 12 - -
Karssemeijer [1998] 50 8 1 -
Sahiner et al. [1998a] 100 12 1- 16 256 
Chan et al. [1999] 100 12 1-20 -
Huo et al. [1999] 100 10 - -
Bovis et al. [2000] - 8 1- 9 -
Mudigonda et al. [2000] 50 8 1-10 -
te Brake et al. [2000] 200 12 - -
Chang et al. [2001] 400 12 - 125 
Li et al. [2002] 100 14 - -
Timp & Karssemeijer [2004] 200 12 - -
Filev et al. [2005] 800 12 - 21-61 with wSI~=1 

sizes ranging between 0.8 mm and 50 mm [Suckling et al. 1995, Petrick et al. 1998, Petrick 

et al. 1999, Chang et al. 2001]. 

For this study square sampling windows with sizes ranging from 4.06 mm (4 pixels) to 

143.2 mm (400 pixels) were used. For the mammograms, the size of the suspicious feature deter­

mined the upper bound to the size of the sampling window. 
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8.1.2 Sampling Window Step Size, Wstep 

The sampling window step size defines the amount by which the sampling window is incremen­

tally moved and determines how well boundaries between textures are resolved. If Wstep is too 

large then boundaries are not resolved, while if Wstep is too small then unnecessary time is spent on 

computation. In mammographic texture analysis most researchers use single sampling windows 

centred on an object of interest to compute textural features and in the single study where moving 

sampling windows were used, the sampling window step size was 0.8 mm corresponding to 1 pixel 

[Filev et al. 2005]. 

For this study, Wstep was varied from 4 pixels to 100 pixels for the mosaic images and was 

fixed at 1.02 mm (4 pixels) for the two sets of mammograms. 

8.1.3 Distance, d, in the GLCM 

The distance, d, used in the GLCM calculation defines the scale at which the texture in the image 

is analysed. If d is small relative to the texture coarseness, the GLCM values cluster around the 

diagonal while for large d the values are more spread out. In practice, small values of d yield 

the best results [Wang et al. 1996]. In mammographic texture analysis, d-values have varied from 

0.05 mm [Mudigonda et al. 2000] to 2 mm [Chang et al. 1999]. 

For this study, d was varied from 1 pixel to 10 pixels for the mosaic images and between 

0.258 mm (1 pixel) and 2.58 mm (10 pixels)for the mammograms and stereotactic biopsy mam-

mograms. 

8.1.4 Bit-depth of images, nbits 

The bit-depth of images controls the number of shades of grey that are available to describe the 

information in an image (Appendix B). The more shades of grey available, the more detail can be 

depicted in the image. However, if the bit-depth of an image is reduced, then the image features 

are effectively smoothed since detail is lost. 

In mammographic texture analysis, fixed values of either 8 bits, 10 bits, 12 bits or 14 bits have 

been used [Yin et al. 1991, Suckling et al. 1995, Rangayyan et al. 1997 a, Karssemeijer 1998, Bovis 

et al. 2000, Mudigonda et al. 2000, Laine et al. 1994, Kegelmeyer et al. 1994, Tahoces et al. 1995, 

Rangayyan et al. 1997b, Huo et al. 1999, Chan et al. 1999, Petrick et al. 1998, Karssemeijer 

1998, Petrick et al. 1999, te Brake et al. 2000, Chang et al. 2001 , Timp & Karssemeijer 2004, Li 

et al. 2002]. 

For this study bit-depth was varied from 5 bits to 8 bits. 

8.1.5 Number of Histogram Bins, nbins 

The probability density function estimated by a grey-level histogram is dependent on the number 

of histogram bins. Like bit-depth, the number of histogram bins controls the effective smoothing in 
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the resulting probability density function. If there are too many bins then each bin is sparsely pop­

ulated and the histogram is not continuous. However, if there are too few bins then the histogram 

is too smooth and features are lost. 

Tourassi et al [2001,2003] investigated the effect of the number of histogram bins on mam­

mographic texture analysis. Histograms with 64 bins, 128 bins and 256 bins were used. 

For this study, 16 bins, 32 bins, 64 bins and 128 bins were used. 

8.1.6 Ranges of Values for Matching Parameters 

The spatial resolutions for the mammograms and stereotactic biopsy mammograms listed in Table 

8.2 are used to convert the pixel-values of the matching parameters to physical sizes. The ranges 

ofthe values used for the matching parameters are summarised in Table 8.3. Distances and widths 

are given in pixels (as used in the calculations). 

Table 8.2: Summary of spatial resolutions and bit-depths for the three sets of images used in this 
study. The spatial resolution of the mosaic images is not listed since the spatial resolution of the 
mosaic images is not linked to the physical sizes of the features in these images. 

Image Set 
Spatial Resolution (mm per pixel) Bit-depth (bits) 
Original Analysis Original Analysis 

Mosaics - - 8 5 to 8 
Mammograms 0.050 0.254 10 5 to 8 
Stereotactic Biopsy Mammograms 0.048 0.254 12 5 to 8 

Table 8.3: Ranges of values for the matching parameters used in this study. Physical sizes are obtained 
by using the spatial resolutions given in Table 8.2. 

I Parameter II Minimum I Maximum I Interval 

w (pixels) 16 ~400a 16 
Wstep (pixels) b 4 ~400 25%-100% of W 

nbits (bits) 5 8 1 
d (pixels) - - [1,2,5,10] 
nbins (pixels) 24 27 factor 2 

a The maximum of 400 pixels refers to that for the mosaic images. The maximum for the mammograms and 

stereotactic biopsy mammograms is obtained from the maximum extent of the ROJ. 

b Wstep was varied by a fraction ofw for the mosaic images. For the mammogram images, Wstep was fixed with 

Wstep = 4 pixels. 

8.2 Formats of Results 

Figure 8.2 shows some examples of the formats used to present the evaluation results. Figure 

8.2(a) is a scatter plot of the area under the ROC curve VS. contrast to examine the general be­

haviour of a particular matching method. Points with AROC>0.75 and Cjb>0.75 are preferred 

since these indicate good matches. 

Figure 8.2(b) shows examples of two plots with 1( VS. W for different values of nbits (left) 

and d (right) to examine how matching accuracy varies across different values of w, for different 
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values of nbits or d. These plots are generated for each image pair. Dependence on matching 

accuracy is indicated by a separation of the different coloured plots. 

Figure S.2(c) shows example plots of K averaged over all images as a function of d (left) 

and nbits (right). These plots give insight to the overall behaviour of the matching parameters 

nbits and d as sampling window size is varied and are generated for each sampling window size. 

Dependence on matching accuracy is indicated by a separation of the different coloured plots 

[Chan et al. 1995]. 
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Figure 8.2: Example plots of the different fonnats used to present evaluation data. Each plot reveals 
a specific pattern of behaviour for each of the parameters being investigated. (a) Scatter plot of the 
area under the ROC curve vs. contrast to examine the general behaviour of a particular matching 
method. (b) Examples of K VS. w for different values of nbits (left) and d (right) to examine how 
matching accuracy varies across different values ofw. (c) Examples ofK averaged over all images as a 
function of d (left) and nbits (right). These plots give insight to the overall behaviour of the matching 
parameters nbits and d as w is varied. 
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8.3 Texture Measure Matching (TM-Matching) 
In TM-matching, the image textural information is quantified by texture measures extracted from 

GLCMs (§5 .5.2 on page 68). These texture measures are computed for the reference and test 

ROls, and are compared using three distance similarity metrics: Euclidean distance, standardised 

Euclidean distance, Mahalanobis distance (§6.1 on page 73). 

The GLCMs are computed at four angles (8=[0° ,45° ,90°,135°]) and then averaged to remove 

any directional effects that may be introduced by the change in breast compression between mam­

mographic views. Malignant masses are also usually homogeneous with regards to texture [Chan 

et al. 1995], so averaging the GLCMs is ideally suited to detecting homogeneous textures. The 

following thirteen texture measures are calculated from the averaged GLCMs at different values 

ofd: 

maximum probability 
inertia 
sum average 
sum variance 
information measure of correlation 1 

entropy energy 
inverse difference moment correlation 
sum entropy difference entropy 
difference average difference variance 

The resulting 13-dimensiona1 texture measure vectors are then used as the inputs to the distance 

similarity metrics, resulting in distance maps. 

Various combinations of these thirteen GLCM -based texture measures have been used in 

mammographic texture analysis by, for example, Wei et al. [1995], Petrick et al. [1998], Chris­

toyianni et al. [1999], Petrick et al. [1999], Bovis et al. [2000], Sahiner et al. [2001], Sahiner et al. 

[1998a] and Tourassi et al. [2001]. 

If texture measures are used to quantify texture for purposes of matching, then a good match 

is characterised by similar texture measure values for the reference and test ROIs. 

The TM-matching algorithm is detailed in Algorithm 8.1. 

8.4 Mutual Information Matching (MI-Matching) 

MI-matching uses grey-level histograms and GLCMs to quantify the textural information content 

in the image and mutual information as the similarity metric. 

This study uses grey-level histograms because most mutual information image registration 

algorithms use grey-level histograms to estimate the probability density functions [Wirth et al. 

2002, Maes et al. 1997, Pluim et al. 1998, Tourassi et al. 2001, Maintz et al. 1998]. For the 

calculation of mutual information, a joint, two-dimensional histogram between the reference and 

test ROIs is required, as well as individual, one-dimensional histograms of the reference and test 

ROIs. The IDL function (HISL2D) used to compute the two-dimensional histogram is described in 

Appendix D. Examples of two-dimensional histograms are shown in Figure 8.3 for two sample 

images. The joint two-dimensional histograms of each image with itself (Figure 8.3(c,g)) are 

only populated on the diagonals, while the joint two-dimensional histograms between Rl and R 7 
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Algorithm 8.1: TM-matching using GLCM-based texture measures and distance metrics 

Data: Test image, T , Reference image, R, centroid of reference ROI, [xc,Yc], sampling window size, w, 

sampling window step size, WSlep, required image bit-depth, nbits, original image bit-depth, obits, 

distance in GLCM, d 

Result: Distance map, D 

1. Pre-processing 

(a) Change bit-depth of reference and test images using nbits and obits 

(b) Apply appropriate masks if image is a mammogram 

2. Process reference image 

(a) Rsub =R[xc-Ylw :xc+Ylw-l ,yc- Ylw :yc+Ylw-1] Define sub-image 

(b) Calculate GLCM of Rsub ; Algori thm 5. 1 

(c) Calculate texture measures, T MR , of Rsub ; Equations 5-10 to 5 - 22. 

3. Define dimensions of texture measure array 

ncols = height of T, nrows = width of T 

xdim = (ncols - w)/step+ 1 

ydim = (nrows-w)/step+ 1 

TMArray = FLOATARRAY[xdim,ydim, 13] 

4. Calculate texture measures for the test ROIs 

for j = 0 to nrows-l in step do 

for i = 0 to ncols-l in step do 
id = (i/step) 

jd = (j/step) 

if j + w - 1 < nrows and i + w - 1 < ncols then 

(a) l'sub = T[xc-Ylw : xc+ Ylw - 1,yc-Ylw : Yc+Ylw - 1] 

endif 

endfor 

endfor 

(b) Calculate GLCM of l'sub 

(c) Calculate texture measures, T Mr, of l'sub 

(d) TMArray[id, jd,*] = TMrH 

5. Compare T MR to each entry in T MArray to calculate distance maps, D, for the Euclidean, 

standardised Euclidean and Mahalanobis distance metrics. ; Algorithm 6.1 

(Figure 8.3(i,j» are not symmetrical. 

If grey-level histograms are used to quantify texture for purposes of matching, then a good 

match is characterised by similar one-dimensional histograms for each of the reference and test 

ROIs and also a densely populated diagonal in the joint two-dimensional histogram. 

However, grey-level histograms do not incorporate spatial information, so this study uses the 

full GLCM as an estimate of a probability density function that incorporates spatial information. 

Hseu et al. [1999] has used the full GLCM for image registration with mutual information, but 
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Figure 8.3: Examples of individual and joint grey-level histograms and GLCMs averaged over 
9=[0°,45°,90°,135°] at d=l. (a) Image Rl. (b) Grey-level histogram of Rl. (c) Joint histogram 
ofR! and Rl. (d) GLCM ofRl. (e) Image R7. (t) Grey-level histogram ofR7. (g) Joint histogram of 
R7 and R7. (b) GLCM ofR7. (i) Joint histogram ofR! and R7. (j) Joint histogram ofR7 and Rl. (k) 
Joint GLCM ofR! and R7. (I) Joint GLCM ofR7 and RI. The joint GLCMs are symmetric while the 
joint histograms are not. 

the full GLCM has not been applied to a template-matching problem or to any problem in mam­

mographic CAD. For the calculation of mutual information, individual GLCMs of the reference 

and test images as well as a joint GLCM between the reference and test images is required. The 

individual GLCMs are calculated from Equation 5-4 (page 65). The joint GLCM is based on 

Equation 5-4 and for a reference image, IR , and a test image, Ir , the joint GLCM between IR and 

Ir is given by: 

M- I N- l 

Gs,d[m ,n] = L L 8(IRU,k] = m'!rU -dsine,k+dcose] = n) (8-1) 
j = O k= O 

Figure 8.3 shows examples of GLCMs for two sample images. The GLCMs of each im­

age with itself (Figure 8.3(d,h» are populated around the diagonals, while the joint GLCMs 

(Figure 8.3(k,I») are symmetrical. 

IfGLCMs are used to quantify texture for purposes of matching, then a good match is char­

acterised by reference, test and joint GLCMs that are similarly populated. 

Figure 8.3 shows that the joint histograms are not commutative, i.e. the joint histogram ofRl 

and R 7 is not equal to the joint histogram of R 7 and Rl , while the joint GLCMs are commutative. 

The MI-matching algorithm is detailed in Algorithm 8.2. 
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Algorithm 8.2: MI-matching using grey-level histograms, GLCMs and mutual information 

Data: Test image, T, Reference image, R, centroid of reference ROI, [xc,Yc], sampling window size, w, 

sampling window step size, Wstep, required image bit-depth, nbits, original image bit-depth, obits, 

distance in GLCM, d 

Result: Mutual information map, MI MAP 

1. Pre-processing 

(a) Change bit-depth of reference and test images using nbits and obits 

(b) Apply appropriate masks if image is a mammogram 

2. Process reference image 

(a) Rsub = R[xc-Ylw: xc+Ylw-l,yc-Ylw :yc+Ylw-1] 

3. Define dimensions of mutual information maps 

ncols = height of T, nrows = width of T 

xdim = (ncols - w)/wstep+ I 

ydim= (nrows-w)/wstep+1 

MIMAP = FLOATARRAY[xdim,ydim] 

4. Calculate mutual information map, MlMAP 

for j = 0 to nrows-l in Wstep do 

for i = 0 to ncols-l in Wstep do 

id = (i/wstep) 

jd= (J/wstep) 

if j + W - 1 < nrows and i + W - 1 < ncols then 

T'sub = T[xc-Ylw: xc+Ylw - l,yc-Ylw: Yc+Ylw - I] 

Define sub-image 

For method E [histogram, GLCM] compute individual (GR , Gr) and 

joint (GRr) probability density functions. 

MIMap[id,jdj =MI(GR, Gr, GRT ) 

endif 

endfor 

endfor 

; Algorithm 6.2 

8.4.1 Details of Histogram Calculation 

In order to reduce computation time, the individual and joint grey-level histograms were de­

termined by taking the minimum grey-level, fmin = min [Rsub , Tsubj, and maximum grey-level, 

fmax = max [Rsub , Tsubj, for the pair of reference and test sub-images. The range of grey-levels 

given by fmax - fmin was then divided into the required number of bins, nbins. 

8.4.2 Details of GLCM Calculation 

In order to reduce computation time, the GLCM was computed by taking the minimum grey-level, 

fmin = min [Rsub , Tsub]' and maximum grey-level, fmax = max [Rsub , Tsub], for the pair of reference 

and test sub-images. The GLCM was determined between the range of grey-levels given by fmax­

fmin' 
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8.5 Determination of the Matching Map 
The maps of distance and mutual information that result from the TM- and MI-matching algo­

rithms have to be converted to matching maps. A matching map is defined as having the optimal 

match indicated by maximum intensity. For MI-matching, the optimal match occurs at the maxi­

mum of the mutual information map and the matching map is identical to the mutual information 

map. 

For TM-matching, the optimum match on a distance map is at a minimum of distance and so 

the distance maps must be transformed to matching maps. The matching map, MD, corresponding 

to a distance map, D, of size M x N, is given by: 

I 
MD[i,}] = D[i,}] for i = 0, ... ,M - 1 and j = 0, ... ,N-1. 
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Figure 8.4: Functions for converting distance maps to matching maps. (a) 1 -x is a linear function 
that has equal preference for all values ofx. (b) l/x is an inverse function that puts a greater preference 
on lower values or x and is preferred for converting distance maps to matching maps. 

The transformation in Equation 8-2 (Figure 8.4(b)) was chosen because low distance values 

are enhanced in the matching map, while high distance values are suppressed. The enhancement 

and suppression is greater for this inverse transformation than for example, a linear transformation 

like that in Figure 8.4(a), which would also achieve the required conversion from (optimum at 

minimum) distance map values to (optimum at maximum) matching map values. The greater 

enhancement of regions with good matches and suppression of regions with poor matches means 

that the contrast of the high intensity regions indicating a good match is also enhanced when 

compared to the low intensity background in the matching map. 

8.6 Dimensions and Spatial Resolution of the Matching Map 
The sampling window size and the sampling window step size affect the spatial resolution and 

dimensions of the matching map. The dimensions, [mx,my], and spatial resolution, ms, of the 

matching map for a sampling window size ofw and a sampling window step size ofwstep is: 

(nx-w) 1 (ny- w) 
mx = + , my = + I (8-3) 

Wstep Wstep 

ms = ns· W (8-4) 
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where n n are the width and height of the test image with spatial resolution ns· x, y 

The spatial resolution of the matching map is dependant on the sampling window size alone 

while the dimensions of the matching map are dependant on the sampling window size and the 

sampling window step size. 

Examples of matching maps at different values of Wstep, for the same value of ware shown in 

Figure 8.5. The matching maps are shown to scale to demonstrate the differences in the dimen­

sions of the matching map while the spatial resolution or pixel size is the same. 

(c) (d) 

Figure 8.5: Effect of sampling window step size on dimensions of matching map demonstrated on mo­
saic reference image R7 and test image T2, for w=400 and (a) Wstep=100, (b) Wstep=200, (e) Wstep=300, 
(d) Wstep=400. Matching maps are shown to scale to demonstrate differences in map dimensions and 
the same spatial resolution. 

For large values of wand Wstep, the spatial resolution of the matching map is very coarse 

while for small wand small Wslep , the spatial resolution of the matching map is very fine. If W 

is too large then the sampled sub-image might contain information from multiple textural regions 

and if W is too small then the sampled sub-image might not contain enough information. Similarly, 

if Wstep is too large, boundaries between textural regions may be missed, resulting in a poor match 

and if Wstep is too small, computation time may be unnecessarily increased. 

8.7 Calculation of AROC and Cjb 

Matching maps are scaled between a and 255 (8 bits of information) to enable comparison with 

the ground truth data at discrete decision thresholds. FPF and TPF values are computed at each 

decision threshold and are used to generate a ROC curve for each map. The trapezoidal rule is 

used to compute the area under the ROC. The ground truth data is also used in the calculation of 

the contrast of the detected regions when compared to the background in the matching map. The 

algorithm for evaluation of the matching results is detailed in Algorithm 8.3. 
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Algorithm 8.3: Evaluation of results of matching methods 

Data: Matching map, M, and ground-truth map, T. M is scaled between 0 and 255 (corresponding to 

8 bits of information). 

Result: Area under curve, AROC, and contrast, Cjb. 

for g = 0 to 255 do 

for i = 0 to width-l do 

for 1 = 0 to height-l do 

; B is the binary map formed by thresholding M at g 

if M[i,l] ~ I then B[i,l] = lelse B[i,l] = 0 

if B[i,l] = 1 and T[i,l] = 1 then TP = TP + 1 

if B[i,l] = 0 and T[i,l] = 0 then TN = TN + 1 

if B[i,l] = 1 and T[i,l] = 0 then FP = FP+ 1 

if B[i,l] = 0 and T[i,l] = 1 then FN = FN + 1 

endfor 

endfor 

TPF[g] = (TP)/(TP+FN) 

FPF[g] = (FP) / (FP + TN) 

endfor 

eq.7-1 

eq.7-2 

ARoc = L;~oFPF[g]. (TPF[g]- TPF[g-l]) + ~. (FPF[g]-FPF[g-l]). (TPF[g]- TPF[g-l]) 

; Contrast Calculation 

1. Determine maximum extent ofROI, dmax. 

2. Use dmax to define a foreground mask, F, and a background mask, B, as indicated in Figure 7.4. 

3. Use F and B to determine f and b, the average grey-levels in the foreground and background 

respectively. 

4. Calculate Contrast C fb = (f - b) / (f + b) ; eq.7-10 

8.8 Quantification of Matching Accuracy, K 

The selection of the best combination of AROC and Cjb-values is facilitated by the novel use of a 

combined ARoc\Cjb-value referred to as matching accuracy, lC, and calculated as follows: 

lC = { -2· (AROC - O.S) . Cjb if AROC ::; O.S and Cjb ::; 0 
2· (AROC - O.S) . Cjb otherwise 

with -1.0 ::; lC ::; 1.0 because 0 ::;AROC::; 1 and -1 ::;Cjb::; 1. 

(8-S) 

The combination of ARoc and Cjb described in Equation 8-5 was selected because both AROC 

and Cjb are equally preferred. Figure 8.6(a), a contour plot of the lC surface, shows that lC~O as 

AROC~O.S and as Cjb~O. Only points in the upper right quadrant are favoured as this is the only 

region where lC>O. A good match has AROC~ I and Cjb~ 1. Acceptable matches should have 

AROC>O.S as this indicates that the matching is better than random and Cjb should be positive as 

this indicates that the matched region is at least brighter than the background in the matching map. 
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Figure 8.6: Quantification of matching accuracy, 1C, to rank combinations of ARoc and Cjb . (a) Contour 
plot of K surface. (b) K surface as a pseudo-colour image. K tends to 0 as AROC approaches 0.5 and as 
Cjb approaches 0 and 255 also only favours AROC- and Cjb-values in the upper right quadrant as this is 
the only region where K> O. AROC and Cjb are equally weighted. 

Two other ranking schemes (shown in Figure 8.7) were also investigated: 

Kalil = J A~oc+ (Cjb + 1)2 

Kalt2 = AROC . Cjb 

(8-6) 

(8-7) 

These schemes were not used since both place a higher preference on contrast, which results in a 

point with a very high Cjb-value, but a very low ARoc-value being ranked higher than a point with 

a slightly lower Cjb-value and a slightly higher ARoc -value. Higher values of AROC are preferred to 

higher values of contrast since the former indicates that a larger region has been correctly matched. 
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Figure 8.7: Alternate methods of combining ARoc and Cjb to rank matching results that were also 
investigated. (a) Ranking using Equation 8-6 yields a better match at point A which has AROC=0.5 
and Cjb=0.94 compared to point B which has AROC=0.70 and Cjb=O.77. (b) Ranking using Equation 
8-7 yields a better match at point A which has AROC=0.55 and Cjb=0.89 than at point B which has 
AROC=0.60 and Cjb=0.65 . Both these ranking schemes gave Cjb a higher preference than ARoc, which 
was not desired. 
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8.9 Sampling Window Sizes and the Autocorrelation Function (ACF) 

Texture analysis depends strongly on the size of the sampling window. A sampling window needs 

to be large enough to contain sufficient information for the texture analysis, but at the same time 

needs to be small enough to ensure that single textures are sampled. In this study, the dependence 

of matching accuracy on sampling window size is investigated for a range of values, but it is 

desirable to have an independent method of determining the sampling window size which results 

in an optimal matching accuracy, for any image. The autocorrelation function (ACF) described in 

§5.6.l (page 71) was investigated as a method of determining an optimal sampling window size. 

The ACF was used to determine the characteristic scale widths and scale heights of textures 

in the reference images. The ACF analysis was performed at different bit-depths as the scale sizes 

of textures are expected to change with bit-depth. These results were compared to the sampling 

window sizes that result in an optimal matching accuracy (from the investigation of the matching 

accuracy of the matching algorithms) using a linear correlation analysis. If there is a correlation, 

then the ACF can be used to select an optimal sampling window size for any image. The algorithm 

to compute the ACF scale sizes is described in Algorithm 8.4. 

Algorithm 8.4: Use of autocorrelation function to determine sampling window sizes 

Data: Reference image, R, & size, sz of square sampling window that completely encloses the ROI in R. 

Result: ACF-width, WACF, and ACF-height, hAcF. 

1. Extract sub-image, Rsub from R, of size sz centred on centroid ofRO!. 

2. Compute autocorrelation function, ACF, of Rsub, as detailed in Equation 5-25. 

3. Compute sum of ACF columns, ACFcols. WACF = min(ACFcols). 

4. Compute sum of ACF rows, ACFrows . hACF = min(ACFrows). 

8.10 Significance and Correlation Analysis 

8.10.1 The t-Test 

A paired I-test analysis is used to assess whether the mean results of two data sets are statistically 

different from each other. The I-test produces two results: a I-value and a p-value. The I-value is a 

ratio between the difference of the means and of the standard error of the difference of the means. 

If the t-value is negative, then the mean of the first data set is less than the mean ofthe second data 

set. The p-value is determined by using the I-value, the number of data points in each data set (or 

degrees of freedom) and the significance level (or alpha value). The alpha value refers to the odds 

that the observed result is due to chance. If a significance level of 0.05 is assumed and if the data 

sets have p < 0.05, then the data sets being compared can be described as statistically different. If 

p > 0.05 then the data sets being compared are not statistically different [Trochim 2005]. 

The I-test analysis is performed using IDL's TM_TEST function, and is used to compare the 

best results for each matching method to determine how similar the matching performance of a 

method is to the matching performances of the rest. 
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8.10.2 The Pearson Linear Correlation Coefficient 

The Pearson linear correlation coefficient gives an indication of the degree to which two data sets 

are linearly related. The linear Pearson correlation coefficient, p, ranges from -1.0 to 1.0, with a 

strong linear correlation for p=± 1 and a random, non-linear relationship between the data sets for 

p~O [StatSoft, Inc. 2003]. 

The Pearson linear correlation coefficient is calculated using IDL's CORRELATE function. 

In this study, the Pearson linear correlation coefficient is primarily used to determine whether 

the results of the autocorrelation function analysis are correlated with the optimal sampling win­

dow sizes from the matching analysis. 

8.11 Summary 
TM-matching uses GLCM-based texture measures to quantify texture and distance similarity met­

rics to compare textures between images to determine similarity. MI-matching uses grey-level 

histograms and GLCMs to quant~fy texture and mutual information as a similarity metric to com­

pare textures between images to determine similarity. Results are evaluated by computation of 

the area under the ROC curve, AROC, and contrast, Cjb, of the matched region in the matching 

map. Matching accuracy, K, is defined as a combination of AROC and Cjb. Matching parameters 

like sampling window size, sampling window step size, bit-depth, distance in the GLCM and the 

number of histogram bins are varied to investigate their effect on matching accuracy. The auto­

correlation function is investigated as a possible method of independently extracting an optimal 

sampling window size. 

The image processing components used in this study are summarised in Table 8.4, while the 

abbreviations used for the different methods are summarised in Table 8.5. 

Table 8.4: Summary of texture-based image processing methods used in this study 

ITM-matching IMI matching -

Texture Quantification 
1. GLCM-based texture measures 1. grey-level histograms 

2. GLCMs 
1. Euclidean distance (DE) 1. mutual information 

Similarity Metric 2. Standardised Euclidean distance (DES) 
3. Mahalanobis distance (DM) 

Table 8.5: Abbreviations of the different matching methods used in this study 

IMethod I Abbreviation I 

GLCM-based texture measures with DE TM-DE 
GLCM-based texture measures with DES TM-DES 
GLCM-based texture measures with DM TM-DM 
Histograms with mutual information MI-histograms 
GLCMs with mutual information MI-GLCMs 



Chapter 9 

Matching Results: Mosaic Images 

The TM-matching and MI-matching algorithms were applied to test images made up of a mosaic of 

single texture reference images to test matching performance under the ideal condition of knowing 

how the reference images are transformed in the test image. The matching results were evaluated 

and these results are presented and discussed in this chapter. 

The purpose of this chapter is two-fold. Firstly, while not all textures included in the mo­

saic images are similar to the mammographic textures, testing the performance of the matching 

algorithms on test images with clear borders between single textures and where there are known 

transformations of the single textures will give insight into whether the matching algorithms have 

any potential for identifying similar textures in mammograms. 

Secondly, the investigation using mosaic images will also give some insight into how the 

matching accuracy is affected by the various matching parameters. This information will be used 

to guide the selection of a set of optimal matching parameters, when the matching algorithms are 

applied to the pairs of mammograms and the stereotactic biopsy mammograms. 

9.1 Details of the Mosaic Images used in this Study 

Three mosaic images were constructed from single texture images (at 8 bits) [Softkey Interna­

tional, Inc. 1996] and were used to test the performance of the matching algorithms under the 

conditions of knowing exactly how the reference regions were transformed in the test image. For 

two of the mosaic images (test image T1 and test image T2), the reference images were identical 

to those in the mosaic images, with some rotated by 900 0r 180°. In test image T3 some reference 

images were scaled up or distorted or rotated by 45°, 90°, 135° or 180°, to simulate the possi­

ble effects of changing the compression between mammographic views. Ground-truth data was 

manually extracted from the test images and was used to evaluate matching accuracy. 

Figure 9.1 shows the mosaic test images, their corresponding reference images and the place­

ment of sampling windows of different sizes, within each reference image. All sampling windows 

are placed with their bottom left comer at the image origin (i.e. bottom left comer as defined in 

Appendix B). All test images were 2 400 pixels x 1 600 pixels, and the reference images were 

600 pixels x 400 pixels. Each mosaic image pair is referred to by the reference and test image 

labels, for example, the image pair consisting of reference image R7 and test image T2, is R7T2. 

105 
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(g) (h) (i) 

Figure 9.1: Mosaic images. Each mosaic image pair is referred to by the reference and test image 
labels, for example, the image pair consisting of reference image R7 and test image T2, is R7T2 
(a) Test image Tl with images of bricks and tiles combined at various orientations (0°, 90°,180°). 
(b) Reference images for Tl , (from top) R1 , R2, R3 and R4. (c) Positions of sampling windows of 
different sizes (white lines) overlaid on reference images. (d) Test image T2 with images of trees 
and granite combined at various orientations (0°,90°, 180°). (e) Reference images for T2, (from top) 
R5, R6, R7 and R8. (t) Positions of sampling windows of different sizes (white lines) overlaid on 
reference images. (g) Test image T3 with images of trees and granite combined at various orientations 
(0°, 45°, 90°, 135°, 180°) and at various scaling factors and distortions (to simulate magnification 
and compression possible effects). (b) Reference images for T3, (from top) R5, R6, R7 and R8. (i) 
Positions of sampling windows of different sizes (white lines) overlaid on reference images. 
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Table 9.1: Details of transfonnations of reference textures in mosaic images listing the number of 
times each reference texture appears in the test image and the number of times the reference texture is 
either rotated, scaled (up or down) or rotated. 

I Image Pairs I # of occurrences I # rotated I # scaled up or down I # distorted I 
RITI 3 I 0 0 
RlTl 3 1 0 0 
R3Tl 3 0 0 0 
R4Tl 2 0 0 0 
R5T2 4 0 0 0 
R6T2 2 I 0 0 
R7T2 2 0 0 0 
R8T2 1 0 0 0 
R5T3 4 2 1 1 
R6T3 2 1 1 0 
R7T3 4 0 4 1 
R8T3 2 0 1 0 

9.2 Effect of Sampling Window Step Size on Matching Accuracy 

The template matching algorithms were applied to the mosaic image pairs, generating matching 

maps for each combination of matching parameters. The results of varying the sampling window 

step size, Wstep, are presented. For the mosaic images Wstep was varied as a fraction, Wsj, of the 

sampling window size, w, with: 

Wstep = W· Wsj (9-1) 

Typical plots of matching accuracy, lC, VS. W, are shown for 4 values of Wsj in Figure 9.2 for 

the matching of image pair R7T2, at a bit-depth of 8 bits and d=l pixel (for the GLCMs) or 

nbins=128 bins (for the histograms). No method shows a clear dependence of matching accu­

racy on Wsj. Apart from TM-DE (for w<260 pixels) matching accuracy plots are smoothest for 

wsj=0.25 and are most erratic for wsrvalues of 0.75 and 1.00. 

As described in §8.6 (page 99), the dimensions and spatial resolution of the matching map 

are dependent on wand Wstep. When W and WSlep are very large, the resulting matching map is 

very small (Figure 8.5(d), with a coarse spatial resolution. The coarse resolution means that 

when the map is scaled between 0 and 255 for the evaluation, a single high-intensity pixel can 

cover a very large area in the matching map and can indicate a 'good' match leading to a high 

lC-value, at large values of w. This would explain why the matching accuracy plots are so erratic 

for the larger values of Wsj and also why there are some lC-values for wsj=0.75 and Wsj= 1.0 (for 

the larger sampling windows) that are higher than the lC-values for wsj=0.25 and wsj=0.50 at the 

same sampling window sizes. 

Unfortunately, as a consequence of choosing the sampling window step size as a fraction of 

the sampling window size, the results of this investigation have two varying parameters, viz. wand 

Wstep because each value ofw had a different value ofwstep. It is therefore impossible to determine 

which parameter (w or Wstep) is affecting the matching accuracy. 
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Figure 9.2: Typical example of the effect of sampling window step size on matching accuracy demon­
strated on mosaic image pair R7T2, with matching accuracy plotted as a function of sampling window 
size, for the 4 values of Wsj, indicated by the different colours. Results with wsj=O.25 are generally 
smoothest. 

This investigation of the dependence of sampling window step size on matching accuracy for 

the mosaic images led to the conclusion that the sampling window step size: 

1. should be independent of the sampling window size, and 

2. should be fixed. 

For the mosaic images, matching accuracy curves were smoothest for wsj=O.25, so only 

results for wsj=O.25 are presented and discussed in the following sections. 

9.3 Examples of Matching Maps 

Examples of typical matching maps for TM- and MI-matching are shown in Figure 9.3. These 

maps were obtained by selecting the combination of matching parameters that yielded the max­

imum and minimum values of lC for each method. Details of the exact matching parameters for 

these maps are given in Table 9.2. 

The matching maps for the minimum lC-values are shown in the left column in Figure 9.3. 

Three methods (TM-DE, MI-histograms, MI-GLCMs) have negative contrasts because the back­

ground is brighter than the intensity of region to be matched. The remaining two methods (TM­

DES, TM-DM) have AROC<O.5 indicating that the match is no better than random. 

The matching maps for the maximum lC-values are shown in the right column in Figure 9.3. 

All methods have very high values for AROC, but TM-DM and MI-histograms have low values for 
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Cjb, which leads to an overall low value for 1(. The effect of a positive, but low Cjb-value can be 

seen in the maps for the latter two methods. It can be clearly seen that matched region is not as 

easily discerned from the background as, for example, for the best matching map for MI-GLCMs. 

TM-DE 

TM-DES 

TM-DM 

MI-Histograms 

MI-GLCMs 

Figure 9.3: Examples of matching maps (not to scale) for image pair R7T2. The reference image R7 
is shown at the top, left and the test image T2 is shown at the top, right. The maps with the minimum 
and maximum lC-values, for each method, are shown in the left and right columns, respectively, with 
the colour bar at the bottom indicating the intensity scale for the maps. 

Table 9.2: Summary of matching parameters for the example matching maps of mosaic for image pair 
R7T2, listed at the maximum and minimum lC-values. Negative contrasts indicate that the background 
is brighter than the region to be matched. 

- E . . . . . 
TM-DES 96 5 10 0.43 0.l5 -0.02 336 5 10 0.98 0.82 0.80 
TM-DM 96 6 10 0.39 0.09 -0.02 368 8 1 0.90 0.46 0.36 
MI-histograms 16 8 128 0.52 -0.01 -0.00 80 6 16 0.83 0.25 0.16 
MI-GLCMs 384 5 10 0.16 -0.l2 -0.08 48 8 10 1.00 0.94 0.93 
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9.4 TM-Matching Evaluation Results 
The TM-matching algorithm (Algorithm 8.1 on page 96) was applied to the three test images on 

page 106. The results of the dependence of matching accuracy on the matching parameters are 

discussed for each of the three distance similarity metrics. 

Examples of the median, average and standard deviation for each of the texture measures 

is shown in Table 9.3 for reference image R7 to demonstrate that there is a clear difference in 

the ranges of the values used as inputs to the distance similarity metric. The values listed were 

calculated over the full range of matching parameters. The sum variance values are considerably 

higher than the values for the other texture measures. The sum variance texture measure most 

likely dominates the Euclidean distance calculation. 

Table 9.3: Median, average and standard deviation of texture measures. 

I Texture Measures for R 7 II Median I Average I Standard Deviation I 
Entropy 9.06 7.71 4.13 
Energy 0.004 0.008 0.012 
Inertia 162 810 1399 
Inverse Difference Moment 0.183 0.184 0.130 
Correlation 0.574 0.498 0.329 
Sum Average 44.1 63.3 65.9 
Sum Entropy 6.15 5.23 2.82 
Difference Entropy 4.46 3.93 2.20 
Sum Variance 1132 4263 6866 
Difference Average 8.11 13.1 13.8 
Difference Variance 94.9 450 748 
Information Measure of Correlation 1 1.46 1.18 0.593 
Maximum Probability 0.035 0.046 0.046 

9.4.1 Computation Times 

Computation times for a single map were dependent on the values used for nbits and wand 

ranged from a few minutes to an hour. The calculation of the texture measures was the most 

time-consuming portion of the calculation, when compared to the time required for the GLCM 

calculation and the distance map calculation. 

9.4.2 Evaluation ofTM-Matching with DE 

The evaluation results of applying the TM-matching algorithm with the Euclidean distance sim­

ilarity metric, DE, to mosaic images are presented and discussed. The dependence of matching 

accuracy on nbits, d and w is examined. Results are presented in the formats described in §8.2 

(page 93). Dependence on matching accuracy is indicated by separation of the different coloured 

plots. 
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Effect of nbits on Matching Accuracy, K 

Typical examples OfK vs. w for different values of nbits are shown in Figure 9.4(a) to demonstrate 

the dependence of matching accuracy on nbits and w. There is some dependence of matching 

accuracy on nbits at the smaller sampling windows for R2T1 and R5T2, but the results for R 7T2 

and R7T3 overlap almost exactly indicating that matching accuracy is independent of nbits for 

these two examples. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

are significantly different from the ACF-heights. There appears to be poor correlation between the 

ACF results and the maximum values OfK. The ACF results are discussed in §9.7. 

Figure 9.4(b) shows average matching accuracy (over all image pairs) plotted as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The dependence of 

matching accuracy on nbits is influenced by the sampling window size. There is some separation 

of the plots, for w~ 80 pixels, showing a slight increase in matching accuracy as nbits decreases. 

Matching accuracy is independent of nbits for the larger sampling windows since all these plots 

overlap completely. 

Effect of d on Matching Accuracy 

Some examples OfK vs. ware shown in Figure 9.S(a) to demonstrate the dependence of matching 

accuracy on d. There is some separation of the plots, but there is no consistent pattern to the 

dependence of matching accuracy on d. There are a few window sizes in R7T2 where the 5-bit 

plot deviates from the rest and this is most likely a consequence of the different step size for each 

sampling window size. 

Figure 9.S(b) shows average matching accuracy (over all image pairs) plotted as a function 

of nbits, to highlight the general dependence of matching accuracy on d. The dependence of 

matching accuracy on d is influenced by the sampling window size. Most sampling windows 

show no separation of the d-plots, indicating an independence of matching accuracy on d. Some 

sampling windows show a slight separation between the plots. These show that matching accuracy 

improves as d increases. 

Effect of w on Matching Accuracy 

Figures 9.4(a) and 9.S(a) show that matching accuracy varies with w, but that the variation is dif­

ferent for each reference image (R2, R5 and R 7) and is similar for the same reference image (R 7T2 

and R7T3). It is, therefore, likely that the dependence of matching accuracy on w is influenced by 

the scale sizes of structures in the reference image. 
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Figure 9.4: Effect of nbits on matching accuracy for TM-DE applied to mosaic image pairs. (a) 
Typical examples of 1( vs. w. The colours indicate different values of nbits. Each row contains the 
information for a single image pair. The vertical lines indicate the results of the ACF analysis. The 
solid line represents the ACF-width and the dotted line represents the ACF-height, at different bit­
depths. (b) Average matching accuracy as a function of d, at different values of nbits to highlight the 
general dependence of matching accuracy on nbits for the mosaic images. 
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Figure 9.5: Effect of d on matching accuracy for TM-DE applied to mosaic image pairs. (a) Typical 
examples of K vs. w. The colours indicate different values of d. Each row contains the information for 
a single image pair. (b) Average matching accuracy as a function of bit-depth, at different values of d 
to highlight the general dependence of matching accuracy on d for the mosaic images. 
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Figure 9.6: Scatter plot of the best results for TM-DE applied to the mosaic images. The circled point 
refers to a match for image pair R3T1 with the origin of the reference sampling window placed away 
from the origin of the reference image, to demonstrate that the position of the reference sampling 
window affects matching accuracy. 

Summary of Best Results 

The ARoc- and Cjb-values corresponding to the best matches for each image pair are plotted in 

Figure 9.6. Matching is generally good with 0.65 <AROC< 1.0 (average 0.84 ±0.08), 0.55 <Cjb< 

1.0 (average 0.83 ± 0.12) and matching accuracy, 0.20 <K< 1.0 (average 0.59 ± 0.20). The high 

ARoc-values indicate that most of the reference region was found in the test image, and the high 

Cjb-values indicate that the matched regions were easily discerned on the matching map. 

The worst match occurred for image pair R3Tl with AROC=0.67 and Cjb=O.58. This poor 

match is most likely because reference image R3 is made up of many small tiles, each a slightly 

different shade of grey. The matching accuracy would then depend on the position of the reference 

sampling window. This dependence was confirmed by moving the reference sampling window 

away from the origin of the reference image by 100 pixels along the image width. The full TM­

matching algorithm was applied to image pair R3Tl for the new reference sampling position 

and the result, circled in Figure 9.6, has a completely different matching result to that for the 

original reference sampling position, highlighting the sensitivity of the method to the position 

of the reference sampling window. The new (circled) result is however slightly worse than the 

original result. 

9.4.3 Evaluation ofTM-Matching with DES 

The evaluation results of applying the TM-matching algorithm with the standardised Euclidean 

distance similarity metric, D ES, to mosaic images are presented and discussed. The dependence of 

matching accuracy on nbits, d and w is examined. Results are presented in the formats described 
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Figure 9.6: Scatter plot of the best results for TM-DE applied to the mosaic images. The circled point 
refers to a match for image pair R3Tl with the origin of the reference sampling window placed away 
from the origin of the reference image, to demonstrate that the position of the reference sampling 
window affects matching accuracy. 

Summary of Best Results 

The AROC- and Cjb-values corresponding to the best matches for each image pair are plotted in 

Figure 9.6. Matching is generally good with 0.65 <AROC< 1.0 (average 0.84±0.08), 0.55 <Cjb< 

1.0 (average 0.83 ± 0.12) and matching accuracy, 0.20 <1« 1.0 (average 0.59 ± 0.20). The high 

ARoc-values indicate that most of the reference region was found in the test image, and the high 

Cjb-values indicate that the matched regions were easily discerned on the matching map. 

The worst match occurred for image pair R3Tl with AROC=0.67 and Cjb=0.58. This poor 

match is most likely because reference image R3 is made up of many small tiles, each a slightly 

different shade of grey. The matching accuracy would then depend on the position of the reference 

sampling window. This dependence was confirmed by moving the reference sampling window 

away from the origin of the reference image by 100 pixels along the image width. The full TM­

matching algorithm was applied to image pair R3T1 for the new reference sampling position 

and the result, circled in Figure 9.6, has a completely different matching result to that for the 

original reference sampling position, highlighting the sensitivity of the method to the position 

of the reference sampling window. The new (circled) result is however slightly worse than the 

original result. 

9.4.3 Evaluation of TM-Matching with DES 

The evaluation results of applying the TM-matching algorithm with the standardised Euclidean 

distance similarity metric, DES, to mosaic images are presented and discussed. The dependence of 

matching accuracy on nbits, d and w is examined. Results are presented in the formats described 
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in §8.2 (page 93). Dependence on matching accuracy is indicated by separation of the different 

coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of K VS. W to demonstrate the dependence of matching accuracy on nbits are 

shown in Figure 9.7(a). All examples, except R7T3, show no dependence of matching accuracy 

on bit-depth. The results for R7T3 are separated for most values of sampling window size, and 

show that matching accuracy improves as bit-depth decreases. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

are significantly different from the ACF-heights. There appears to be poor correlation between the 

ACF results and the maximum values OfK. The ACF results are discussed in §9.7. 

Figure 9.7(b) shows the average matching accuracy (over all image pairs) plotted as a func­

tion of d, to highlight the general dependence of matching accuracy on nbits. The dependence 

of matching accuracy on bit-depth is influenced by the size of the sampling window. There is no 

separation for w~ 64 pixels, and the degree of separation increases slightly as sampling window 

size increases. It appears as if matching accuracy improves slightly as bit-depth decreases. 

Effect of d on Matching Accuracy 

Some examples of K VS. ware shown in Figure 9.8(a) to demonstrate the dependence of matching 

accuracy on d. All plots show some separation indicating that there is a dependence of matching 

accuracy on d, but matching accuracy improves with decreasing d for R2T1, R5T2 and R7T2 and 

improves with increasing d for R 7T3. 

Figure 9.8(b) shows the average matching accuracy (over all image pairs) plotted as a func­

tion of nbits, to highlight the general dependence of matching accuracy on d. There is some 

separation of the different d-plots for w~80 pixels. The separation is not significant, but it appears 

that matching accuracy improves slightly as d decreases. 

Effect of w on Matching Accuracy 

Figures 9.7(a) and 9.8(a) show that matching accuracy is dependent on sampling window size. 

Since the variation of matching accuracy is different for the different reference images (R2, R5 

and R7), but is similar for the R7T2 and R7T3, it is most likely that the dependence of matching 

accuracy on sampling window size, is influenced by the scale sizes of structures in the reference 

unage. 
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Figure 9.7: Effect of nbils on matching accuracy for TM-DEs applied to mosaic image pairs. (a) 
Typical examples of K VS. w. The colours indicate different values of nbits. Each row contains the 
information for a single image pair. The vertical lines indicate the results of the ACF analysis. The 
solid line represents the ACF-width and the dotted line represents the ACF-height, at different bit­
depths. (b) Average matching accuracy as a function of d, at different bit-depths to highlight the 
general dependence of matching accuracy on bit-depth for the mosaic images. 
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Figure 9.8: Effect of d on matching accuracy for TM-DEs applied to mosaic image pairs. (a) Typical 
examples of 1C VS. w. The colours indicate different values of d. Each row contains the information for 
a single image pair. (b) Average matching accuracy as a function of bit-depth, at different values of d 
to highlight the general dependence of matching accuracy on d for the mosaic images. 
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Figure 9.9: Scatter plot of the best results for TM-DES applied to the mosaic images. 
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The values of AROC and Cjb corresponding to the best matches for each image pair are plotted in 

Figure 9.9. All image pairs have 0.80 <AROC< 1.0 (average 0.91 ± 0.04) and 0.50 <Cjb < 0.85 

(average 0.68 ± 0.09), with 0.40 <1C< 0.80 (average 0.56 ± 0.13). The high ARoc-values indicate 

that most of the reference ROI was matched to the corresponding region in the test image and 

the high Cjb-values indicate that the matched regions can be discerned on the matching map. The 

results are more clustered than those for DE, with no outliers as was the case for image pair R3Tl 

with DE. 

Results of plotting 1C as a function of ware generally smoother than the equivalent plots for 

TM-DE, showing that standardisation has 'evened' out the results. It is also interesting that for 

TM-DE, the separation of the different nbits-plots was only clearly seen for the small sampling 

windows, while for TM-DES, the separation of the different nbits-plots are clearly seen for most 

sampling window sizes, with almost no separation of the plots for the small sampling windows. 

This is also most likely another consequence of the standardisation, because results from the larger 

and smaller window sizes have been normalised. 

9.4.4 Evaluation of TM-Matching with DM 

The evaluation of matching results from applying the TM-matching algorithm with the Maha­

lanobis distance similarity metric, DM, to mosaic images are presented and discussed. The depen­

dence of matching accuracy on nbits, d and w is examined. Results are presented in the formats 

described in §8.2 (page 93). Dependence on matching accuracy is indicated by separation of the 

different coloured plots. 
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Effect of nbits on Matching Accuracy 

Typical examples of K vs. W to demonstrate the dependence of matching accuracy on nbits are 

shown in Figure 9.10(a). There is some dependence of matching accuracy on bit-depth at the 

smaller values of d for R5T2 and for the larger sampling windows for R 7T2. There is no sepa­

ration of nbits-plots for R2Tl and R7T3 . R5T2 shows matching accuracy increasing as bit-depth 

decreases and R 7T2 shows matching accuracy increasing as bit-depth increases. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

are significantly different from the ACF-heights. There appears to be poor correlation between the 

ACF results and the maximum values ofK. The ACF results are discussed in §9.7. 

Figure 9.10(b) shows the average matching accuracy (over all image pairs) plotted as a func­

tion of d, to highlight the general dependence of matching accuracy on nbits. Most plots overlap 

almost exactly, but there is a slight separation of the nbits-plots at small values of d for the larger 

sampling windows. The separation is insufficient to determine a general pattern to dependence of 

matching accuracy on bit-depth. 

Effect of d on Matching Accuracy 

Some examples ofK vs. ware shown in Figure 9.11(a) to demonstrate the dependence of matching 

accuracy on d. Plots for R2T1, R5T2 and R 7T2 are separated, indicating a dependence of matching 

accuracy on d. For R2T1 and R5T2 matching accuracy improves as d increases and for R7T2, 

matching accuracy improves as d decreases. All plots for R 7T3 overlap completely and matching 

accuracy is independent of d for R7T3 . The match for R7T3 is very poor as the nbits-plots have 

values of K close to O. 

Figure 9.11(b) shows the average of the matching accuracy (over all image pairs) as a func­

tion of nbits, to highlight the general dependence of matching accuracy on d. There is no de­

pendence of matching accuracy on d as all plots overlap almost exactly for all sampling window 

Slzes. 

Effect of w on Matching Accuracy 

Figures 9.10(a) and 9.11(a) show that matching accuracy is dependent on sampling window size. 

Since the variation of matching accuracy is different for the different reference images (R2, R5 

and R 7), it is most likely that the dependence of matching accuracy on sampling window size, is 

influenced by the scale sizes of structures in the reference image. 
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Figure 9.10: Effect of nbits on matching accuracy for TM-DM applied to mosaic image pairs. (a) 
Typical examples of K vs. w. The colours indicate different values of nbits. Each row contains the 
information for a single image pair. The vertical lines indicate the results of the ACF analysis. The 
solid line represents the ACF-width and the dotted line represents the ACF-height, at different bit­
depths. (b) Average matching accuracy as a function of d, at different bit-depths to highlight the 
geneml dependence of matching accuracy on bit-depth for the mosaic images. 
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Figure 9.11: Effect of d on matching accuracy for TM-DM applied to mosaic image pairs. (a) Typical 
examples ofK VS. w. The colours indicate different values of d. Each row contains the information for 
a single image pair. (b) Average matching accuracy as a function of bit-depth, at different values of d 
to highlight the general dependence of matching accuracy on d for the mosaic images. 
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Figure 9.12: Scatter plot of the best results for TM-DM applied to the mosaic images. 

The values of AROC and Cfb corresponding to the best matches for each image pair are plotted 

in Figure 9.12. All images have 0.6 <AROC< 0.95 (average 0.82 ± 0.10) and 0.10 <Cfb< 0.75 

(average 0.45 ±0.18), with 0.10 <1« 0.75 (average 0.31 ±0.17). Results are quite scattered and 

matching is very poor for 3 image pairs (R5T3, R6T3 and R7T3). The high ARoc-values indicate 

that most of the reference ROI was matched to the corresponding region in the test image, but the 

low Cfb-values indicate that the matched regions are difficult to discern on the matching map. 

The average AROC- and Cfb-values are lower than those for DE and DES and the poor matching 

accuracies might be an indication that there is poor correlation between the texture measures to 

warrant using DM. 

9.4.5 Effect of a Reduced Set of Texture Measures on Matching Accuracy 

TM-matching was performed using a reduced set of texture measures to test whether the reduced 

set of texture measures might improve accuracy. The texture measures used were: correlation, 

inverse difference moment, entropy, sum entropy, difference entropy and the first information 

measure of correlation, and were selected according to the criteria laid out in Gotlieb & Kreyszig 

[1990] (page 70). The results are summarised in Figure 9.13 and are worse than the results 

obtained by using 13 texture measures, when compared to the results in Figure 9.20. This might 

be a consequence of using the same reduced set of texture measures for all images since each image 

might have its own set of texture measures that best describe the textural information contained in 

the image. 
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Figure 9.13: Scatter plot of the best matching results for TM-matching with a reduced set of texture 
measures. Results are worse than those obtained from using 13 texture measures, and both AROC and 
Cfb have lower values. (a) TM-DE. (b) TM-DES. (c) TM-DM . 
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9.5 MI-Matching Evaluation Results 
The MI-matching algorithm (Algorithm 8.2 on page 98) was applied to the three test images on 

page 106. The results of the dependence of matching accuracy on the matching parameters are 

discussed for grey-level histograms and GLCMs. 

9.5.1 Computation Times 

Computation times were dependent on the values used for nbits and wand ranged from a few min­

utes to an hour, for a single map. Computation times were however faster than for TM-matching, 

since mutual information is computed faster than the texture measures. 

9.5.2 Evaluation of MI-Matching with Histograms 

The evaluation results of applying the MI-matching algorithm with histograms to mosaic images 

are presented and discussed. The dependence of matching accuracy on nbits, nbins and w is 

examined. Results are presented in the formats described in §8.2 (page 93). Dependence on 

matching accuracy is indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of lC VS. w to demonstrate the dependence of matching accuracy on nbits are 

shown in Figure 9.14(a). There is some separation of the nbits-plots for some values of d, for each 

image pair. R2T1 shows matching accuracy improving as bit-depth decreases. R5T2 and R7T2 

show some dependence of matching accuracy on bit-depth for the smaller sampling windows, but 

the separation is insufficient to extract a general pattern of behaviour. R 7T3 shows some separation 

of the nbits-plots for 80 <w< 250, with matching accuracy improving as bit-depth increases. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

are significantly different from the ACF-heights. There appears to be poor correlation between the 

ACF results and the maximum values oflC. The ACF results are discussed in §9.7. 

Figure 9.14(b) shows the average matching accuracy (over all image pairs) as a function of 

nbins, to highlight the general dependence of matching accuracy on nbits. There is some separation 

of the nbits-plots for w< 128 pixels, but the separation is insufficient to determine a general pattern 

to the dependency of matching accuracy on nbits. Matching accuracy is independent of nbits for 

the larger sampling windows, since all these plots overlap completely. 
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Figure 9.14: Effect of nbits on matching accuracy for MI-histograms applied to mosaic image pairs. 
(a) Typical examples of K VS. w. The colours indicate different values of nbits. Each row contains 
the information for a single image pair. The vertical lines indicate the results of the ACF analysis. 
The solid line represents the ACF-width and the dotted line represents the ACF-height, at different 
bit-depths. (b) Average matching accuracy as a function of d, at different bit-depths to highlight the 
general dependence of matching accuracy on bit-depth for the mosaic images. 



CHAPTER 9. MATCHING RESULTS: MOSAIC IMAGES 126 

Effect of nbins on Matching Accuracy 

Some examples OfK vs. ware shown in Figure 9.15(a) to demonstrate the dependence of matching 

accuracy on nbins. There is some separation for portions of all plots. R2T1 has the greatest de­

gree of separation between nbins-plots at the higher bit-depths and shows that matching accuracy 

improve as nbins decreases for the higher bit-depths. R5T2 and R7T2 show a slight separation 

of the nbins-plots at the smaller sampling windows, with results showing that matching accuracy 

increases as nbins decreases. R7T3 shows separation of the nbins-plots for 80 <w< 250, with 

matching accuracy improving as nbins increases, over this region. 

Figure 9.15(b) shows the average matching accuracy (over all image pairs) plotted as a nmc­

tion of nbits, to highlight the general dependence of matching accuracy on nbins. There is slight 

separation of the plots for w~ 128 pixels, and results show that matching accuracy improves as 

nbins decreases. For the larger sampling windows, there no dependence of matching accuracy on 

nbins as all plots overlap almost exactly. 

Effect of w on Matching Accuracy 

Figures 9.14(a) and 9.15(a) show that matching accuracy varies with sampling window size, but 

the variation is not as clear as it was for the distance similarity metrics. The plots of nbits and nbins 

are generally much flatter than the results for the distance similarity metrics. Although, since both 

Figures 9.14(b) and 9.15(b) show the greatest separation for the smaller sampling windows, it 

may be concluded that matching accuracy is optimal for the smaller sampling windows. 

Summary of Best Results 

The values of AROC and Cjb corresponding to the best matches for each image pair are plotted 

in Figure 9.16. All images have 0.65 <AROC< 1.0 (average 0.77 ± 0.10) and 0.08 <Cjb< 0.70 

(average 0.29 ±0.18), with 0.0 <K< 0.40 (average 0.16±0.11). There is a wider spread of results 

compared to the results for the three distance similarity metrics. The generally low Cjb-values 

indicate that the matched regions are difficult to discern on the matching map. Specific images 

(e.g. R2T1) seem to respond better to histograms than others, but the matching accuracy oh:=0.39 

is still lower than the results for the distance similarity metrics. 

In general, matching accuracies are much lower than for the distance similarity metrics. 
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Figure 9.15: Effect of nbins on matching accuracy for MI-histograms applied to mosaic image pairs. 
(a) Typical examples of K vs. w. The colours indicate different values of nbins. Each row contains 
the information for a single image pair. (b) Average matching accuracy as a function of bit-depth, at 
different values of nbins to highlight the general dependence of matching accuracy on nbins for the 
mosaic images. 
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Figure 9.16: Scatter plot of the best results for MI-histograms applied to the mosaic images. 

9.5.3 Evaluation of MI-Matching with GLCMs 

The evaluation results of applying the MI-matching algorithm with GLCMs to mosaic images 

are presented and discussed. The dependence of matching accuracy on nbits, d and w is exam­

ined. Results are presented in the formats described in §8.2 (page 93). Dependence on matching 

accuracy is indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of !C VS. w to demonstrate the dependence of matching accuracy on nbits are 

shown in Figure 9.17(a). There is clear separation of the nbits-plots, with all results showing that 

matching accuracy improves as bit-depth increases. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

are significantly different from the ACF-heights. There appears to be some correlation between 

the ACF results and the maximum values of!C, for R2T1, R5T2 and R7T3. The ACF results are 

discussed in §9.7. 

Figure 9.17(b) shows the average matching accuracy (over all image pairs) plotted as a func­

tion of d, to highlight the general dependence of matching accuracy on nbits. There is a clear 

separation of the nbits-plots for all sampling window sizes. Matching accuracy improves as bit­

depth increases, irrespective of the sampling window size. 
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Figure 9.17: Effect of nbits on matching accuracy for MI-GLCMs applied to mosaic image pairs. 
(a) Typical examples of 1C vs. w. The colours indicate different values of nbits. Each row contains 
the information for a single image pair. The vertical lines indicate the results of the ACF analysis. 
The solid line represents the ACF-width and the dotted line represents the ACF-height, at different 
bit-depths. (b) Average matching accuracy as a function of d, at different bit-depths to highlight the 
general dependence of matching accuracy on bit-depth for the mosaic images. 
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Effect of d on Matching Accuracy 

Some examples OfK vs. ware shown in Figure 9.18(a) to demonstrate the dependence of matching 

accuracy on d in the GLCM calculation. Generally, all plots show some separation, with the more 

clear separations showing matching accuracy increasing for decreasing d. 

Figure 9.18(b) shows the average of the matching accuracy (over all image pairs) as a func­

tion of nbits, to highlight the general dependence of matching accuracy on d. The degree of 

separation increases as the sampling window size increases, but matching accuracy improves as d 

decreases for all sampling window sizes. 

Effect of w on Matching Accuracy 

Figures 9.17(a) and 9.18(a) show that there is some dependence of matching accuracy on sam­

pling window size, and that matching accuracy appears to be optimal for the smaller sampling 

windows. The position of the peak in Figures 9.17(a) and 9.18(a) varies with each image, and so 

there is possibly a relationship to the scale sizes of the textures in the images. 

Summary of Best Results 

The values of AROC and Cfb corresponding to the best matches for each image pair are plotted in 

Figure 9.19. All image pairs have 0.85 <AROC< 1.0 (average 0.94 ± 0.06) and 0.40 <Cfb< 0.95 

(average 0.70 ± 0.16), with 0.25 <K< 0.95 (average 0.63 ± 0.19). Results are clustered in the 

high AROC high Cfb region of the scatter plot and all but one image (R6T3) have AROC~ 0.8 and 

Cfb~ 0.5, indicating that most of the region to be matched was identified and that the matched 

region is clearly discernible from the background. 

Matching accuracy improves as bit-depth increases and appears to improve as d decreases. 

Matching accuracy is optimal for the smaller sampling windows. Results for the dependence of 

matching accuracy on bit-depth was independent of sampling window size, unlike for the distance 

similarity metrics and MI-histograms. 
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Figure 9.18: Effect of d on matching accuracy for MI-GLCMs applied to mosaic image pairs. (a) 
Typical examples of K VS. w. The colours indicate different values of d. Each row contains the 
information for a single image pair. (b) Average matching accuracy as a function of bit-depth, at 
different values of d to highlight the general dependence of matching accuracy on d for the mosaic 
images. 
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Figure 9.19: Scatter plot of the best results for MI-GLCMs applied to the mosaic images. 

9.6 Overall Matching Results 
9.6.1 Results 

132 

Figure 9.20 shows the best matching results for each of the twelve mosaic image pairs, for the five 

matching methods. TheARoc- and Cjb-values are clustered for TM-DE, TM-DES and Ml-GLCMs, 

but are quite scattered for TM-DM and Ml-histograms. All the results haveARoc>O.5 and Cjb >O.O, 

indicating that the match is better than random and that the matched region is brighter than the 

background. Both AROC- and Cjb-values are quite high for TM-DE, TM-DES and Ml-GLCMs, 

while TM-DM and Ml-histograms both have low Cjb-values. This is confirmed by examining the 

averages of best matching accuracies that are summarised in Table 9.4 for each method. 

Table 9.4: Average of the best matching accuracies for each matching method applied to mosaic 
images. 

'Method 'Average AROC' Average Cfb' Average K' 
TM-DE O.84±O.O8 O.79±O.18 O.55±O.23 
TM-DES O.91±O.O4 O.68±O.O9 O.56±O.13 
TM-DM O.82±O.O9 O.45±O.l8 O.31±O.17 
MI -histograms O.77±O.lO O.29±O.18 O.15±O.11 
MI-GLCMs O.94±O.O6 O.70±O.l6 O.63±O.19 

The combination of matching parameters that yielded the maximum K-value is listed for 

each image pair in Tables 9.5 and 9.6 for TM- and Ml-matching, respectively. It appears that 

TM-matching has optimal matches for large sampling windows and low bit-depths, while Ml­

matching has optimal matches for small sampling windows and high bit-depths. These results are 

consistent with the dependence of matching accuracy on bit-depths and sampling window sizes 

for MI-GLCMs. 

It was hoped that the untransformed reference textures (R3Tl, R4Tl, R5T2, R7T3 and R8T2) 

would have near perfect matching results, for all methods. However, apart from R7T2 (which has 
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Figure 9.20: Scatter plot of ARoc VS. Cfb with the best matching accuracies for TM- and MI-matching 
applied to the mosaic images. 

K> 0.80 for all methods) and R5T2 (which has 1(=0.90 for MI-GLCMs), matching results are very 

poor for the rest. Also, R7T3, which has R7 rotated and scaled in T3 has 1(=0.86 for TM-DE. 

Upon examination of Figure 9.20, it can be seen that image pair with the best and worst matching 

accuracy, is different for each method. There is therefore no clear pattern to the behaviour of the 

matching algorithms with the matching performances for each image pair. 

Table 9.5: Matching parameters and evaluation results for the best matches ofTM-matching applied 
to mosaic images, listed for each image pair. 

Images TM-DE TM-DES II TM-DM 
w d nbits AROC C(b K W d nbits ARoc C(b K II w d nbits AROC Cfb K 

RITl 176 10 6 0.89 0.94 0.73 320 10 8 0.92 0.75 0.63 400 2 6 0.88 0.60 0.45 
R2Tl 80 10 5 0.85 0.74 0.51 80 1 5 0.91 0.75 0.61 80 10 7 0.88 0.55 0.41 
R3Tl 160 1 5 0.67 0.58 0.20 160 1 8 0.87 0.64 0.47 176 1 6 0.83 0.59 0.39 
R4Tl 80 5 7 0.85 0.88 0.62 320 1 5 0.95 0.80 0.72 160 10 5 0.90 0.74 0.60 
R5T2 128 5 5 0.82 0.86 0.55 128 5 8 0.90 0.73 0.59 128 5 7 0.88 0.33 0.25 
R6T2 80 1 6 0.84 0.94 0.65 160 10 7 0.89 0.57 0.44 368 2 6 0.78 0.57 0.32 
R7T2 224 1 8 0.99 0.99 0.97 336 10 5 0.98 0.82 0.80 368 1 8 0.90 0.46 0.36 
R8T2 80 10 5 0.76 0.75 0.39 128 2 5 0.87 0.64 0.47 112 10 6 0.85 0.39 0.28 
R5T3 128 10 5 0.84 0.78 0.54 128 10 5 0.88 0.52 0.39 240 1 7 0.71 0.19 0.08 
R6T3 288 1 7 0.82 0.82 0.53 288 10 7 0.83 0.62 0.41 288 10 7 0.68 0.36 0.13 
R7T3 160 2 8 0.95 0.96 0.86 160 5 5 0.93 0.70 0.60 176 1 5 0.63 0.12 0.03 
R8T3 176 10 7 0.86 0.72 0.52 304 10 5 0.95 0.68 0.61 288 1 5 0.91 0.52 0.42 
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Table 9.6: Matching parameters and evaluation results for the best matches ofMI-matching applied 
to mosaic images, listed for each image pair. 

Images I w 
Ml-Histograms MI-GLCMs 

nbins nbits AROC Cfb 1C W d nbits AROC Cfb K 

R1T1 400 16 8 0.67 0.43 0.15 32 10 8 0.91 0.53 0.44 

R2T1 368 32 8 0.78 0.69 0.39 48 5 8 0.97 0.77 0.72 

R3T1 400 16 6 0.68 0.35 0.13 48 10 8 0.96 0.57 0.53 

R4T1 16 32 8 0.75 0.11 0.06 16 1 8 0.98 0.70 0.66 

R5T2 16 16 8 0.67 0.08 0.03 16 2 8 0.97 0.95 0.90 

R6T2 96 32 5 0.72 0.34 0.15 208 1 8 0.99 0.63 0.62 
R7T2 80 16 6 0.87 0.15 0.11 48 10 8 1.00 0.94 0.93 
R8T2 64 128 8 0.99 0.17 0.17 16 2 7 0.88 0.64 0.49 
R5T3 384 16 5 0.66 0.24 0.08 32 10 8 0.98 0.71 0.69 
R6T3 96 32 5 0.80 0.35 0.21 112 2 8 0.80 0.42 0.25 
R7T3 176 128 8 0.90 0.43 0.34 80 10 8 0.98 0.79 0.75 
R8T3 64 64 7 0.74 0.14 0.07 16 5 8 0.91 0.74 0.60 

9.6.2 Statistical Significance Analysis 

The results of a paired t-test analysis (§8.1 0 on page 103) of the best K-values for each method is 

presented in Table 9.7. For a significance level of 0.05, the average values OfK for TM-DE, TM­

DES and MI-GLCMs are not statistically different (p >0.05) from each other, but are statistically 

different from the average results for TM-DM and MI-histograms (p <0.05). 

Table 9.7: Results of the I-test analysis for the best matching accuracies from the mosaic images for 
the various matching methods. 

Method 
TM-DES TM-DM MI-histograms MI-GLCMs 

t-value I p-value t-value I p-value t-value I p-value t-value I p-value 

TM-DE 0.37 0.72 3.64 0.00 6.45 0.00 -0.55 0.59 
TM-DES 4.20 0.00 8.48 0.00 -1.06 0.30 
TM-DM 2.70 0.01 -4.38 0.00 
MI-histograms -7.43 0.00 

9.6.3 TM-Matching 

The use ofTM-matching with distance similarity metrics generally yielded results with very good 

matching accuracies for DE and DES, but poor matching accuracies for DM. The difference in 

matching results for TM-DE and TM-DES were not statistically different, but the results of both 

these methods differed significantly from those of TM-DM. The poor results of TM-DM might 

indicate a poor correlation between the texture measures and the use of DM as a similarity metric 

is inappropriate for these images. 

Also, while the bestARoc- and Cjb-values for TM-DES were more clustered than for TM-DE, 

standardisation did not significantly improve results over using DE as a similarity metric, since the 

average matching accuracies for these methods were statistically similar. 

Matching accuracy was worse for a reduced set of texture measures, but this was probably 

because each image pair has a unique set of texture measures that best describes the textural 

characteristics of the images. A more rigorous feature selection algorithm would have to be used 

to investigate this hypothesis. 

One factor that might have affected the matching accuracy for TM-matching concerns the 
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averaging of the GLCMs at the four angles, which could cause the loss of some angle-dependent 

information, which might otherwise improve the matching accuracy. 

9.6.4 MI-Matching 

MI-histograms performed very poorly as a matching scheme. Average AROC and Cjb values were 

low, indicating that only some of the region to be matched was identified and that the matched 

region was not easily discernable from the background in the matching map. The poor results for 

MI-histograms were most likely due to two reasons. 

The first reason stems from the method used to compute the histograms (§8.4.1). The his­

togram was computed between the minimum and maximum grey-levels of both the reference and 

test sub-images. This range was then divided into nbins bins. This implementation has two disad­

vantages, firstly the width of the histogram bins varies as the test image is sampled, and secondly, 

the histograms are not invariant to shifts in grey-level. This method of determining the histogram 

was chosen so that the histograms for the reference and test regions would have equal bin sizes, 

but it was not realised that the bin sizes would vary for each sampled window across the image. 

The second reason might be because histograms do not incorporate any spatial information, 

and using histograms to describe texture, which explicitly relies on variations of grey-level be­

tween pixels at different positions, is not completely appropriate. 

MI-GLCMs performed very well as a matching scheme. Average AROC and Cjb values were 

high, indicating that most of the region to be matched was identified and that the matched region 

was easily discernable from the background in the matching map. Average ARoc and Cjb values 

were considerably higher than those for MI-histograms. 

One factor that might have affected the matching accuracy for MI -GLCMs concerns the 

averaging of the GLCMs at the four angles, which could cause the loss of some angle-dependent 

information, which might otherwise improve the matching accuracy. 

9.7 Results of ACF Analysis 

The autocorrelation function was used to determine the characteristic scale width, WACF, and scale 

height, hACF, of the textural features in each reference image. The ACF results were generated at 

different bit-depths because the characteristic scales of textural features were expected to change 

as bit-depth changed. However, there was no difference in the ACF results at each bit-depth. The 

ACF results are displayed as vertical lines in Figures 9.4, 9.7, 9.10, 9.14 and 9.17, but only Figure 

9.17 for MI-GLCMs showed some correlation between the ACF results and the maximum K-value. 

The results of the linear Pearson correlation analysis (§8.l 0 on page 103) in Table 9.8 were 

computed between the optimal sampling window sizes and WACF and hACF (Tables 9.9 and 9.10). 

The correlation coefficients indicate that there is a poor correlation between the optimal sampling 

window sizes and the results of the ACF analysis. 
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According to the ACF results, the characteristic scale sizes for each reference texture is often 

rectangular, so the poor correlation might be a factor of the square sampling windows used in the 

matching algorithm. The optimal sampling window sizes that have emerged from the matching 

analysis are therefore not appropriate for comparison to the rectangular scale sizes. 

Table 9.8: Correlation coefficients between results of ACF analysis and optimal sampling window 
sizes for the mosaic images. The linear Pearson correlation coefficient was computed between the 
optimal sampling window sizes and WACF (Pw) and hACF (Ph). Results indicate that there is a poor 
correlation between the optimal window sizes and the ACF results. 

Method 5-bits 6-bits 7-bits 8-bits I 
Pw Ph Pw Ph Pw Ph Pw Ph 

TM-DE 0.12 0.03 0.17 -0.02 0.17 -0.05 0.17 -0.04 
TM-DES -0.15 -0.08 -0.33 0.06 -0.05 -0.07 -0.24 0.14 
TM-DM -0.10 0.07 -0.34 0.15 0.01 -0.04 -0.14 0.11 
MI-histograms -0.17 -0.05 -0.18 -0.05 -0.18 -0.06 -0.28 -0.05 
MI-GLCMs -0.07 0.05 -0.22 0.18 -0.10 -0.03 0.07 -0.04 

Table 9.9: Optimal sampling window sizes from TM-matching and results of ACF analysis for mosaic 
images. Although the ACF analysis was performed at different bit-depths, there was no difference 
between the results at the different bit-depths. 

Image 5-bits 6-bits 7-bits 8-bits ACF 
Pair DE DESDM DE DESDM DE DESDM DE DESDMllACFhlACFw 

RITI 176 288 352 176 320 400 176 320 400 176 320 400 56 186 
R2Tl 80 80 80 80 80 80 96 80 80 96 80 80 209 34 
R3Tl 160 160 208 176 160 176 176 160 192 176 160 192 222 174 
R4Tl 80 320 160 80 320 240 80 160 80 80 160 192 90 251 
R5T2 128 128 128 128 128 128 128 128 128 128 128 160 141 364 
R6T2 80 160 368 80 160 368 80 160 368 128 160 368 168 204 
R7T2 224 336 384 224 336 336 224 368 336 224 336 368 268 135 
R8T2 80 128 128 80 128 112 80 80 112 80 16 80 236 97 
R5T3 128 128 256 128 128 240 128 128 240 128 128 256 141 364 
R6T3 288 192 336 288 192 272 288 288 288 288 192 384 168 204 
R7T3 160 160 176 160 176 224 160 176 304 160 176 304 268 135 
R8T3 144 304 288 176 144 224 176 224 304 176 48 304 236 97 

Table 9.10: Optimal sampling window sizes from MI-matching with grey-level histograms (GLH) 
and GLCMs and results of ACF analysis for mosaic images. There was no variation of the results of 
the ACF analysis at the different bit-depths. 

Image 5-bits 6-bits 7-bits 8-bits ACF 
Pair GLH GLCMs GLH GLCMsllGLH GLCMs GLH GLCMsllACFhlACFw 

RITI 400 16 400 32 400 32 400 32 56 186 
R2Tl 368 16 368 16 368 48 368 48 209 34 
R3Tl 400 16 400 32 400 48 112 48 222 174 
R4T1 16 16 16 16 16 16 16 16 90 251 
R5T2 16 16 16 16 16 16 16 16 141 364 
R6T2 96 80 96 16 96 16 96 208 168 204 
R7T2 80 16 80 16 64 16 80 48 268 135 
R8T2 48 16 48 16 64 16 64 16 236 97 
R5T3 384 16 384 32 384 32 384 32 141 364 
R6T3 96 16 96 80 96 112 96 112 168 204 
R7T3 176 16 176 16 176 16 176 80 268 135 
R8T3 48 16 48 16 64 16 64 16 236 97 
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9.8 Summary of the Effects of Matching Parameters 

9.S.1 Effect of Wstep on Matching Accuracy 

137 

Unfortunately, as a consequence of varying the sampling window step size, Wstep, as a fraction of 

the window size, the results had two varying parameters, viz. wand Wstep, and a study of the effect 

ofwstep on matching accuracy could not be carried out. The results did indicate that the plots oh: 

vs. W were smoother for smaller values of Wstep· 

9.S.2 Effect of W on Matching Accuracy 

Sampling window size had the most significant effect on matching accuracy. For TM-matching 

and MI -histograms, it is quite clear from the results that the choice of the optimal sampling win­

dow size is dependent on the specific reference image, while MI-GLCMs showed that matching 

accuracy increased as sampling window size decreased. 

Unfortunately, the analysis using the autocorrelation function to determine sampling window 

sizes showed that there was a poor correlation between the optimal sampling window sizes of the 

matching algorithms and the ACF analysis. The poor correlation results might be a consequence 

of the changing window step size for each window size or the use of square sampling windows, 

since the ACF results indicated that the scale widths and heights of the mosaic textures were not 

equal. Therefore, rectangular sampling windows should probably be used to improve matching 

accuracy for the mosaic images. 

9.S.3 Effect of nbits on Matching Accuracy 

Matching accuracy increased with decreasing nbits for TM-DE (for small sampling windows) and 

for TM-DEs (for all, but the very small sampling windows). Matching accuracy was independent 

ofnbits for TM-DM and for the other sampling window sizes for TM-DE and TM-DEs. 

As bit-depth decreases, images with large regions made up of similar grey-levels get the slight 

variations evened out. So the image at the lower bit-depth has large areas of the same grey-level. 

This physical change in the image could therefore mean that the chances of a match are improved, 

at the smaller sampling windows, since there are now fewer differences in grey-level (or texture) 

between the reference and test images. At the larger window sizes, the structural detail in the image 

starts appearing and matching is not as good as at the smaller sampling windows. This explains 

why TM-DE shows a dependence of matching accuracy on nbits for small sampling windows. The 

improvement of matching accuracy with decreasing nbits for large sampling windows is probably 

an artefact of the standardisation process. 

MI-histograms showed no significant dependence of matching accuracy on bit-depth. 

MI-GLCMs showed a clear dependence of matching accuracy on bit-depth, with matching 

accuracy improving as bit-depth increased, for all sampling windows. 
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This can be understood from the point of view that the higher the bit-depth, the more infor­

mation is contained in the image. At high bit-depths, only textures similar to the reference texture 

will be matched with a high value of mutual information. As bit-depth decreases, fewer grey­

levels represent the information in the image, and more textures will be similar to the reference 

texture and will also have high values of mutual information. However, at the lower bit-depths, 

there will be many false-positive detections and the overall matching accuracy will decrease as 

bit-depth decreases. The GLCMs used to estimate the probability density functions for the mutual 

information calculation work directly with the grey-levels in the image. 

The results for TM-DE and TM-DES are contrary to the results obtained by Chan et al. [1995] 

who varied bit-depth between 4 bits and 9 bits and found the optimal bit-depth to be either 7 bits 

or 8 bits, while the results for MI-GLCMs are consistent with those of Chan et al.. 

9.8.4 Effect of d on Matching Accuracy 

For both TM-matching and MI-matching there was no significant dependence of matching accu­

racy on d. TM-DES, MI-histograms and MI-GLCMs showed a slight improvement of matching 

accuracy as d was decreased and TM-DE showed a slight improvement of matching accuracy as d 

was increased. 

The lack of dependence of matching accuracy on d is most likely coincidentally due to the 

maximum value of d being not very large and textures being similar within this range. 

9.8.5 Effect of nbins on Matching Accuracy 

Matching accuracy improves slightly as the number of histogram bins decreases. 

Results are consistent with those of Tourassi et al. [2003] who used mutual information as 

a similarity metric for template matching in a knowledge-based mammographic CAD-system for 

discrimination of masses from normal tissue and found that results were most accurate for the 

fewest number of histogram bins (64 bins). 

9.8.6 Sensitivity of Matching Methods to Choice of Parameter Values 

Figure 9.21 shows all pairs of AROC- and Cjb-values, across all parameters, for each matching 

method. An examination of this data will give an idea of how sensitive each method is to the 

choice of parameter values. If all the points are clustered in one particular region, then the method 

is not sensitive to the choice of values of the matching parameters, but if the points are very 

scattered then the choice of values for the matching parameters is critical to ensure an optimal 

match. Results for TM-DE are clustered around AROC=0.75 and Cjb=0.50, but there are many 

points that are widely scattered. Results for TM-DES, TM-DM and MI-histograms are generally 

more clustered. Unfortunately the results for the latter two methods are clustered about the [0.5,0] 

point. Results for MI-GLCMs are very scattered. 
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Figure 9.21: Scatter plot of AROC vs. Cjb for all combinations of matching parameters to demonstrate 
sensitivity of choice of matching parameter values for each method applied to the mosaic images. 

These results indicate that MI-GLCMs is more sensitive to the choice of matching parameter 

values than TM-D£, for this set of images. 

In order to quantify the sensitivity of choice of parameter values, the number of pairs of AROC-

and Cjb-values that fell into different zones was evaluated (as detailed in Figure 9.22). Zone I is 

the preferred zone, as these points have very high AROC- and very high Cjb-values. Zone 2 is next 

preferred as this contains points with very high ARoc-values but lower contrast values than Zone 

1. It is more preferable to have a good match, i.e. as few false-positives and a high true-positive 

fraction than to have a good contrast. Zone 3 has lower values of AROC, but similar values of 

contrast than Zone 1. Zone 4 has low values of AROC and Cjb but the values are still valid (i.e. 

AROC>O.5, Cjb > O). Zone 5 defines the regions with AROC and Cjb-values that are not preferred 

(i.e. for AROC< 0.5 and Cjb < 0). 

The results of this analysis is summarised in Table 9.11 and shows that TM-D£ is most 

accurate with most points falling into zone 1. 

9.9 Comparison ofTM- and MI-Matching for Mosaic Images 

Overall, TM-DE, TM-DES and MI-GLCMs have the best average matching accuracies and these 

results are statistically similar. The matching accuracies for TM-DM and MI-histograms are very 

poor. 
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Figure 9.22 : Schematic showing regions of scatter-plot used for zone analysis. 

Table 9.11: Results of zone analysis for mosaic images to demonstrate sensitivity of choice of match­
ing parameters for each method. An ideal method would have a high percentage of points in Zone I 
and none in Zone 5. 

Method I Zone 1 (%) I Zone 2 (%) I Zone 3 (%) I Zone 4 (%) I Zone 5 (%) I Total (Zones 1 2 & 3)(%) I , 
TM-DE 32.5 34.7 19.6 12.4 0.820 86.8 
TM-DES 6.66 70.0 0.700 22.3 0.410 77.3 
TM-DM 0.620 14.9 2.91 77.8 3.820 18.4 

MI-histograms 3.63 23 .2 1.07 65.6 6.51 27.9 
MI-GLCMs 8.37 32.2 0.00 52.9 6.530 40.6 

TM-DE and TM-DES do not show clear dependencies of matching accuracy on the various 

matching parameters and it is difficult to recommend a set of optimal matching parameters that 

will give a maximal matching accuracy. TM-DES is, however, less sensitive than TM-DE to the 

choice of matching parameter values. 

MI-GLCMs shows clear dependencies of matching accuracy on the various matching param­

eters so it is easier to recommend a set of optimal matching parameters for this algorithm. MI­

GLCMs is faster to compute than TM-matching with distance similarity metrics, but MI-GLCMs 

is quite sensitive to the choice of values of the matching parameters. 

Overall, where MI-GLCMs has a weakness, TM-DE and TM-DES have strengths and vice­

versa. In summary, there are no significant differences between TM-DE, TM-DES andMI-GLCMs, 

and a possible hybrid-matching scheme using the results of all three methods might yield good 

matching results. 

9.10 Summary 

The TM -matching and MI -matching algorithms were applied to test images made up of a mosaic of 

single texture reference images to test matching performance under the ideal condition of knowing 

how the reference images are transformed in the test image. 

The purpose of this chapter was two-fold: (1) to test the performance of the matching algo­

rithms on images with clear borders between the textures, accurate ground truth data and where 

there are known transformations of the textures to give insight into whether the matching algo­

rithms have any potential for identifying similar textures in mammograms; and (2) to investigate 

how the matching accuracy is affected by the various matching parameters. 
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TM-matching and MI-matching show some potential for use as matching schemes. Results 

in this chapter do provide evidence to support the hypothesis that using texture based image­

processing methods allows a textural region to be matched with a reference texture. However, it 

has been shown that the choice of matching parameter values can significantly affect matching 

accuracy, so the following parameters will still be varied for the pairs of mammograms and the 

stereotactic biopsy mammograms: nbits, d, w. As a consequence of the effect of sampling window 

step size, Wstep, on matching accuracy for the mosaic images, Wstep are fixed for the analysis of the 

pairs of mammograms and the stereotactic biopsy mammograms. 

The top three matching methods, based on averages of K for the best matches, are: MI­

GLCMs (K=0.63±0.20), TM-DE (K=0.56±0.13) and TM-DES (K=0.55±0.23). However, these 

three results are not statistically different (p > 0.05). TM-DM and MI-histograms perform poorly 

as matching schemes. 

The recommended values of the matching parameters for implementation of the matching 

schemes on similar images are given in Table 9.12. The values for TM-DE and TM-DES are ob­

tained from the few cases where there was some dependence of matching accuracy on the matching 

parameters. 

Table 9.12: Recommended values for matching parameters for application of TM-DE, TM-DES and 
MI-GLCMs to images similar to the mosaics 

I Matching Parameter I TM-DE TM-DES MI-GLCMs 

Wstep 4 pixels 4 pixels 4 pixels 
W rectangular from ACF rectangular from ACF rectangular from ACF 
nbits 5 bits 5 bits 8 bits 
d 10 pixels 1 pixel 1 pixel 



Chapter 10 

Matching Results: Mammograms 

The results of applying the matching algorithms to the mosaic images have demonstrated that the 

algorithms have the potential to match a known reference texture to the same texture in another im­

age. The algorithms were applied to pairs of mammograms to confirm whether a reference region 

of interest (ROI) identified by a radiologist in one standard mammographic view can be matched 

to the corresponding region in another standard mammographic view, to determine whether the 

matching algorithms can be utilised in a CAD-system. The results are presented and discussed in 

this chapter. 

10.1 Details of the Mammograms used in this Study 

10.1.1 Selection of Mammograms 

The 34 pairs ofCC and MLO mammograms (from 26 patients) used in this study were arbitrarily 

selected from the patient archives at the Inkosi Albert Luthuli Central Hospital (Durban, South 

Africa), to represent a range of breast densities, mass sizes and patient ages. In 8 cases, mammo­

grams from left and right breasts were used, accounting for the difference between the number of 

patients and the pairs of mammograms used in the study. The computed radiography (CR) images 

were exported in a DICOM format from the data archives at the hospital, at a bit-depth of 10 bits 

and 0.05 mm per pixel. For processing, images were resampled to 0.254 mm per pixel (100 dpi). 

The images were acquired on a Siemens Mammomat 3000 Nova mammography unit, with a focal 

spot size of 0.3 mm, a molybdenum anode and a 30 ,urn molybdenum filter. Two Fujifilm Fuji IP 

Cassettes with image plate sizes detailed in Table 10.1 were used. The image reader is a Digiscan 

M (Fuji Photo Film Co Ltd). 

Table 10.1: Specifications of computed radiography cassettes 

24mm x 30mm 18mm x 24mm 

Since the matching results are independent of which view is used as a reference, each CC and 

MLO view was used separately as a reference image and a test image, resulting in the matching 

algorithms being applied to 68 pairs of mammograms. The 68 mammograms were divided into 

four categories based on the pathology of the suspicious ROI or overall diagnosis of the mammo­

gram: 28 benign, 18 malignant, 10 normal and 12 indeterminate. Most patients get referred to the 

Inkosi Albert Luthuli Central Hospital for diagnostic tests so not all the mammograms had a full 

pathological history, since not all referring physicians recommended a biopsy. In these cases, the 

142 
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radiologist's report was used as a basis for the diagnosis of the mammogram. 

The 'benign', ' indeterminate' and 'malignant' diagnoses refer to masses, while the 'normal' 

diagnosis refers to suspicious-looking regions in a normal mammogram. Masses were categorised 

as 'indeterminate' if the biopsy was inconclusive or the radiologist was unable to render a diagno­

sis based on the mammographic appearance. 

The reference mammogram label and test mammogram label are used in combination to label 

the mammogram pair. For example, the mammogram pair consisting of reference image Ml and 

test image MO, has the mammogram pair label MIMO. The label for each mammogram is given 

in Table 10.3. 

10.1.2 Characteristics of Mammograms 

A radiologist identified the borders of the suspicious ROIs and classified the breast types as dense, 

mixed or fatty. The borders of the suspicious ROIs were marked in Magic View 1• The borders were 

saved as DIe OM images and were automatically extracted in IDL, for use as ground truth data. 

This eliminated the need to register the ground truth data with the mammograms. The areas of the 

regions enclosed by the radiologist-drawn borders that are automatically computed in Magic View 

were also saved. 

Histograms of the areas of the suspicious ROIs along with their visibilities (compared to 

surrounding tissue) are shown in Figure 10.1. Visibility was automatically determined from the 

original mammograms (at 0.254 mm per pixel) before pre-processing. Visibility was defined to 

be the contrast of the ROI compared to the surrounding tissue and was computed from Equation 

7-10 and Figure 7.4 (page 87). Visibility ranges between 0 for a very subtle ROI and 1 for a very 

obvious ROI. The histograms demonstrate that there is a significant range of sizes of ROIs used 

in this study and some of these ROIs are very subtle while others are more visible. A summary of 

the distributions of breast type is given in Table 10.2. Full details of the sizes and visibilities of 

the ROIs are shown in Table 10.3. 
Table 10.2: Number of mammograms of a particular breast type as a function of diagnosis. 

II Dense I Mixed I Fatty I 
Benign 4 10 14 
Indeterminate 0 10 2 
Malignant 0 8 10 
Normal 2 4 4 

10.1.3 Reduced Images 

Reduced images of the mammograms are shown in Figures 10.2 and 10.3 in grey-scale and 

pseudo-colour, respectively. Magnified versions of the ground truth ROls are shown in Figure 

10.4. 

I The software interface used to view DleOM medical images. Search http://www.medical.siemens.com/ for 

MagicView. 
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Figure 10.1: Histograms of areas and visibilities of the suspicious ROIs for the mammograms used in 
this study. There is a significant range in the sizes and visibilities. 

Table 10.3: Characteristics of the suspicious ROIs in the mammograms used in this study. 

Label D· . Breast Area V ·bT Label Diagnosis 
Breast Area 

Visibility lagnosls Type (cm2) lSI I Ity Type (cm2) 

MO M mixed 3.14 0.25 M34 B mixed 1.99 0.19 
Ml M mixed 4.53 0.25 M35 B mixed 2.84 0.24 
M2 B dense 4.27 0.28 M36 M fatty 2.86 0.29 
M3 B dense 1.21 0.29 M37 M fatty 2.71 0.27 
M4 B dense 2.45 0.23 M38 I mixed 5.61 0.39 
M5 B dense 3.4 0.48 M39 I mixed 6.32 0.40 
M6 B mixed 0.91 0.19 M40 B fatty 0.58 0.12 
M7 B mixed 0.62 0.14 M41 B fatty 0.66 0.14 
M8 B mixed 0.25 0.17 M42 I mixed 2.07 0.17 
M9 B mixed 0.64 0.19 M43 I mixed 3.84 0.31 
MIO N mixed 0.33 0.1 M44 M fatty 15.76 0.58 
Mil N mixed 0.81 0.14 M45 M fatty 0.41 0.37 
MI2 B fatty 0.18 0.26 M46 B fatty 12.69 0.12 
M13 B fatty 0.14 0.17 M47 B fatty 0.39 0.18 
M14 M fatty 2045 0.36 M48 I fatty 0.22 0.09 
MI5 M fatty 2.38 0.39 M49 I fatty 0.53 0.30 
MI6 B fatty 0.73 0.14 M50 B fatty 0041 0.13 
MI7 B fatty 0.23 0.25 M51 B fatty 0.25 0.14 
MI8 B fatty 1.6 0.09 M52 N fatty 0.38 0.09 
MI9 B fatty 0.21 0.17 M53 N fatty 0.22 0.15 
M20 M mixed 2.68 0.25 M54 M mixed 36.86 0.69 
M21 M mixed 2.95 0.26 M55 M mixed 24.6 0.90 
M22 M fatty 3.29 0.16 M56 N fatty 0.27 0.11 
M23 M fatty 3.29 0.3 M57 N fatty 0.16 0.18 
M24 B mixed 0.22 0.19 M58 B fatty 0.27 0.10 
M25 B mixed 0.25 0.13 M59 B fatty 0.19 0.11 
M26 M mixed 37.02 0.58 M60 I mixed 0.92 0.24 
M27 M mixed 32.88 0.55 M61 I mixed 0.61 0.11 
M28 N dense 5.91 0.12 M62 I mixed 1.17 0.23 
M29 N dense 5.54 0.15 M63 I mixed 0.56 0.18 
M30 M fatty 10.67 004 M64 N mixed 0.51 0.12 
M31 M fatty 10.26 0.42 M65 N mixed 0.48 0.22 
M32 B mixed 1.46 0.18 M66 I mixed 2.35 0.18 
M33 B mixed 4.11 0.13 M67 I mixed 2.56 0.21 
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Figure 10.2: Reduced images of the mammograms used in this study in the original grey-scale. Im­
ages are paired from left to right, with four pairs per row. The ROI borders are shown in red. The 
bright rectangular feature in the upper right comer for left breast mammograms and in the upper left 
comer for right breast mammograms is the mammogram label. 
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Figure 10.3: Reduced images of the mammograms used in this study in pseudo-colour to highlight 
the regions that cannot be easily seen in Figure 10.2. Images are paired from left to right, with four 
pairs per row. The ROI borders are shown in white, however at this scale, this is only obvious for 
the large, high contrast ROIs. The bright rectangular feature in the upper right comer for left breast 
mammograms and in the upper left corner for right breast mammograms is the mammogram label. 
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Figure 10.4: Magnified ROIs (not to scale) extracted from mammograms to demonstrate that some 
ROIs are spiculated (have a radiating pattern), while others are lobular (have lobes). 
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10.1.4 Sampling of Reference Images 

The mammogram reference images are sampled differently to how the mosaic reference images 

were sampled because of the irregular shapes of the ROIs. Sampling windows were centred on 

the centroid of the ROI, and were then increased in size (in increments of 16 pixels) around the 

centroid until the ROI was completely enclosed. The size of the sampling window that completely 

enclosed the ROI was selected as the maximum window for that specific ROI. Figure 10.5 shows 

sampling windows of different sizes placed around the centroid of a sample ROI. 

750 

700 

650 

600 
lK Centroid of ROI 

550 600 650 700 

Figure 10.5: Placement of sampling windows in ROIs of mammograms. Sampling windows are 
centred on the centroid of the ROI. The maximum window is that which completely encloses the ROI. 

10.2 Results of Pre-processing 
The overall results of applying the masks obtained by the breast border, pectoral muscle and arc 

method algorithms are shown in Figure 10.6. Images are rotated so that the breast is oriented 

towards the right, for processing. The reduction of the search regions is greater for smaller ROls 

than for the larger ROls. The background mask has removed the mammogram labels. 

10.3 Selection of Matching Parameters 
The aim of the investigation using the mosaic images was to evaluate the matching algorithms 

under ideal matching conditions and to gain an understanding of the dependence of the various 

matching parameters on matching accuracy. The results from that investigation indicated that the 

matching parameters (w, nbits and d) depended on the individual images and were varied again 

for the mammograms. For TM-matching, the following texture measures were used: maximum 

probability, entropy, energy, inertia, inverse difference moment, correlation, sum average, sum 

entropy, difference entropy, sum variance, difference average, difference variance, information 

measure of correlation. 

The sampling window step size was the only parameter that was fixed, at 4 pixels, for all 

mammograms and all combinations of matching parameters. 
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Figure 10.6: Results of pre-processing mammograms. Images show the regions of the breast that 
remain after application of the various segmentation methods. Images are rotated so that the breast 
is oriented towards the right, for processing. The ROI borders are indicated in white, however this is 
only obvious in some of the images. The reduction of the search regions is greater for smaller ROIs 
than for the larger ROIs. The background mask has removed the mammogram labels. 
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10.4 Examples of Matching Maps 
Examples of matching maps for TM-matching and Ml-matching are shown in Figure 10.7. These 

maps were obtained by selecting the maximum and minimum lC-values, over all matching parame­

ters. Values of the actual matching parameters used for these maps are given in Table 10.4. Maps 

with a negative contrast imply that the region to be matched is darker than the background. 

The example maps for the minimum lC-values appear in the left column of Figure 10.4. Three 

methods (TM-DE, TM-DES, TM-DM) have negative contrasts andARoc< 0.5 indicating very poor 

matches. The result for Ml-histograms has a very low contrast and there was no match for MI­

GLCMs. 

The example maps for the maximum lC-values appear in the right column of Figure 10.4. 

All the maps show the ROI as the brightest feature, but all maps have other features in that have 

also been matched. These false-positive detections lower the ARoc-value, lower the Cjb-value 

and therefore lower the overall matching accuracy. The matching accuracies for the remaining 

methods (TM-DE, TM-DES, TM-DM, Ml-histograms) are similar with high values for AROC, but 

low values for Cjb. It is interesting to note that the optimal sampling window size for all distance 

similarity metrics are 80 pixels. 

The maximum-lC map for TM-DE, has a bright band around the interface between the breast 

and the segmented background, while the maximum-lC maps for TM-DES and TM-DM show a 

bright region around the pectoral muscle. These bright regions lower the overall accuracy of the 

match. The MI-maps do not have any interface effects. 

The matching maps for TM-DE, TM-DES and TM-DM also have non-zero backgrounds, while 

the matching maps for MI-histograms and MI-GLCMs have backgrounds that are very close to 

zero. 

Table 10.4: Summary of matching parameters for the example matching maps of mammograms, listed 
at the maximum and minimum lC-values for image pair MOMl. Negative contrasts indicate that the 
background is brighter than the region to be matched. 

Method 
Minimum lC Maximum lC 

w nbits dlnbins AROC Cfb lC W nbits dlnbins AROC Cfb lC 

TM-DE 112 5 2 0.39 -0.28 -0.06 80 8 10 0.94 0.48 0.42 
TM-DES 16 5 1 0.49 -0.04 -0.00 80 5 10 0.98 0.32 0.30 
TM-DM 16 5 10 0.35 -0.02 -0.00 80 7 1 0.87 0.32 0.24 
MI-histograms 128 6 64 0.72 0.09 0.04 16 8 16 0.97 0.36 0.34 
MI-GLCMs 32 5 1 0.50 0.00 0.00 32 6 2 0.96 0.99 0.91 
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TM-DM 

MI-Histograms 

MI-GLCMs 

Figure 10.7: Example of matching maps (not to scale) for reference mammogram MO (top, left) and 
test mammogram MI (top, right). The maps for the minimum and maximum lC-values are shown in 
the left and right columns, respectively, with the colour bar at the bottom indicating the intensity scale 
for the maps. 
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10.5 TM-Matching Evaluation Results 
The TM-matching algorithm (Algorithm 8.1 on page 96) was applied to the mammogram images 

on page 145. The results ofthe dependence of matching accuracy on the matching parameters are 

discussed for each of the three distance similarity metrics. The results are colour-coded according 

to the breast tissue type of the reference ROI, benign (B), indeterminate (I), malignant (M) and 

normal (N). 

Examples of the median, average and standard deviation for each of the texture measures is 

shown in Table 10.5 for image MO to demonstrate that there is a significant difference in the ranges 

of the values used as inputs to the distance similarity metric. The values listed were calculated over 

the full range of matching parameters. Sum variance and inertia have the highest values and these 

texture measures probably dominate the Euclidean distance calculation. The values listed for each 

texture measure differ from those values for the example mosaic image in Table 9.3. Therefore it 

is likely that each image has its own unique set of texture measures that best describe the image. 

Table 10.5: Median, average and standard deviation of texture measures for mammogram MO. 

I Texture Measures for MO II Median I Average I Standard Deviation I 
Entropy 9.15 9.23 2.31 
Energy 0.002 0.006 0.010 
Inertia 1490 2130 2570 
Inverse Difference Moment 0.024 0.037 0.032 
Correlation 0.770 2.94 4.56 
Sum Average 120 121 88.0 
Sum Entropy 6.78 6.54 1.25 
Difference Entropy 6.05 5.73 1.12 
Sum Variance 1360 2040 2420 
Difference Average 33.3 32.2 22.7 
Difference Variance 356 583 718 
Information Measure of Correlation 1 1.43 1.39 0.203 
Maximum Probability 0.006 0.015 0.020 

10.5.1 Computation Times 

Computation times were dependent on the values used for nbits and w and ranged from a few 

minutes to an hour, for a single map. As for the mosaic images, the calculation of the texture 

measures was the most time-consuming portion of the calculation. 

10.5.2 Evaluation of TM-Matching with DE 

The results from using TM-matching with the Euclidean distance similarity metric, DE, applied 

to pairs of mammograms, are presented and discussed. The dependence of matching accuracy 

on nbits, d and w is examined. Results are presented in the formats described in §8.2 (page 93). 

Dependence on matching accuracy is indicated by separation of the different coloured plots. 
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Effect of nbits on Matching Accuracy 

Typical examples of K vs. ware shown in Figure lO.8(a) to demonstrate the effect of nbits and 

won matching accuracy. MOM1 and M2M3 show that matching accuracy is independent of bit­

depth, for all values of nbits> 5 bits, since these plots are exactly overlaid. The matching accuracy 

for nbits=5 bits is lower than the matching accuracy for higher bit-depths. For M39M38 and 

M28M29, the plots are noisy and the value ofw appears to influence the dependence of matching 

accuracy on nbits. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

and ACF-heights are similar for three of the examples, but there appears to be poor correlation 

between the ACF results and the maximum values ofK. The ACF results are discussed in §10.8. 

Figure lO.8(b) shows the average matching accuracy (over all image pairs) as a function of 

d, to highlight the general dependence of matching accuracy on nbits. The different degrees of 

separation of the nbits-plots at each sampling window size indicate that the dependence of match­

ing accuracy on nbits is influenced by the size of the sampling window. This is clear because 

matching accuracy improves as bit-depth decreases for w< 112 pixels and matching accuracy im­

proves as bit-depth increases for 112:S;w:S; 160 pixels. For w> 160 pixels, there is no clear pattern 

of behaviour. 

Effect of d on Matching Accuracy 

Some examples of K vs. ware shown in Figure lO.9(a) to demonstrate how matching accuracy 

varies with d and w. All plots for the different values of d generally overlap almost completely, 

indicating that matching accuracy is independent of d for these examples. There is some separation 

of the 5-bit plots for MOM1 and M2M3, but there is no consistent behaviour of matching accuracy 

with d for these 5-bit plots. 

Figure lO.9(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on d. Plots at the different values 

of d overlap almost completely for all sampling window sizes, indicating that matching accuracy 

is independent of d. 

Effect of w on Matching Accuracy 

The example plots of K vs. w in Figures lO.8(a) and lO.9(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 
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Figure 10.8: Effect ofnbits on matching accuracy for TM-DE applied to pairs of mammograms. (a) 
Typical examples of 1( vs. w. Each row contains the information for a single image pair. The vertical 
lines indicate the results of the ACF analysis. The solid line represents the ACF-width and the dotted 
line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as a function 
of d, at different bit-depths to highlight the general dependence of matching accuracy on bit-depth for 
pairs of mammograms. 
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Figure 10.9: Effect of d on matching accuracy for TM-DE applied to pairs of mammograms. (a) 
Typical examples of 1C VS. w. Each row contains the information for a single image pair. (b) Av­
erage matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of mammograms. 



CHAPTER 10. MATCHING RESULTS: MAMMOGRAMS 156 

Summary of Best Results 

The best matching results for each mammogram pair are plotted in Figure 10.10 as functions of 

the ROI area and ROI visibility. This plot shows that K for the larger ROIs is relatively high and 

decreases as the ROls get smaller. There is a wide range of matching accuracies for the very small 

ROIs. There is a poor correlation between matching accuracy and ROI area (p=0.54), but a good 

correlation between matching accuracy and ROI visibility (p=0.71). 
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Figure 10.10: Best matching accuracy for TM-DE as functions of (a) ROI area and (b) ROI visibility 
for each mammogram pair. 

Figure 10.11 shows the best matching results for each mammogram pair, based on the di­

agnosis of the ROL These results are summarised in Table 10.6. The results for the malignant 

masses are clustered towards the high AROC values, but the Cjb-values range between 0.3 and 1.0. 

The average matching accuracy for the malignant masses is significantly higher than the matching 

accuracies for the other ROI-types(p < 0.02) and all malignant masses were matched. 

The results for the remaining ROI-types are quite scattered, and five ROIs (2 benign, 1 inde­

terminate, 2 normal) have not been matched. These ROIs have AROC:S0.5 and Cjb :SO. 
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Figure 10.11: Scatter plot of the best results for each mammogram pair for TM-DE, based on diagno­
sis. 
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Table 10.6: Average of the best matching results based on diagnosis for TM-DE applied to pairs of 

mammograms. 

I Diagnosis II Average A ROC I Average C{b I Average K I 
Benign O.7S ± O.l7 O.37± O.2l O.22± O.l6 
Indeterminate O.80±O.lS O.SO±O.26 O.34± O.27 
Malignant O.93±O.OS O.67± O.21 O.58± O.21 
Normal O.68±O.19 O.29± O.26 O.l8± O.19 
All O.80± O.17 O.46± O.26 O.33 ±O.2S 

10.5.3 Evaluation of TM-Matching with DES 

The results of applying TM-matching with a standardised Euclidean distance metric, DES, to pairs 

of mammograms, are presented and discussed. The effects of nbits, d and w on matching accuracy 

are examined. Results are presented in the formats described in §8.2 (page 93), with dependence 

on matching accuracy indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of K vs. ware shown in Figure IO.12(a) to demonstrate variation of matching 

accuracy with nbits and w. All plots for nbits>5-bits overlap completely, for all examples. The 

5-bit plots for MOMl , M39M38 and M28M29 deviate from the higher nbits-plots, but there is no 

consistent behaviour of matching accuracy for these plots. 

The results ofthe ACF analysis are plotted as vertical lines at each bit-depth, but there is very 

little difference between results at the different bit-depths. Also, the ACF-widths and ACF-heights 

are similar for three of the examples, but there appears to be poor correlation between the ACF 

results and the maximum values ofK. The ACF results are discussed in §10.8. 

Figure IO.12(b) shows the average matching accuracy (over all image pairs) as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The different degrees of 

separation for each sampling window size indicate that the dependence of matching accuracy on 

nbits is influenced by the size ofthe sampling window. Matching accuracy is dependent bit-depth 

for w:S 112 pixels, since all these plots overlap almost completely. Matching accuracy increases as 

bit-depth increases for w2: 128 pixels. For w> 176 pixels, there is no clear pattern of behaviour. 

Effect of d on Matching Accuracy 

Some examples of 1C vs. ware shown in Figure IO.13(a) to demonstrate how matching accuracy 

varies with d and w. All plots generally overlap almost completely, indicating that matching 

accuracy is independent of d for these examples. There is some separation of plots for nbits=5 

bits, but there is no consistent pattern of dependence of matching accuracy on d. 

Figure IO.13(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on d. Plots at the different values 

of d overlap almost completely for all sampling window sizes, indicating that matching accuracy 

is independent of d. 
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Figure 10.12: Effect of nbits on matching accuracy for TM-DES applied to pairs of mammograms. (a) 
Typical examples of K VS. w. Each row contains the information for a single image pair. The vertical 
lines indicate the results of the ACF analysis. The solid line represents the ACF-width and the dotted 
line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as a function 
of d, at different bit-depths to highlight the general dependence of matching accuracy on bit-depth for 
pairs of mammograms. 
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Figure 10.13: Effect of d on matching accuracy for TM-DES applied to pairs of mammograms. (a) 
Typical examples of K vs. w. Each row contains the information for a single image pair. (b) Av­
erage matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of mammograms. 
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Effect of w on Matching Accuracy 

The example plots ofl( VS. w in Figures 10.12(a) and 10.13(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 

Summary of Best Results 

Figure 10.14 shows the best matching accuracy as functions of ROI area and ROI visibility. 

Matching accuracy is generally higher for the larger, more visible ROIs. There is a correlation 

between matching accuracy and ROI area (p=0.60) and between matching accuracy and visibility 

(p=0.74). 
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Figure 10.14: Best matching accuracy for TM-DEs as functions of (a) ROI area and (b) ROI visibility 
for each mammogram pair. 

The best matching results for TM-DES are shown separately for each ROI-type in Figure 

10.15, with the results summarised in Table 10.7. Results appear similar to the results for TM-DE . 

The results for the malignant masses are clustered at the high ARoc-values for a wide range of Cjb­

values. All malignant ROIs were matched, and had the highest matching accuracy. Results were 

statistically different (p < 0.006) to the results for the remaining ROI-types. The overall matching 

accuracies are lower than those for DE. 
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Fig~re 10.15: Scatter plot of the best results for each mammogram pair for TM-DEs, based on diag­
nosIs. 

The results for the remaining ROI-types are scattered over a range of AROC- and Cjb-values. 

There were 10 ROIs (7 benign, 1 indeterminate, 2 normal) that were not matched. 
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Table 10.7: Average of the best matching results based on diagnosis for TM-DEs for pairs ofmam­
mograms. 

I Diagnosis II Average A ROC I Average Cfb I Average K I 
Benign 0.74 ± 0.23 0.17 ± 0.21 0.14 ± 0.13 
Indeterminate 0.79 ± 0.17 0.29 ± 0.25 0.22 ± 0.20 
Malignant 0.96 ± 0.04 0.48 ± 0.21 0.45 ± 0.20 
Normal 0.77 ± 0.16 0.21 ± 0.19 0.14 ± 0.13 
All 0.81±0.20 0.28±0.25 0.24± 0.21 

10.5.4 Evaluation of TM-Matching with DM 

The results of applying TM-matching with the Mahalanobis distance similarity metric, DM, to 

pairs of mammograms, are presented and discussed. The effect of nbits, d and w on matching ac­

curacy is examined. Results are presented in the formats described in §8.2 (page 93). Dependence 

on matching accuracy is indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples ofK VS. ware shown in Figure 10.16(a) to demonstrate the effect of nbits and w 

on matching accuracy. Matching accuracy is generally independent of d for these examples, since 

most plots overlap completely. 

The results of the ACF analysis are plotted as vertical lines for each bit-depth, but there is 

very little difference in the results at the different bit-depths. The ACF-widths and ACF-heights 

are similar for three of the examples, but there appears to be poor correlation between the ACF 

results and the maximum values of K. The ACF results are discussed in § 10.8. 

Figure 10.16(b) shows the average matching accuracy (over all image pairs) as a function of 

d, to highlight the general dependence of matching accuracy on nbits. The degrees of separation 

of the nbits-plots vary with sampling window size, but it appears that matching accuracy generally 

improves as bit-depth increases. 

Effect of d on Matching Accuracy 

Some examples ofK VS. ware shown in Figure 10.17(a) to demonstrate how matching accuracy 

varies with d and w. All d-plots generally overlap almost completely, indicating that matching 

accuracy is independent of d for these examples. The 5-bit plots for MOMI are separated with 

matching accuracy improving as d decreases. 

Figure 10.17(b) shows the average matching accuracy (over all image pairs) as a function 

of nbits, to highlight the general dependence of matching accuracy on d. Matching accuracy is 

independent of d for w~ 160 pixels, since these plots overlap almost completely. For w> 160 pix­

els, the dependence of matching accuracy on d seems to be influenced by nbits, but there is no 

consistent pattern of behaviour. 
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Figure 10.16: Effect ofnbits on matching accuracy for TM-DM applied to pairs of mammograms. (a) 
Typical examples of K VS. w. Each row contains the information for a single image pair. The vertical 
lines indicate the results of the ACF analysis. The solid line represents the ACF-width and the dotted 
line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as a function 
of d, at different bit-depths to highlight the general dependence of matching accuracy on bit-depth for 
pairs of mammograms. 
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Figure 10.17: Effect of d on matching accuracy for TM-DM applied to pairs of mammograms. (a) 
Typical examples of K VS. w. Each row contains the information for a single image pair. (b) Av­
erage matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of mammograms. 
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Effect of w on Matching Accuracy 

The example plots ofK VS. w in Figures 10.16(a) and 10.17(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 

Summary of Best Results 

Figure 10.18 shows the best matching accuracy as functions of ROI area and ROI visibility. 

Matching accuracy is generally higher for the larger, more visible ROIs than for the smaller, less 

visible ROIs. There is a correlation between matching accuracy and ROI area (p=0.66) and be­

tween matching accuracy and ROI visibility (p=0.74). 
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Figure 10.18: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for each 
mammogram pair. 
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Figure 10.19: Scatter plot of the best results for each mammogram pair for TM-DM, based on diag­
nosis. 

Figure 10.19 shows the best matching accuracies separated by ROI-type. These results are 

summarised in Table 10.8. Results for the malignant masses are clustered around high AROC -

values but are spread over a range of Cjb-values. The malignant masses are matched with the 

highest accuracy and the average is statistically different (p < 0.004) to the averages for the rest 

of the ROI-types. Results for the remaining ROI-types are clustered around the lower Cjb-values 

and spread over a range of ARoc-values. There are 6 ROIs (4 benign and 2 normal) that were 

not matched. All malignant and all indeterminate masses were matched. The overall matching 

accuracies are lower than those for DE and DES. 
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Table 10.8: Average ofthe best matching results based on diagnosis for TM-DM for pairs ofmammo­
grams. 

I Diagnosis II Average AROC I Average Cfb I Average K I 
Benign 0.74 ± 0.21 0.15 ± 0.15 0.10 ± 0.11 
Indeterminate 0.79 ± 0.13 0.29 ± 0.14 0.18 ± 0.11 
Malignant 0.89 ± 0.06 0.44 ± 0.20 0.36 ± 0.19 
Normal 0.75 ± 0.17 0.16 ± 0.16 0.12 ± 0.09 
All 0.79±0.17 0.25±0.20 0.19±0.17 

10.6 MI-Matching Evaluation Results 

The MI-matching algorithm, using grey-level histograms and GLCMs to estimate the probability 

density functions (Algorithm 8.2 on page 98) was applied to the mammogram images on page 

145. The results are colour-coded according to the breast tissue type of the reference ROI, benign 

(B), indeterminate (I), malignant (M) and normal (N). 

10.6.1 Evaluation of MI-Matching with Histograms 

The results of applying MI-matching with histograms to pairs of mammograms, are presented and 

discussed. The dependence of matching accuracy on nbits, nbins and w is examined. Results 

are presented in the formats described in §8.2 (page 93). Dependence on matching accuracy is 

indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of K vs. ware shown in Figure 10.20(a) to demonstrate the effect of nbits and 

w on matching accuracy. There is some separation of the plots for the smaller sampling windows, 

otherwise all plots overlap almost completely, for all examples. There is no clear dependence of 

matching accuracy on bit-depth. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, but there is very little difference in the results at the different bit-depths. The ACF-widths 

and ACF-heights are similar for three of the examples, but there appears to be poor correlation 

between the ACF results and the maximum values OfK. The ACF results are discussed in § 10.8. 

Figure 10.20(b) shows the average matching accuracy (over all image pairs) as a function of 

nbins, to highlight the general dependence of matching accuracy on nbits. The slight separation 

of the nbits-plots for w> 160 pixels indicates that matching accuracy improves as nbits decreases. 

Matching accuracy is independent of nbits for w~ 160 pixels. 
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Figure 10.20: Effect of nbits on matching accuracy for MI-histograms applied to pairs of mammo­
grams. (a) Typical examples of 1C vs. w. Each row contains the information for a single image pair. 
The vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as a 
function of nbins, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of mammograms. 



CHAPTER 10. MATCHING RESULTS: MAMMOGRAMS 167 

Effect of nbins on Matching Accuracy 

Some examples ofK VS. ware shown in Figure 10.21(a) to demonstrate the effect nbins and w on 

matching accuracy. Three examples (M2M3 , M39M38, M28M29) show some separation of the 

plots at the smaller window sizes, but the plots overlap almost completely, for the larger sampling 

windows. MOMI shows that matching accuracy improves as nbins decreases. 

Figure 10.21(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on nbins. Separation of the nbins­

plots increases as bit-depth increases and the degree of separation is influenced by the sampling 

window size, but matching accuracy, generally, improves as nbins is decreased. 

Effect of w on Matching Accuracy 

The example plots of K VS. w in Figures 10.20(a) and 10.21(a) show that matching accuracy 

varies as sampling window size varies. The K VS . w plots peak around a sampling window size of 

16 pixels for all the examples. 

Summary of Best Results 

Figure 10.22 shows the best matching accuracy as functions of ROI area and ROI visibility. 

Matching accuracy is generally very low, irrespective of ROI area and there are only five very 

large malignant ROIs that have high matching accuracies. There is some dependence of matching 

accuracy on visibility, since matching accuracy appears to improve slightly as visibility increases. 

This is confirmed by the correlation coefficient of p=O.67 between matching accuracy and ROI 

visibility, while matching accuracy and ROI area are poorly correlated. 

Figure 10.23 shows the best matching accuracies separated by ROI-type. These results are 

summarised in Table 10.9. Results are generally clustered around highARoc-values and low Cjb­

values for all ROI-types, and there are 3 image pairs (1 benign, 1 malignant, 1 normal) that were 

not matched. All indeterminate masses were matched. The average matching accuracies for each 

ROI-type are quite similar to each other, but are much lower than the average matching accuracies 

for the distance similarity metrics. 

Table 10.9: Average of the best matching results based on diagnosis for MI-histograms for pairs of 
mammograms. 

I Diagnosis II Average A ROC I Average C{b I Average K I 
Benign 0.84 ± 0.13 0.16 ± 0.15 0.12 ± 0.13 
Indeterminate 0.85 ± 0.10 0.19 ± 0.10 0.13 ± 0.08 
Malignant 0.88 ± 0.1 2 0.16 ± 0.20 0.15 ± 0.18 
Normal 0.84 ± 0.06 0.12 ± 0.08 0.08 ± 0.06 
All 0.85 ± 0.11 0.16± 0.15 0.12± 0.13 
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Figure 10.21: Effect of nbins on matching accuracy for MI-histograms applied to pairs of mammo­
grams. (a) Typical examples of 1( vs. w. Each row contains the information for a single image pair. 
(b) Average matching accuracy as a function of bit-depth, at different values of nbins to highlight the 
general dependence of matching accuracy on nbins for the pairs of mammograms. 
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Figure 10.22: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for MI­
histograms applied to pairs of mammograms. 
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Figure 10.23: Scatter plot of the best results for each pair of mammograms for MI-histograms, based 
on diagnosis. 

10.6.2 Evaluation ofMI-Matching with GLCMs 

The results of applying MI-matching with GLCMs to pairs of mammograms, are presented and 

discussed. The effect of nbits, d and w on matching accuracy is examined. Results are presented 

in the formats described in §8.2 (page 93). Dependence on matching accuracy is indicated by 

separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples oill: VS. ware shown in Figure lO.24(a) to demonstrate the effect of nbits and w 

on matching accuracy. The examples show a very slight separation of the plots at different values 

of nbits, with matching accuracy generally improving as nbits increases. 

The ACF results are plotted as vertical lines for each bit-depth, but there is no variation 

between the results at the different bit-depths. The ACF-widths and ACF-heights are similar for 

three of the examples, but the ACF results are poorly correlated with the maximum values of le. 

The ACF results are discussed in § 10.8. 
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Figure 1 0.24(b) shows the average matching accuracy (over all image pairs) as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The different degrees 

of separation of the different nbits-plots, indicates that the dependence of matching accuracy on 

nbits is influenced by the size of the sampling window and by d. This is clear because the amount 

of separation of the plots at different values of nbits increases as sampling window size and d 

increase. However, there is a consistent improvement of matching accuracy as bit-depth increases. 

Effect of d on Matching Accuracy 

Some examples of 1C vs. ware shown in Figure 10.2S(a) to demonstrate how matching accuracy 

varies with d and w. All plots for the different values of d generally overlap almost completely, 

indicating that there is no dependence of matching accuracy on d for these examples. 

Figure 10.2S(b) shows the average matching accuracy (over all image pairs) as a function 

of nbits, to highlight the general dependence of matching accuracy on d. The dependence of 

matching accuracy on d is influenced by nbits, since the separation of the d-plots is greater at the 

smaller bit-depths and decreases as bit-depth increases. There are also a few sampling window 

sizes (32 :S:w:S:96) with no separation, indicating an independence of matching accuracy on d. 

However, results indicate that matching accuracy, generally, improves as d decreases. 

Effect of w on Matching Accuracy 

The example plots oh: vs. w in Figures 10.24(a) and 10.2S(a) show that matching accuracy varies 

as sampling window size varies. Matching accuracy seems to peak at a small sampling window 

size and then decreases as sampling window size increases. The peak is most likely related to the 

scale sizes of the textures, and will therefore be unique to each image. 

Summary of Best Results 

Figure 10.26 shows the best matching accuracy as functions ofROI area and ROI visibility. The 

matching accuracy is spread over a wide range for the small, low visibility ROIs, while the large, 

high visibility ROIs generally have high matching accuracies. Matching accuracy is poorly corre­

lated with ROI area (p=0.51) and there is a stronger correlation with ROI visibility (p=0.62). 

Figure 10.27 shows the best matching accuracies based on ROI-type. These results are 

summarised in Table 10.10. The results show that all, but three of the malignant masses are 

clustered around AROC= 1 and Cjb= 1. All malignant masses were matched. The malignant masses 

are matched with the highest accuracy and this is statistically different (p < 0.002) to the results 

for the other ROI-types. 

There is a significant spread of matching accuracies for the other ROI -types. There were 12 

ROIs (8 benign, 2 indeterminate, 2 normal) that were not matched. 
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Figure 10.24: Effect ofnbits on matching accuracy for MI-GLCMs applied to pairs of mammograms. 
(a) Typical examples of ]( vs. w. Each row contains the information for a single image pair. The 
vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as 
a function of d, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of mammograms. 
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Figure 10.25: Effect of d on matching accuracy for MI-GLCMs applied to pairs of mammograms. 
(a) Typical examples of 1C vs. w. Each row contains the information for a single image pair. (b) 
Average matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of mammograms. 
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Figure 10.26: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for MI­
GLCMs applied to pairs of mammograms. 

Table 10.10: Average of the best matching results based on diagnosis for MI-GLCMs for pairs of 
mammograms. 

I Diagnosis II Average AROC I Average Cfb I Average 1C I 
Benign 0.68 ± 0.26 0.29 ± 0.36 0.21 ± 0.30 
Indeterminate 0.75 ± 0.28 0.59 ± 0.40 0.44 ± 0.34 
Malignant 0.96 ± 0.05 0.90 ± 0.21 0.84 ± 0.23 
Normal 0.71 ± 0.24 0.26 ± 0.29 0.17 ± 0.23 
All 0.77±0.25 0.50±0.42 0.41±0.39 
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Figure 10.27: Scatter plot of the best results for each pair of mammograms for MI-GLCMs, based on 
diagnosis. 



CHAPTER 10. MATCHING RESULTS: MAMMOGRAMS 174 

10.7 Overall Matching Results 
The matching results for each of the five matching methods are compared and discussed. 

10.7.1 Results 

Figure 10.28 shows the best matching results for each of the 68 pairs of mammograms, for each 

matching method. The AROC- and Cjb-values are only clustered for MI-histograms and are gen­

erally quite scattered for the remaining four methods (TM-DE' TM-DES, TM-DM, MI-GLCMs). 

Some results have AROC<O.5 and Cjb <O.O, indicating that the match was unsuccessful. Matching 

accuracies are quite high for TM-DE, TM-DES and MI-GLCMs, while TM-DM and MI-histograms 

both have low Cjb-values. This is confirmed by examining the average of the best matching accu­

racies that are summarised in Table 10.11. Results are generally lower than the equivalent values 

for the mosaic images. 

This is most likely due to the quality of the ground truth data. Since there were clear borders 

between the textures in the mosaic images, the ground truth data was accurate. However, for the 

pairs of mammograms, only one radiologist marked the borders of the ROIs in each mammogram 

and there is no method of confirming the accuracy of the identified borders. 
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Figure 10.28: Scatter plot of ARoc vs. Cjb with the best matching accuracies for all matching methods 
and for each mammogram pair. 



CHAPTER 10. MATCHING RESULTS: MAMMOGRAMS 175 

Table 10.11: Average of the best matching accuracies for each matching method for pairs ofmammo­
grams. 

I Method II average AROC I average Cib I average K I 
TM-DE 0.80± 0.17 Oo46±0.26 0.33± 0.25 
TM-DES 0.81 ± 0.20 0.28±0.25 0.24± 0.21 
TM-DM 0.79± O.17 0.25±0.20 O.19±O.17 
MI-histograms 0.85 ± O.11 O.16±O.15 O.12±0.13 
MI-GLCMs 0.77± 0.25 0.50±Oo42 Oo4l±0.39 

10.7.2 Statistical Significance Analysis 

The results of performing a paired t-test analysis (§8.10 on page 103) on the distribution of the 

best K-values for each method is presented in Table 10.12. For a significance level of 0.05 , the 

average values of K for TM-DE compared to MI-GLCMs and for TM-DES compared to TM-DM 

are not statistically different. 

Table 10.12: Results of significance (t-test) analysis for best matching accuracies from pairs ofmam­
mograms for the various matching methods. For a significance level of 0.05, the average values for 
the best matching accuracies ofTM-DE compared to MI-GLCMs and TM-DES compared to TM-DM 
are not statistically different. 

Method 
TM-DES TM-DM MI-histograms MI-GLCMs 

t-value I p-value t-value I p-value t-value I p-value t-value I p-value 

TM-DE 2043 0.02 3.99 0.00 6.07 0.00 -lAO 0.16 
TM-DES 1.56 0.12 3.77 0.00 -3.27 0.00 
TM-DM 2.36 0.02 -4.38 0.00 
MI-histograms -5.77 0.00 

10.7.3 TM-Matching 

The combination of matching parameters that yielded the best matches for TM-matching is listed 

in Table A.3 for each image pair. 

Most of the reference ROIs were well matched to the corresponding region in the test image, 

for all distance similarity metrics. DE performed best as a similarity metric with fewest non­

matches and the highest average K. 

All malignant masses were matched for all distance similarity metrics, and had the highest 

matching accuracies. Results were generally clustered around high ARoc-values, but were spread 

over a range of contrast values. The malignant masses probably have higher matching accuracies 

because these are generally texturally homogeneous and the method used of averaging the GLCM 

over four angles is ideally suited to detecting homogeneous textures. 

Results for the benign and indeterminate masses and the normal ROIs were scattered across 

a range of ARoc - and Cjb-values and there were a total of 5, 8 and 6 ROIs not matched for TM­

DE, TM-DES and TM-DM, respectively. Poor results for these ROIs could be because benign and 

normal regions in the breast are generally not homogeneous and directional information, which 

could improve the matching accuracy, might be lost by averaging the GLCMs over four angles. 

Another factor that contributed to the poor matching results for the non-malignant ROIs was 

the ROI area and the ROI visibility. Most of the benign, indeterminate and normal ROIs were 
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either very small «0.5 cm2) or had a low visibility, two factors which generally resulted in a poor 

matching accuracy. There was no general correlation between matching accuracy and ROI area, 

but the larger ROIs were more accurately matched than the smaller ROIs. There was however a 

spread of matching accuracies for the very small ROIs. Matching accuracy was generally corre­

lated with ROI visibility, and the ROIs with low visibilities had very poor matching accuracies. 

The mammogram pairs that were not matched for each method are listed in Table 10.13. 

Table 10.13: Pairs of mammograms that were not matched with TM-matching 

I TM-DE I I TM-DM I 
M56M57 M7M6 M47M46 M7M6 
M52M53 M13M12 M56M57 M12M13 
M25M24 M25M24 M65M64 M25M24 
M48M49 M50M51 M66M67 M52M53 
M58M59 M59M58 M58M59 M58M59 

M65M64 

Of the total of 19 mammogram pairs that were not matched, there are only 12 unique pairs, 

with M25M24 and M58M59 appearing for all distance similarity metrics. M24 (area=0.22 cm2 

and visibility=0.19) and M25 (area=0.25 cm2 and visibility=O.13) are benign masses in a mixed 

breast and are small with low visibilities. M58 (area=0.27 cm2 and visibility=0.10) and M59 

(area=0.27 cm2 and visibility=0.11) are benign masses in a fatty breast and are also small with 

low visibilities. The remaining ROIs have varying areas, but visibility<0.30 for all ROIs (Table 

10.3). 

The generally low visibilities of the mammogram pairs that were not matched indicate that 

ROI visibility is an important factor in determining matching performance. 

Overall matching accuracy decreased from TM-D£ to TM-DEs to TM-DM, which leads to 

the suspicion that standardisation (DEs) and the use of the covariance matrix (D M) are not suited 

to the analysis of the texture measures resulting from this set of mammograms. 

The dependence of matching accuracy on sampling window size was unique to the image pair 

and the dependence of matching accuracy on bit-depth was influenced by the sampling window 

size. This is most likely because the scale sizes offeatures in the mammogram change as bit-depth 

is changed. This leads to matching at a different optimal sampling window size for each bit-depth. 

Matching accuracy was generally independent of d, for all distance similarity metrics. 

Overall, the effects of the various matching parameters on matching accuracy are similar 

to the effects noted for the mosaic images. However, the average matching accuracies for each 

method were considerably lower than for the mosaic images. 

10.7.4 MI-Matching 

The combination of matching parameters that yielded the best matches for MI-matching is listed 

in Table A.4 for each image pair. 

The matching accuracy of MI-GLCMs was considerably higher than the matching accuracy 
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ofMI-histograms (at a significance level of 0.00 from Table ??). 

The poor matching results for MI-histograms are most likely due to two reasons. The first 

reason stems from the method used to compute the histograms (§8.4.1). The histogram was com­

puted between the minimum and maximum grey-levels of both the reference and test sub-images. 

This range was then divided into nbins bins. This implementation has two disadvantages, firstly 

the width of the histogram bins is not equal for the comparison over an image, and secondly, the 

histograms are not invariant to shifts in grey-level. 

The second reason might be because histograms do not incorporate any spatial information. 

Therefore using histograms to estimate probability density functions for the purpose of matching 

textures does not completely describe the information contained in the image. 

For GLCMs, the malignant masses had the highest matching accuracies, but the results for 

the remaining ROI-types were much lower. All malignant masses were well matched. The good 

results for malignant masses and the poor results for non-malignant ROIs are most likely because 

the averaging of the GLCMs over four angles is biased towards detecting the texturally homoge­

neous malignant masses, but is not suited to detecting the non-homogeneous textures associated 

with benign and normal breast tissue. 

Matching accuracy was correlated with ROI visibility for MI-histograms and MI-GLCMs, 

but was poorly correlated with ROI area, for both methods. 

MI-histograms had optimal matching accuracy at the smallest window sizes. MI-GLCMs 

also had optimal matching accuracy for the smaller sampling window sizes. Each image showed 

matching accuracy increasing to a peak at a small sampling window size and then decreased as the 

sampling window size increased further. The position of the peak is most likely determined by the 

scale sizes of textures and is unique to each image. 

For MI-histograms matching accuracy was optimal at the lowest bit-depths and for the fewest 

number of histogram bins. For MI-GLCMs, matching accuracy was optimal at the highest bit­

depth and the smallest d. 

There were 3 image pairs that were not matched for MI-histograms and 12 that were not 

matched for MI-GLCMs. These are listed in Table 10.14. Of the 15 pairs not matched, only 

M58M59 was common to both MI-histograms and MI-GLCMs. For histograms, there was a 

range ofRO! areas from 0.27 cm2 to 5.91 cm2 . For GLCMs, ROI areas ranged from 0.16 cm2 

to 1.21 cm2 and were generally smaller than those not matched for histograms. The generally 

low visibilities of the mammogram pairs that were not matched indicate that RO! visibility is an 

important factor in determining matching performance. 

Table 10.14: Pairs of mammograms that were not matched with MI-matching 

I MI-histograms I MI-GLCM 

M22M23 M3M2 M25M24 M1 2M13 M56M57 
M29M28 M6M7 M48M49 M17M16 M57M56 
M58M59 M7M6 M49M48 M24M25 M58M59 
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Table 10.15: Optimal sampling window sizes for mammograms for DE, DES, DM, histograms (GLH) 
and GLCMs (G). 

Imagel DE 
5-bits 6-bits 7-bits 8-bits 

DES DM GLH Gil DEI DES DM GLH G II DE DES DM H I G II DE DES DMI H G 

MO 80 80 80 16 32 80 80 80 16 32 80 80 80 16 48 80 80 128 16 48 
M1 80 80 64 32 16 80 80 80 16 16 80 80 64 16 16 80 80 64 16 32 
M2 32 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 32 
M3 32 48 48 32 80 32 48 32 32 80 48 48 32 32 64 48 48 48 32 80 
M4 16 16 48 16 48 16 16 32 16 64 48 32 48 16 16 64 32 32 16 16 
M5 16 16 16 32 32 16 16 16 32 32 16 16 32 32 32 16 48 48 32 32 
M6 32 16 16 48 16 16 16 16 16 16 48 16 32 32 16 16 16 48 16 16 
M7 48 48 16 32 48 16 48 48 16 48 48 48 48 16 32 48 48 16 16 48 
M8 16 16 32 16 16 32 16 32 16 16 32 16 32 16 16 32 32 16 16 16 
M9 48 16 48 32 16 32 48 16 32 16 16 16 16 32 16 16 16 16 32 32 
MIO 48 48 16 48 32 16 64 48 48 32 16 48 48 48 32 32 32 16 48 48 
Mil 16 16 16 32 32 32 32 32 32 48 64 16 32 32 48 32 32 32 32 64 
M12 16 16 32 16 16 16 16 32 16 16 32 32 32 16 16 32 32 32 16 16 
M\3 16 32 32 16 16 32 32 32 16 32 32 32 16 16 32 32 32 16 16 16 
M14 48 96 96 16 32 48 64 96 16 32 48 64 48 16 32 48 64 48 16 32 
M15 64 64 64 32 16 48 64 48 16 16 48 64 48 16 16 48 64 48 16 32 
M16 112 112 64 16 96 112 112 112 16 112 16 16 112 32 112 32 32 48 32 112 
M17 16 32 64 32 96 16 32 32 48 96 96 32 16 48 16 48 32 16 48 16 
M18 16 16 32 16 16 16 32 32 16 16 16 16 16 16 16 16 16 16 16 16 
M19 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
M20 80 80 80 16 32 80 80 64 16 32 80 80 48 16 32 64 80 48 16 32 
M21 64 64 48 16 48 64 64 64 16 32 64 64 64 16 48 64 64 64 16 48 
M22 80 96 96 48 16 96 96 96 32 16 96 96 96 16 16 96 96 96 16 16 
M23 96 112 96 32 32 96 112 128 16 32 96 112 112 16 32 112 112 128 16 32 
M24 32 16 16 16 16 32 32 16 16 16 16 16 32 16 16 32 16 32 16 16 
M25 32 32 32 32 32 32 16 32 16 32 32 16 16 16 32 32 32 16 16 32 
M26 16 16 256 16 32 256 32 32 16 32 80 16 32 16 48 256 16 32 16 48 
M27 256 256 256 16 32 256 256 32 16 32 256 256 32 16 48 256 256 32 16 48 
M28 128 96 80 32 16 128 80 80 16 16 128 80 128 16 16 128 80 128 16 32 
M29 32 32 96 64 16 48 48 32 16 16 128 48 32 32 16 96 48 80 16 32 
M30 176 144 144 80 64 112 144 144 32 80 112 144 176 16 80 128 144 144 16 80 
M31 96 112 176 48 64 112 112 144 32 64 160 144 144 16 64 112 176 128 16 64 
M32 80 32 64 48 16 32 32 32 16 16 80 48 48 16 16 48 48 48 16 16 
M33 32 16 112 32 16 32 112 80 16 16 32 80 80 16 16 16 80 80 16 16 
M34 48 80 80 128 16 64 80 64 16 32 64 80 80 16 32 64 80 80 16 32 
M35 64 64 96 32 16 64 64 80 16 16 80 64 80 16 16 64 64 64 16 16 
M36 16 80 80 16 32 32 80 80 16 32 32 80 80 16 48 32 80 80 16 48 
M37 32 64 64 64 16 80 80 96 16 16 80 96 64 16 16 80 80 64 16 16 
M38 64 64 144 16 48 64 64 64 16 64 64 64 64 16 64 64 64 64 16 64 
M39 48 64 96 32 16 48 48 96 16 16 48 48 112 16 16 48 48 48 16 16 
M40 48 48 64 16 16 64 64 64 16 16 64 64 48 16 16 48 48 64 16 16 
M41 48 48 48 48 16 48 48 48 32 16 32 48 16 32 16 16 48 48 32 16 
M42 64 80 112 32 16 64 32 32 16 16 64 48 48 16 16 64 48 48 16 16 
M43 32 16 96 16 16 16 112 112 32 16 16 16 112 32 16 80 16 112 16 16 
M44 144 176 160 16 96 176 176 176 16 112 176 176 176 16 112 160 176 176 16 128 
M45 128 112 112 32 32 128 128 128 16 32 128 128 128 16 32 112 128 96 16 48 
M46 16 32 32 16 16 32 32 32 16 16 32 32 32 16 16 48 32 32 16 16 
M47 16 32 32 16 16 16 32 32 16 16 32 32 32 16 16 32 16 32 32 16 
M48 32 16 32 32 32 48 16 16 32 48 48 48 32 32 48 48 48 32 32 48 
M49 16 32 48 16 48 16 48 16 16 48 16 48 32 16 48 48 48 32 16 16 
M50 32 16 32 32 32 16 16 32 32 32 16 32 32 32 32 16 16 16 32 16 
M51 16 32 32 16 16 16 32 32 16 16 16 32 32 16 16 32 32 32 16 16 
M52 32 16 32 32 16 16 16 16 16 16 32 16 16 16 32 32 16 32 16 16 
M53 16 16 16 16 16 16 32 32 16 32 32 32 32 16 32 32 32 32 16 32 
M54 176 16 288 16 32 176 176 176 16 48 176 176 176 16 48 176 176 160 16 48 
M55 32 32 272 16 48 128 32 128 16 64 128 16 144 16 64 144 16 144 16 80 
M56 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 32 16 M57 16 32 32 16 32 16 32 32 16 32 16 32 16 16 32 32 32 32 32 16 M58 16 32 16 16 32 32 32 16 16 32 16 32 16 16 32 32 32 32 16 32 M59 32 32 32 32 32 16 32 32 16 32 32 16 16 16 32 16 32 16 16 32 M60 64 64 64 16 16 64 64 64 16 16 64 64 64 16 16 64 64 64 16 16 M61 48 32 32 32 16 32 48 32 16 16 32 48 32 16 16 48 32 16 16 16 M62 16 16 32 16 16 48 32 32 16 16 48 32 32 16 16 48 32 32 16 32 M63 48 48 48 16 16 48 48 48 16 48 32 48 48 16 48 32 48 48 16 48 M64 16 16 32 16 16 48 32 16 16 16 48 32 16 16 16 32 32 48 16 16 M65 32 32 32 48 16 16 16 16 16 16 16 16 32 32 48 16 16 32 32 48 M66 48 112 64 48 16 32 32 112 112 16 16 64 16 112 16 16 16 112 112 16 M67 80 48 48 48 32 48 48 64 32 32 48 48 80 32 32 48 48 80 32 32 
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Table 10.16: Correlation coefficients between results of ACF analysis and optimal sampling window 
sizes for mammograms. The linear Pearson correlation coefficient was computed between the opti­
mal sampling window sizes and WACF (pw) and hACF (Ph). Results indicate that the ACF results are 
correlated with the optimal window sizes. . 

Image 5-bits 
WACF hACF 

MO 56 58 
MI 79 98 
M2 55 57 
M3 34 52 
M4 41 18 
M5 40 56 
M6 25 23 
M7 21 21 
M8 13 II 
M9 22 18 

MIO 25 33 
Mil 34 47 
MI2 13 13 
MI3 13 12 
MI4 52 44 
MI5 39 37 
MI6 48 72 
M17 56 41 
M18 13 II 
M19 12 11 
M20 80 46 
M21 44 45 
M22 40 47 
M23 54 89 
M24 16 16 
M25 16 17 
M26 206 193 
M27 143 142 
M28 83 65 
M29 101 81 
M30 81 80 
M31 80 100 
M32 33 52 
M33 29 36 

Method 

TM-DE 0.54 0.60 0.85 0.86 0.74 0.73 
TM-DES 0.42 0.52 0.54 0.62 0.51 0.58 
TM-DM 0.890.87 0.53 0.60 0.55 0.61 0.55 0.61 
MI-histograms -0.01 0.12 -0.04 -0.03 -0.07 -0.05 -0.11 -0.09 
MI-GLCMs 0.29 0.31 0.31 0.33 0.38 0.46 0.47 0.54 

Table 10.17: Results of ACF analysis applied to mammograms. 

6-bits 7-bits 5-bits 6-bits 7-bits 8-bits 8-bits Ima e 
WACF hACF WACF hACF WACF hACF II g WACF I hACF II WACF I hACF I' WACF IhACF II WACF IhACF I 

56 58 56 58 56 58 M34 49 96 49 96 49 96 49 96 
79 99 79 99 79 99 M35 36 48 36 48 36 48 36 48 
55 57 55 57 55 57 M36 38 40 38 40 38 39 38 40 
34 52 34 52 34 52 M37 30 44 30 44 30 44 30 44 
41 18 41 18 41 18 M38 74 90 74 90 74 90 74 90 
40 56 40 56 40 56 M39 59 63 59 63 59 63 59 63 
25 23 25 23 27 23 M40 25 26 25 28 25 28 25 28 
21 21 21 21 21 21 M41 26 26 26 26 26 26 26 26 
13 II 13 II 13 II M42 40 51 40 51 40 51 40 51 
22 16 21 18 22 18 M43 56 62 56 62 56 62 56 62 
25 33 25 33 25 33 M44 109 130 109 130 109 130 109 130 
34 47 34 47 34 47 M45 110 118 110 118 110 118 110 118 
13 12 13 12 13 12 M46 20 42 20 42 20 42 20 42 
12 12 12 II 12 II M47 22 15 21 15 21 15 21 15 
52 45 52 44 52 44 M48 28 16 28 15 28 15 28 15 
39 37 39 37 39 37 M49 18 20 18 20 22 20 18 20 
49 74 49 74 49 74 M50 14 13 14 13 14 13 14 13 
56 41 56 41 56 41 M51 40 23 40 23 40 23 41 23 
13 11 13 II 13 1\ M52 13 21 13 21 12 21 12 21 
12 II 12 II 12 11 M53 \3 \3 13 14 13 14 13 13 
80 46 80 46 80 46 M54 150 140 150 140 150 140 150 140 
44 45 44 45 44 45 M55 171 139 171 139 171 139 171 139 
40 47 40 47 40 47 M56 12 II 12 II 12 II 12 II 
54 89 54 89 54 89 M57 14 21 14 21 14 21 14 21 
16 16 16 16 16 16 M58 27 17 25 13 24 17 24 17 
16 17 16 17 16 17 M59 II 8 11 6 11 6 II 6 

206 193 206 193 206 193 M60 30 53 30 53 30 53 30 53 
143 142 143 142 143 142 M61 26 28 26 28 26 28 26 28 
83 65 83 65 83 65 M62 21 22 21 22 21 22 21 22 
101 81 101 81 101 81 M63 17 25 17 25 17 25 17 25 
81 80 81 80 81 80 M64 22 18 16 19 16 19 16 19 
80 100 80 101 79 101 M65 20 44 20 44 20 44 20 44 
34 52 34 52 34 52 M66 48 57 48 57 48 57 48 57 
29 36 29 36 29 36 M67 37 41 37 38 37 38 37 38 
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10.9 Multiple Reference Regions 
Since the reference ROIs of most of the non-malignant ROls are most likely not texturally homo­

geneous, the position of the reference sampling window within the reference ROI would affect 

matching accuracy. In order to improve matching accuracy for this situation, each single refer­

ence sampling window was divided into four smaller reference sampling window, as depicted in 

Figure 10.29. The resulting matching map from each small reference sampling window was then 

averaged, in an attempt to highlight the different textures within the non-homogeneous ROls. 
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Figure 10.29: Placement of sampling windows for multiple (neighbouring) reference regions. Match­
ing maps are generated for each of the four marked reference regions (indicated by the different line 
styles). The four matching maps are then averaged to highlight any differences in matching that might 
exist as a result of textural differences between the regions. 

The best matching results of applying the matching algorithms with multiple reference re­

gions to pairs ofmarnrnograms are summarised in Figure 10.30, for all methods. The results, for 

all methods except MI-histograrns, are generally more scattered than for the results with a sin­

gle reference region. For MI-histograms, the results are very clustered, with only 2 non-matches. 

TM-DE has 10 non-matches, TM-DES has 16 non-matches, TM-DM has 9 non-matches and MI­

GLCMs has 14 non-matches. Once again the only mammogram that is not matched for all methods 

is M58M59. 
Table 10.18: Average of the best matching accuracies for single & multiple reference regions for all 
matching methods applied to pairs of mammograms. 

Method 
Single Reference Region Multiple Reference Regions 

AROC Cfb 1( AROC Cfb 1( 

TM-DE O.80±O.17 OA6±O.26 O.33± O.25 O.75±O.l8 O.23±O.28 O.l8±O.23 
TM-DES O.81±O.2 O.28±O.25 O.24± O.21 O.73±O.22 O.l9±O.23 O.l5±O.l9 
TM-DM O.79±O.l7 O.25±O.20 O.l9±O.l7 O.73±O.l9 O.l8±O.l6 O.12±O.l4 
MI-histograms O.85 ± O.ll O.16± O.l5 O.l2± O.13 O.87±O.l O.l7±O.l4 O.l4± O.13 
MI-GLCMs O.77± O.25 O.50±OA2 OAl±O.39 O.76± O.26 OA4±OA4 O.36±OA 

Results indicate averaging results from multiple, neighbouring reference regions does not 

improve matching accuracy. While average results for single and multiple reference regions agree 

within errors, there are many more non-matches for the multiple reference region algorithms. 
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Figure 10.30: Scatter plot of the best results for multiple (neighbouring) reference regions applied to 
pairs of mammograms. 

10.10 Summary of Effects of Matching Parameters 

10.10.1 Effect of Wstep on Matching Accuracy 

The sampling window step size was fixed at 4 pixels for the matching of mammograms, following 

the results of the investigation with the mosaic images. There was therefore no investigation of the 

effect of sampling window step size on matching accuracy. 

10.10.2 Effect ofw on Matching Accuracy 

Matching accuracy varied with sampling window, but results suggested that the optimal sampling 

window size was dependent on the scale sizes of the textures in each image. 

The results of using the autocorrelation function to select the optimal window size were 

well correlated with the optimal window sizes obtained from the matching analysis. The optimal 

window sizes from TM-DE correlated best with the ACF results. The ACF results also showed 

that the scale widths and scale heights of most of the textures in the mammograms are similar and 

so justified the use of square sampling windows. However, rectangular windows would probably 

yield better matching results for those textures with a different scale width and height. 
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10.10.3 Effect of nbits on Matching Accuracy 

For TM-matching, the effect of bit-depth on matching accuracy was not clear, and appeared to vary 

with sampling window size. For all distance similarity metrics, there were some window sizes that 

showed an improvement in matching accuracy as bit-depth was increased and other window sizes 

that showed an improvement as bit-depth was decreased. This effect might be a consequence of 

the result that changing the bit-depth has on the sizes of features in the image, i.e. that some 

features change size as the bit-depth is changed. 

For MI-histograms, matching accuracy was optimal for the lower bit-depths, but this effect 

was only clearly seen for the larger sampling windows. Matching accuracy was independent of 

bit-depth for the smaller sampling windows. 

For MI-GLCMs, matching accuracy was optimal for the higher bit-depths. 

The results for MI-GLCMs is similar to the results obtained by Chan et al. [1995] who varied 

bit-depth between 4 bits and 9 bits and found the optimal bit-depth to be between 7 bits and 8 bits. 

10.10.4 Effect of d on Matching Accuracy 

For TM-matching, matching accuracy was generally independent of d for all similarity metrics. 

For MI-GLCMs, matching accuracy improved as d was decreased. 

Chan et al. [1995] found the optimal value of d=20 pixels at a spatial resolution of 0.1 mm 

per pixel. This corresponds to d=2 mm. 

For this study, d was varied between 1 pixel (0.254 mm) and 10 pixels (2.54 mm), and this 

range could be too small to detect any dependence of matching accuracy on d for the TM-matching 

algorithm. 

10.10.5 Effect of nbins on Matching Accuracy 

Results showed that matching accuracy improved as fewer bins were used to calculate the his­

togram. 

These results are consistent with those found by Tourassi et al. [2003] who used mutual 

information as a similarity metric for template matching in a knowledge-based mammographic 

CAD-system for discrimination of ROls from normal tissue and found that results were most 

accurate for the fewest number of histogram bins. 

10.10.6 Sensitivity of Matching Methods to Choice of Parameter Values 

Figure 10.31 shows all pairs of AROC- and Cjb-values, for all parameters .and for each matching 

method to investigate how sensitive each method is to the choice of parameter values. If all the 

points are clustered in one particular region, then the method is not sensitive to the choice of values 

of the matching parameters, but if the points are very scattered then the choice of values of the 

matching parameters is critical to ensure an optimal match. 
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Results for TM-DE and MI-GLCM are widely scattered, indicating that these methods are 

sensitive to the choice of values for the matching parameters. Results for TM-DES and DM and 

MI-histograms are more clustered, but the results are clustered about the [0.5,0] point, indicating 

poor matches. 

The sensitivity to choice of parameter values was quantified by counting the number of pairs 

of AROC- and Cjb-values that fell into different zones, as detailed in Figure 9.22 (page 140). These 

results are summarised in Table 10.19, with the last column showing the percentage of points 

that fell into zones 1,2 and 3. Results indicate that MI-GLCMs is most accurate with the highest 

percentage of points falling into zone 1. 
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Figure 10.31: Scatter plot to demonstrate sensitivity of choice of matching parameter values for each 
method applied to pairs of mammograms. 

Table 10.19: Results of zone analysis for pairs of mammograms to demonstrate sensitivity of choice 
of matching parameters for each method. An ideal method would have a high percentage of points in 
Zonel and none in Zone 5. 

I Method I Zone 1 (%) I Zone 2 (%) I Zone 3 (%) I Zone 4 (o/c) I Zone 5 (o/c) I Total (Zon 12& 3) I 0 0 es , 
TM-DE 16.0 33.5 1.23 40.8 8.42 34.7 
TM-DES 8.72 27.7 1.16 55.4 7.09 37.0 
TM-DM 0.430 9.04 1.51 75.3 13.8 11.0 
MI-histograms 3.41 14.1 0.00 71.9 10.6 17.5 
MI-GLCMs 44.2 22.5 5.32 24.9 3.10 72.0 
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10.11 Comparison of TM- and MI-Matching for Pairs of Mammo-

grams 
Overall, both TM-matching using distance similarity metrics and MI-matching show potential as 

matching schemes. TM-DE and MI-GLCMs yields the most accurate matches, followed by TM­

DES. Table 10.20 shows the results for each similarity metric based on ROI-type. 

Table 10.20: Average of best matching accuracies based on diagnosis for all matching methods applied 
to pairs of mammograms. 

I TM-D£ I TM-D£s I TM-DM I MI-histograms I MI-GLCMs I 
Benign 0.22±O.l6 O.l4±0.13 O.lO±O.ll O.l2±O.l3 0.21±0.30 
Indeterminate 0.34±0.27 0.22±0.20 O.l8±0.11 O.l3±0.08 0.44±0.34 
Malignant 0.58± 0.21 0.45±0.20 0.36±0.19 O.l5±O.l8 0.84±0.23 
Normal O.l8± O.l9 0.14±O.l3 0.12±0.09 0.08±0.06 0.17±0.23 
Overall 0.33±0.25 0.24±0.21 0.19± 0.17 0.12 ± 0.13 0.41 ± 0.39 

Results of significance testing for the two best methods, TM-DE and MI-GLCMs, appear 

in Table 10.21 and show that the results for matching the benign and indeterminate masses and 

normal ROls are similar for each method, but that the results of matching malignant masses are 

significantly better for MI-GLCMs. 

Table 10.21: Results of significance (t-test) analysis between best matching results of TM-D£ and 
MI-GLCMs as a function of diagnosis. 

I Diagnosis I t-value I p-value I 
Benign 0.29 0.78 
Indeterminate -0.75 0.46 
Malignant -3.55 0.00 
Normal 0.04 0.97 

MI-GLCMs shows clear dependence of matching accuracy on the various matching param­

eters so it is easier to select a set of optimal matching parameters for this algorithm. TM-DE and 

TM-DES do not show clear dependence of matching accuracy on the various matching parameters. 

The optimal sampling window sizes for these three methods are, however, correlated with the ACF 

results, so the ACF analysis can be used to determine the size of the optimal sampling window. 

TM-DE is more sensitive than MI-GLCMs to the choice of matching parameter values, but 

MI-GLCMs is faster to compute. 

Overall, where MI-GLCMs has a weakness, TM-DE and TM-DES have strengths and vice­

versa. In summary, there are no significant differences between TM-DE, TM-DES andMI-GLCMs, 

and a possible hybrid matching scheme using the results of all three methods might yield good 

matching results. 

One advantage of using mutual information or the distance similarity metrics for matching is 

that there is no training required which is important to the analysis of mammograms, which vary 

considerably from patient to patient. 
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10.12 Comparison of Matching Results to Similar Studies 
Overall results for the matching of malignant masses compares favourably with those of Tourassi 

et al. [2003] who used mutual information as a similarity metric for template matching in a 

knowledge-based mammographic CAD-system for discrimination of masses from normal tissue. 

Tourassi et al. achieved Az=0.88±0.01 for discrimination between malignant and normal tissue. 

The results achieved by Tourassi et al. for discrimination between benign and normal tissue of 

Az=0.86±0.01 is considerably higher than that achieved in this study. 

Filev et al. [2005] compared the effectiveness of twelve similarity metrics in matching the 

correspondence between masses in temporal mammograms. Filev et al. used an average template 

size of 17 mmx 17 mm which is considerably larger than the size of the templates used in this 

study. Pearson's correlation coefficient, the cosine coefficient and Goodman and Kruskal's gamma 

coefficient performed best and were the most robust. While mutual information was robust, it did 

not perform so well (6th best), and the scaled mutual information consistently performed better 

than the unscaled mutual information. Also, mutual information did not perform well for small 

template sizes. This result is contrary to what was found in this study, where matching accuracy 

improved as sampling window size was decreased. 

Chan et al. [1995] ranked the importance ofGLCM-based texture measures in differentiating 

between masses and normal breast tissue and achieved Az=0.82 with masses that had a mean 

diameter of 12.2 mm. Results are comparable to those achieved in this study, although the masses 

in this study were generally small. 

10.13 Summary 

The TM-matching and MI-matching algorithms were applied to 68 pairs ofCC and MLO mammo­

grams to confirm whether a reference region of interest identified by a radiologist in one standard 

mammographic view can be matched to the corresponding region in another standard mammo­

graphic view, to determine whether the matching algorithms can be utilised in a CAD-system. 

TM-matching (with DE and DES) and MI-matching (with GLCMs) have shown great po­

tential for use in a CAD scheme. MI-GLCMs had an overall best matching accuracy of 1(=0.41 

± 0.39 corresponding to average best values of AROC=0.77±0.25 and Cjb=0.50±0.42. TM-DE 

had an overall best matching accuracy of 1(=0.33±0.25 corresponding to average best values 

of AROC=0.80±O.l7 and Cjb=0.46±0.26. TM-DEs was the third most accurate method with 

1(=0.24±0.21, corresponding to average values of ARoc=0.81±0.20 and Cjb=0.28±0.25. The 

matching accuracy for TM-DM and MI-histograms was very low. 

MI-GLCMs had the best matching accuracy for matching malignant masses (1(=0.84±0.23 

corresponding to AROC=0.96±0.05 and Cjb=0.90±0.21), while the results for benign and indeter­

minate masses and normal ROls were similar for MI-GLCMs and TM-DE. 
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The results of the ACF analysis correlated with the optimal sampling window sizes obtained 

from the matching analysis. TM-DE at 8 bits and TM-DM at 5 bits had the highest correlation. The 

ACF-results also justified the use of square windows for the analysis of the mammogram ROIs, 

since most ACF-widths and ACF-heights were similar. The results for MI-GLCMs showed some 

correlation, but this was significantly lower than for TM-DE. 

While MI-GLCMs were more sensitive to matching parameters than TM-DE, the overall, 

matching accuracies are better for MI-GLCMs than TM-DE. Therefore TM-DE and MI-GLCMs 

are closely matched as matching schemes. 

If these algorithms were to be applied in a CAD-system, it is recommended that the autocor­

relation function of the reference ROI be used to determine the sampling window size. Then both, 

TM-DE and MI-GLCMs should be used as matching schemes. The recommended values of the 

matching parameters are summarised in Table 10.22. 

Table 10.22: Recommended values for matching parameters for practical application of TM-D£ and 
MI-GLCMs in a CAD-system 

I Matching Parameter I TM-D£ MI-GLCMs 

Wstep 4 pixels 4 pixels 
W from ACF analysis at 8 bits from ACF analysis at 8 bits 
nbits 8 bits 8 bits 
d 10 pixels 1 pixel 



Chapter 11 

Matching Results: Stereotactic Biopsy 

Mammograms 
The TM- and MI-matching algorithms have been applied to two completely different sets of im­

ages (mosaics and mammograms) and the potential to find a match to a known reference texture in 

a test image has been demonstrated for both image sets. In this chapter, the matching algorithms 

are applied to pairs of stereotactic breast biopsy mammograms. 

11.1 Breast Biopsies 
After an abnormality has been identified, through mammography, ultrasonography or magnetic 

resonance imaging, a sample of breast tissue is extracted to test the histology of the region and 

confirm whether the abnormality is malignant or benign. The procedure of extracting the tissue 

sample is known as a biopsy. 

There are two types of biopsies: open and percutaneous. Open biopsies use a hooked wire, 

inserted into the breast under mammographic or ultrasonographic guidance, to localise the ab­

normality. The sample is surgically removed with the patient under a general anaesthetic. Open 

biopsies are more expensive because they involve a hospital stay, are generally more traumatis­

ing for the patient and leave a scar, but are reliable. Percutaneous biopsies use stereotaxis or 

ultrasonography to localise the abnormality in three dimensions. An incision is made through the 

skin and a needle is inserted to the calculated depth to extract a sample. Percutaneous biopsies 

are cheap, minimally invasive and can be done with the patient under a local anaesthetic, on an 

outpatient basis. However, percutaneous biopsies have a reputation of being less accurate than 

open biopsies because a very small amount of tissue (1 mm to 3 mm in diameter) is sampled 

[Heywang-K6brunner et al. 1998, Verkooijen et al. 2000]. 

11.2 Stereotaxis 

Stereotactic breast biopsy systems are designed to locate an abnormality in three dimensions, with 

the breast compressed between two parallel plates. The x - y plane is located parallel to the image 

plane with the x-axis parallel to the chest wall, the y-axis perpendicular to the chest wall and the 

z-axis perpendicular to image plane. The location [xm, Ym, zm] of the mass, is obtained in two 

stages. Xm and Ym are obtained from an image taken perpendicular to the direction of compression. 

This scout view (usually at 00
) is used to centre the lesion in the image. Two further (stereoscopic) 

188 
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views are taken with the x-ray source rotated to both sides of the normal by a small amount 

(usually 10° to 15°). Zm (the depth of the lesion) is obtained by triangulation between these two 

views. Note that Ym is the same in all views since the only movement that is assumed to have 

occurred is the rotation of the x-ray source resulting in a virtual shift in the x-direction [Hendrick 

& Parker 1993, Carr et al. 2001, Bushberg et al. 2002, Helbich et al. 2004]. 

A schematic ofthe geometry of the procedure is shown in Figure 11.1 and the relationship to 

determine the depth, Zm is given in Equation 11-1, with Xshift the distance between the centroids 

of the mass in the stereo views. 
Xshift 

Zm = --
2tan8 

(11-1) 

Figure 11.1: Schematic (not to scale) detailing the geometry of a SB system. Lesions closer to the 
x-ray source (1) have a greater shift from the centre of the mammogram than lesions further away 
from the x-ray source (2) . Xshif t is the distance between the centroids of the mass in the stereoscopic 
views. 

11.3 Effect of Localisation Errors on Sampling Accuracy 

In stereotactic biopsy systems, any inaccuracy in localising the lesion in either stereoscopic view 

results in an error in the calculated depth of the lesion. Percutaneous biopsies sample a very small 

amount of tissue (1 mm to 3 mm in diameter) and the desired feature might be missed if the feature 

is not well localised. 

There are many problems that result in localisation errors which lead to sampling the wrong 

tissue, including operator errors, patient movement, lesion movement within the breast during 

biopsy, the use of two different masses or calcification groups on the two stereoscopic views 

in the belief that they represent a single abnormality and non-visualisation of the lesion due to 

overlying tissue or as a result of the geometric configuration of the imaging system [Hendrick & 

Parker 1993, Carr et al. 2001]. 
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All these problems cause the incorrect tissue to be sampled and can therefore lead to an 

incorrect diagnosis. 

Carr et al. [2001] developed a computer simulation of a stereotactic breast biopsy system, 

based on a geometric model, to define and improve the targeting of breast lesions, and demon­

strated the effect that incorrect localisation on the stereoscopic views has on the calculated depth. 

It was reported, that there can be an error of more than 10 mm in the calculated depth if there is a 

5 mm error in the selection of the point in one stereoscopic view, for the stereotactic breast biopsy 

system that was used in the study. 

More generally, if the true shift is Xshift and fu is a deviation from the true shift value then if 

~8 = 0 and the true depth is Zm, the deviation from the true depth, ~ is: 

Xshif t 

Zm = 2tan8 

fu 
~ = 2tan8 
~ fu 2tan8 

Zm 2 tan 8 Xshift 

fu 

Xshif t 

which shows that the relative deviation in Xshif t is equal to the relative deviation in Zm . So, if Xshift 

deviates from the true shift by 10%, then Zm deviates from the true depth by 10%. It is therefore 

vital to accurately select points that refer to the same feature in both stereoscopic views. 

11.4 Application of Matching Algorithms to SB Mammograms 
Since the identification of the point referring to the same feature in each stereoscopic view is a 

matching problem, the TM-matching and MI-matching algorithms were applied to SB mammo­

grams to investigate the potential of using these algorithms to improve localisation accuracy. 

The proposed solution is based on the selection of a single point in the 0° view and using the 

matching algorithm to locate the corresponding point in each of the other two views. 

This matching of regions between SB mammograms is simpler than the problem of matching 

regions between two standard mammographic views as the breast compression is identical in all 

three SB views and the problem is reduced to one of analysing stereoscopic images. 

Literature searches have yielded no results with respect to the application of CAD algorithms 

to SB mammograms. This study therefore represents the first steps in improving localisation 

accuracy by comparing the similarity of the stereoscopic views. 

11.5 Details of Stereotactic Biopsy Mammograms 

11.5.1 Selection of SB Mammograms and Ground Truth Data 

The matching algorithms were applied to SB mammograms from 12 patients at the Inkosi Al­

bert Luthuli Central Hospital (Durban, South Africa). The images were acquired on a Siemens 
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Mammomat Nova 3000 mammography machine with an add-on biopsy unit and add-on Siemens 

Opdima 1 unit. The latter allowed for the capture of small field-of-view digital images. The work­

station consisted of a Sun Ultra 10 creator host computer. The detector cassette was a charge­

coupled-device with an imaging field of 49 mm x 85 mm. The image matrix was 1024 pixels x 

1792 pixels (0.048 mm per pixel) at a bit-depth of 12 bits. Images were resampled to a spatial 

resolution of 0.254 mm per pixel for the analysis. 

There were three images per patient (0°, ± 1 0°) resulting in a total of 36 SB mammograms. 

The 0° view was always used as the reference image, so the matching algorithms were applied to 

24 image pairs. There were two types of features of interest in the SB mammograms, masses (m) 

and calcification clusters (c), each with a different format of ground truth data. The radiologist 

marked the boundaries of the masses in the same manner as for the standard mammograms. For 

the calcification clusters, the radiologist was asked to select a point in the 0° view corresponding 

to a calcification of interest and also to identify the same calcification in the ± 1 0° views, as is 

required for a biopsy. ROls are divided into three categories according to the diagnosis: benign 

(B), indeterminate (I) and malignant (M). The diagnosis was confirmed by the biopsy results, 

where available. If the results were not available, then the radiologist's report was used. 

The reference SB mammogram label and test SB mammogram label are used in combination 

to label the SB mammogram pair. For example, the SB mammogram pair consisting of reference 

image SI and test image SO, has the SB mammogram pair label SIS0. The labels for each SB 

mammogram are given in Table 11.1. 

11.5.2 Characteristics of SB Mammograms 

Histograms of the areas of the suspicious ROls along with their visibilities (compared to surround­

ing tissue) are shown in Figure 11.2. Visibility was automatically determined from the original 

mammograms (at 0.254 mm per pixel). Visibility was defined to be the contrast ofthe ROI com­

pared to the surrounding tissue and was computed from Equation 7-10 and Figure 7.4 (page 87). 

Visibility ranges between 0 for a very subtle ROI and 1 for a very obvious ROJ. The histograms 

demonstrate that most of the ROIs are very small with very low visibilities. Full details of the 

sizes and visibilities of the ROIs are shown in Table 11.1. 

11.5.3 Reduced Images 

Reduced images of the SB mammograms used in this study are shown in Figure 11.3 in grey­

scale and pseudo-colour. Magnified versions ofthe ground truth ROls for the masses are shown in 

Figure 11.4. 

I Search http://www .medical.siemens.com/ for Opdima. 
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Figure 11.2: Histograms of areas and visibilities of the suspicious ROIs for the SB mammograms 
used in this study. Most of the ROIs are very small with very low visibilities. 

Table 11.1 : Characteristics of the suspicious ROIs in the SB mammograms used in this study. 'Fea­
ture' refers to whether the mammogram contains a mass (m) or a calcification (c). The possible 
diagnoses of the features are: benign (B), indeterminate (I) and malignant (M). 

L b I Angle Area V 'bT F D ' . L b I Angle Area V 'bT F D' . a e e ) (cm2) lSI Iity eature lagnosls a e (0) (cm2) lSI Iity eature IagnOSIS 

SO a -10 1.06 0.014 m M S18 -10 0 0.040 c B 
Sl a 0 0.98 0.014 m M SI9 0 0 0.013 c B 
S2 10 1.03 0.QI5 m M S20 10 0 0.055 c B 
S3 a -10 0.34 0.044 m B S21 a -10 3.21 0.007 m B 
S4 a 0 0.38 0.063 m B S22 a 0 3.1 0.009 m B 
S5 10 0.31 0.052 m B S23 10 3.23 0.007 m B 
S6 a -10 0.81 0.067 m B S24 -10 0.49 0.048 m B 
S7 a 0 0.72 0.055 m B S25 0 0.44 0.040 m B 
S8 10 0.65 0.067 m B S26 10 0.53 0.056 m B 
S9 a -10 1.35 0.063 m M S27 a -10 0.65 0.040 m B 
SlO a 0 1.24 0.040 m M S28 a 0 0.64 0.013 m B 
SII 10 1.25 0.044 m M S29 10 0.56 0.055 m B 
S12 -10 0 0.014 c I S30 -10 0.47 0.007 m B 
SI3 0 0 0.016 c I S31 0 0.53 0.009 m B 
S14 10 0 0.025 c I S32 10 0.58 0.007 m B 
SI5 -10 0 0.014 c I S33 -10 0.95 0.048 m I 
S16 0 0 0.011 c I S34 0 0.96 0.040 m I 
S17 10 0 0.016 c I S35 10 0.99 0.056 m I 

a Mammogram analysed for point correspondence. The exact pairs used are detailed in Table 11.15. 
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Figure 11.3: Reduced images ofSB mammograms used in this study in the original grey-scale (top) 
and pseudo-colour (bottom). Images are displayed as triplets corresponding to the -10°, 00 and + I 0° 
images, from left to right, but are labelled sequentially. The mass borders are indicated in red for the 
grey-scale images and grey for the pseudo-colour images. 
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0 0 0 
Figure 11.4: Magnified ROIs (not too scale) extracted from SB mammograms with masses, to demon-
strate that some ROIs are spiculated, while others are almost circular. Images are displayed as triplets 
corresponding to the -10°, 0° and + 10° images, from left to right, for each triplet. 

11.5.4 Sampling of Reference Images 

The SB mammograms with masses were sampled identically to the standard mammograms, with 

sampling windows centred on the centroid of the mass. Sampling windows were then increased in 

size (in increments of 16 pixels) around the centroid until the ROI was completely enclosed. This 

was chosen as the maximum sampling window size. 

A single sampling window of 16 pixels was centred on the position of the calcification marked 

by the radiologist to sample the reference ROI containing a calcification. 

11.6 Evaluation of Matching Accuracy for SB Mammograms 

To fully test the results of the matching algorithms, experiments would have to be performed on a 

biopsy system to verify physically that the locations provided by the matching algorithm actually 

improve localisation accuracy, but this is beyond the scope of this project. 

For this study, the results were evaluated in a two-stage process. Firstly, the matching accu­

racy was evaluated according to the method used for the mosaic images and the standard mammo­

grams. Secondly, those results that had a good matching accuracy, were evaluated for localisation 

accuracy, by comparing the centroid of the region matched to the point chosen by the radiologist. 
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11. 7 Selection of Matching Parameters 
The aim of the investigation using the mosaic images was to evaluate the matching algorithms 

under ideal matching conditions and to gain an understanding of the dependence of the various 

matching parameters on matching accuracy. The results from that investigation indicated that the 

matching parameters (w, nbits, d and nbins) depended on the individual images and so were varied 

for the SB mammograms containing masses. 

Only nbits and d were varied for the SB mammograms containing calcifications as the sam-

pling window size was fixed at 16 pixels. 

The sampling window step size was fixed, at 4 pixels, for all SB mammograms and all com-

binations of matching parameters. 

11.8 Examples of Matching Maps 
Examples of matching maps for TM- and MI-matching are shown in Figure 11.5. The maps 

were selected as those with the minimum and maximum matching accuracy, lC, over all matching 

parameters (w, nbits, d, nbins). Values of the actual matching parameters used for these maps are 

given in Table 11.2. Maps with a negative contrast imply that the region to be matched is darker 

than the background. 

The example maps for the minimum lC-values appear in the left column of Figure 11.5. 

All methods except TM-DM have negative contrasts, and although Cfb> 0 for TM-DM, AROC< 0 

indicating that the ROI was not matched. 

The example maps for the maximum lC-values appear in the right column of Figure 11.5. 

All methods, except TM-DM, have reasonably high ARoc-values, but the Cfb-values are very low. 

TM-DM has a very high value for Cfb but anARoc-value close to 0.5, indicating a very poor match. 

All methods, except MI-GLCMs, have very low values for lC, when compared to the results for the 

mosaic images and the standard mammograms. The result for MI-GLCMs is comparable to the 

results for the mosaic images and the standard mammograms. It is interesting to note that three of 

the five methods have an optimal sampling window size of96 pixels. 

Table 11.2: Summary of matching parameters for the example matching maps of SB mammograms, 
listed at the maximum and minimum K-values for image pair S 1 SO. Negative contrasts indicate that 
the background is brighter than the region to be matched. 

Method 
Minimum K Maximum K 

w nbits dlnbins ARoc Cib K W nbits dlnbins AROC Cfb K 

TM-DE 144 7 1 0.15 -0.26 -0.19 112 8 1 0.84 0.15 0.10 
TM-DES 16 7 10 0.36 -0.11 -0.03 96 5 10 0.83 0.09 0.06 
TM-DM 16 7 10 0.48 1.00 -0.03 96 5 1 0.53 1.00 0.05 
MI-histograms 48 7 64 0.28 -0.27 -0.12 96 8 16 0.73 0.07 0.03 
MI-GLCMs 64 6 10 0.90 -0.20 -0.16 32 7 1 0.96 0.86 0.80 
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Original 

DES 

Histograms 

GLCM 

Figure 11.5: Examples of matching maps for a pair of SB mammograms. The maps were scaled to an 
intensity range between 0 and 255 . The maps for the lowest and highest lC-values are shown in the left 
and right columns, respectively, with the colour bar at the bottom indicating the intensity scale. The 
reference image Sl (0°) is shown at the top left and the test image SO (_10°) is shown at the top right. 
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11.9 TM-Matching Evaluation Results 
The TM-matching algorithm (Algorithm 8.1 on page 96) was applied to the stereotactic biopsy 

mammograms on page 193. The results of the dependence of matching accuracy on the matching 

parameters are discussed for each of the three distance similarity metrics. The results are colour­

coded according to the breast tissue type of the reference ROI, benign (B), indeterminate (1) and 

malignant (M). 

Examples of the median, average and standard deviation for each of the texture measures is 

shown in Table 11.3 for image SO to demonstrate that there is a significant difference in the ranges 

of the values used as inputs to the distance similarity metric. The values listed were calculated 

over the full range of matching parameters. Correlation, inertia, sum variance and difference vari­

ance have very large values and these texture measures probably dominate the Euclidean distance 

calculation. The values listed for each texture measure differ from those values for the example 

mosaic image in Table 9.3 and for the standard mammogram example in Table 10.5. Therefore it 

is likely that each image has its own unique set of texture measures that best describe the image 

and a features selection algorithm would probably help to improve matching accuracy. 

Table 11.3: Median, average and standard deviation of texture measures for image SO to illustrate the 
different ranges of values for each texture measures. The values listed were calculated over the full 
range of matching parameters. 

I Texture Measures for SO II Median I Average I Standard Deviation I 
Entropy 1.69 1.58 1.43 
Energy 0.397 0.547 0.370 
Inertia 1680 5500 7880 
Inverse Difference Moment 0.003 0.004 0.005 
Correlation 1670 34800 187000 
Sum Average 58.9 91.8 95.0 
Sum Entropy 1.69 1.58 1.43 
Difference Entropy 1.69 1.54 1.37 
Sum Variance 1410 1570 1810 
Difference Average 37.3 48.3 44.8 
Difference Variance 292 1 180 1690 
Information Measure of Correlation 1 1.00 0.779 0.005 
Maximum Probability 0.550 0.632 0.319 

11.9.1 Evaluation of TM-Matching with DE 

The results of applying TM-matching with the Euclidean distance similarity metric, DE, to SB 

mammograms, are presented and discussed. The dependence of matching accuracy on nbits, d 

and w is examined. Results are presented in the formats described in §8.2 (page 93). Dependence 

on matching accuracy is indicated by separation of the different coloured plots. 
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Effect of nbits on Matching Accuracy 

Typical examples OfK VS. w in Figure 1l.6(a) show how matching accuracy varies with nbits and 

w. None of the plots overlap completely and the plots for the two masses are very noisy. The 

results for the calcifications are plotted as points because only I sampling window was used. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, and there is separation of the plots at the different bit-depths. The ACF-widths and 

ACF-heights are similar for the calcifications, but not for the masses. There appears to be poor 

correlation between the ACF results and the maximum values of K. The ACF results are discussed 

in§I1.12. 

Figure 1l.6(b) shows the average matching accuracy (over all image pairs) as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The varying degrees 

of separation of the nbits-plots, indicates that the dependence of matching accuracy on nbits is 

influenced by the sampling window size. Matching accuracy improves as bit-depth increases for 

w::;80 pixels and matching accuracy improves as bit-depth decreases for w~96 pixels. 

Effect of d on Matching Accuracy 

Some examples of K VS. ware shown in Figure 1l.7(a) to demonstrate how matching accuracy 

varies with d and w. All plots for the different values of d generally overlap almost completely, 

indicating that matching accuracy is independent of d for these examples. 

Figure 1l.7(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on d. Plots at the different values 

of d overlap almost completely for all sampling window sizes, indicating that matching accuracy 

is independent of d. 

Effect of w on Matching Accuracy 

The example plots OfK VS. w in Figures 1l.6(a) and 1l.7(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 
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Figure 11.6: Effect of nbits on matching accuracy for TM-DE applied to pairs of SB mammograms. 
(a) Typical examples of I( VS. w. Each row contains the information for a single image pair. The 
vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as 
a function of d, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of SB mammograms. 
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Figure 11.7: Effect of d on matching accuracy for TM-DE applied to pairs of SB mammograms. (a) 
Typical examples of K vs. w. Each row contains the information for a single image pair. (b) Average 
(across nbits) matching accuracy. 
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Summary of Best Results 

Figure 11.8 shows the best matching results for each SB mammogram pair, with results for the 

masses displayed on the left and those for the calcifications displayed on the right. All the masses 

have been matched, but one calcification has not been matched. The results are quite scattered for 

both masses and calcifications. 
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Figure 11.8: Scatter plot of the best results for TM-DE applied to SB mammograms, based on ROI 
feature. 

Figure 11.9 shows the best matching accuracies as functions ofROI area and ROI visibility, 

and matching accuracy is very poorly correlated with ROI area and ROI visibility. There is a range 

of matching accuracies for the different ROI areas and visibilities. 

l OB oMI 
1.0 1.0 

"" :>, 
0.5 

~ ~ 
0.5 u 

0 t' 0 f ::J 
U 

~ U 0.0 ~ ¢ 0.0 « 
CTI 
c 
.c 

-0.5 -0.5 .8 
0 
~ p=-0.16 p= 0.18 

-1.0 -1.0 
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 

Area of ROI (cm2
) Visibility of ROI 

(0) (b) 

Figure 11.9: Best matching accuracy as functions of (a) ofROI area and (b) ROI visibility for each 
mammogram pair for TM-DE. There is poor correlation between matching accuracy and ROJ area or 
ROI visibility, since the correlation coefficients are very low. 

Table 11.4 shows the best matching accuracies as a function of diagnosis. There are no 

significant differences (p > 0.65) between the best average results for each diagnosis. Matching 

accuracies are considerably poorer than for the mosaic images and the standard mammograms. 

The average ARoc-values are generally high, but all the average Cjb-values are very low. 
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Table 11.4: Average of the best matching results based on diagnosis for TM-D£ for pairs of SB 
mammograms. 

I Diagnosis II Average AROC I Average Cib I Average K I 
Best Results 

Benign O.73 ± O.O7 O.43±O.30 O.l9± O.l5 
Indeterminate O.81 ± O.14 O.29±O.22 O.20± O.13 
Malignant O.77± O.14 O.36±O.20 O.21 ± O.l8 

Best Mass Results 
Benign O.73 ± O.O8 O.47±O.30 O.22± O.15 
Indeterminate O.85± O.13 O.21±O.O6 O.16± O.lO 
Malignant O.77± O.l4 O.36±O.20 O.2I±O.l8 

Best Calcification Results 
Benign O.70± O.O7 O.16± O.O2 O.O7± O.O3 
Indeterminate O.79± O.16 O.33±O.28 O.22± O.l6 

11.9.2 Evaluation of TM-Matching with DES 

The results of applying TM-matching with the standardised Euclidean distance similarity metric, 

DES, to SB mammograms, are presented and discussed. The dependence of matching accuracy 

on nbits, d and w is examined. Results are presented in the formats described in §S.2 (page 93). 

Dependence on matching accuracy is indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of K vs. w in Figure 11.10(a) show how matching accuracy varies with nbits 

and w. The plots for all the examples, except S2SS27, overlap almost completely. The plots for 

S2SS27 are separated for all values of nbits, but the peak for the plot at nbits=5 bits is shifted to 

the left, indicating a smaller optimal sampling window size at this bit-depth. 

The results of the autocorrelation function analysis are plotted as vertical lines for each value 

of nbits, and there is separation of the plots at the different bit-depths. The ACF-widths and 

ACF-heights are similar for the calcifications, but not for the masses. There appears to be poor 

correlation between the ACF results and the maximum values OfK. The ACF results are discussed 

in§I1.12. 

Figure 11.10(b) shows the average matching accuracy (over all image pairs) as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The dependence of 

matching accuracy on nbits appears to be influenced by the size of the sampling window. This 

is clear because the best matches occur at the highest bit-depth for some sampling window sizes 

(SO pixels to 160 pixels) and at the lowest bit-depth for others (32 pixels to 64 pixels, 176 pixels). 
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Figure 11.10: Effect of nbits on matching accuracy for TM-DEs applied to pairs of SB mammograms. 
(a) Typical examples of IC VS. w. Each row contains the information for a single image pair. The 
vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as 
a function of d, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of SB mammograms. 
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Effect of d on Matching Accuracy 

Some examples of K vs. ware shown in Figure 11.11(a) to demonstrate how matching accuracy 

varies with d and w. All plots for the different values of d generally overlap almost completely, 

indicating that there is no dependence of matching accuracy on d for these examples.' There is 

some separation of the points for S13S 12 and S19S18 at the lower bit-depths. 

Figure 11.11(b) shows the results of averaging the matching accuracy over all pairs of SB 

mammograms with fixed values of w, nbits and d, to highlight the general dependence of matching 

accuracy on d. Plots at the different values of d overlap almost completely for all sampling window 

sizes, indicating that matching accuracy is independent of d. 

Effect of w on Matching Accuracy 

The example plots OfK vs. w in Figures 11.10(a) and 11.11(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 

Summary of Best Results 

Figure 11.12 shows the best matching results for each pair of SB mammograms according to 

whether the ROIs were masses or calcifications. The AROC- and Cjb-values are scattered over a 

wide range and are quite low for the calcifications. However, all masses and calcifications were 

matched. 

Table 11.5 shows the best matching accuracies as a function of diagnosis. The matching of 

the malignant masses had the lowest matching accuracy, while the indeterminate and benign ROIs 

were matched with slightly higher accuracies. The matching accuracies for the calcifications were 

very poor. All Cjb-values were very low. 

Table 11.5: Average of the best matching results based on diagnosis for TM-DEs for pairs of SB 
mammograms. 

I Diagnosis II Average AROC I Average Cjb I Average K I 
Best Results 

Benign O.80±O.10 O.29±O.20 O.l7±O.11 
Indeterminate O.79±O.O9 O.26±O.l2 O.14±O.O6 
Malignant O.76±O.O5 O.22±O.13 O.10±O.O4 

Best Mass Results 
Benign O.79±O.lO O.33±O.20 O.l8± O.11 
Indeterminate O.85±O.O2 O.31±O.O7 O.21±O.O3 
Malignant O.76±O.O5 O.22±O.l3 O.10±O.O4 

Best Calcification Results 
Benign O.86±O.O2 O.O9±O.O6 O.O7±O.O5 
Indeterminate O.77±O.lO O.23±O.14 O.11±O.O3 

Figure 11.13 shows the best matching accuracies as functions ofRO! area and RO! visibility. 

There is a range of matching accuracies for the small and large masses. There is also a range of 

matching accuracies for the ROI visibilities. This plot shows that there is poor correlation between 

matching accuracy and ROJ area or ROJ visibility, since the correlation coefficients are very low. 
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Figure 11.11: Effect of d on matching accuracy for TM-DEs applied to pairs of SB mammograms. 
(a) Typical examples of K VS. w. Each row contains the information for a single image pair. (b) 
Average matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of SB mammograms. 
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Figure 11.12: Scatter plot of the best results for TM-DES applied to SB mammograms, based on ROI 

feature. 
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Figure 11.13: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for each 
mammogram pair for TM-DEs. The correlation between matching accuracy and ROI area or visibility 
is very poor, since the correlation coefficients are very low. 

11.9.3 Evaluation ofTM-Matching with DM 

The results of applying TM-matching with the Mahalanobis distance similarity metric, DM, to 

pairs of SB mammograms, are presented and discussed. The dependence of matching accuracy 

on nbits, d and w is examined. Results are presented in the formats described in §8.2 (page 93). 

Dependence on matching accuracy is indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of 1C vs. w in Figure 1l.14(a) show how matching accuracy varies with nbits 

and w. All plots for S13S12 overlap completely. For S10S9 and S19S18, all plots for nbits>5 bits 

overlap almost completely indicating no dependence of matching accuracy on bit-depth. For the 5-

bit plots, S10S9 has maximal matching accuracy and S19S18 has minimal matching accuracy. All 

plots are separated for S28S27, with matching accuracy generally improving as nbits decreases. 

The results of the ACF analysis are plotted as vertical lines for each value of nbits, and there 

is separation of the plots at the different bit-depths. The ACF-widths and ACF-heights are similar 
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for the calcifications, but not for the masses. There appears to be poor correlation between the 

ACF results and the maximum values of K. The ACF results are discussed in § 11 .12. 

Figure 11.14(b) shows the average matching accuracy (over all image pairs) as a function 

of d, to highlight the general dependence of matching accuracy on nbits. The dependence of 

matching accuracy on bit-depth is influenced by the sampling window size. Matching accuracies 

are generally very low, with all plots overlapping completely for most sampling window sizes. 

There are some sampling window sizes (176 pixels) where there is come separation of the plots 

for different values of nbits. It appears as if optimal matching occurs at low bit-depths. 

Effect of d on Matching Accuracy 

Some examples of K vs. ware shown in Figure 11.1S(a) to demonstrate how matching accuracy 

varies with d and w. All plots for the different values of d generally overlap almost completely, 

indicating that there is no dependence of matching accuracy on d for these examples. 

Figure 11.1S(b) shows the results of averaging the matching accuracy over all pairs of SB 

mammograms with fixed values of w, nbits and d, to highlight the general dependence of matching 

accuracy on d. Plots at the different values of d overlap almost completely for all sampling window 

sizes, indicating that matching accuracy is independent of d. 

Effect of w on Matching Accuracy 

The example plots OfK vs. w in Figures 11.14(a) and 11.1S(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 

Summary of Best Results 

Figure 11.16 shows the best results for each image pair according to whether the ROI contains 

a mass or a calcification. All masses were matched but no calcifications were matched. The 

latter is quite surprising since both TM-D£ and TM-D£s have successfully, albeit poorly, matched 

the calcifications. This might be an indication that the use of DM as a similarity metric for the 

calcifications is inappropriate, as vital information is lost in the calculation of DM . 

Table 11.6 shows the best matching accuracies as a function of diagnosis. The matching 

of the malignant masses had the highest matching accuracy, while the indeterminate and benign 

ROIs were matched with slightly lower accuracies. The poor average matching accuracies for 

the indeterminate and benign ROIs is most likely due to no calcifications being matched. Overall 

results are significantly lower than for TM-DE and TM-DEs. 

Figure 11.17 shows the best matching accuracies as functions ofROI area and ROI visibility. 

Matching accuracies are generally very low irrespective of the ROI area or visibility. 
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Figure 11.14: Effect of nbits on matching accuracy for TM-DM applied to pairs of SB mammograms. 
(a) Typical examples of K VS. w. Each row contains the information for a single image pair. The 
vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as 
a function of d, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of SB mammograms. 
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Figure 11.15: Effect of d on matching accuracy for TM-DM applied to pairs of SB mammograms. 
(a) Typical examples of 1( vs. w. Each row contains the information for a single image pair. (b) 
Average matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of SB mammograms. 
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Figure 11.16: Scatter plot of the best results for TM-DM applied to SB mammograms, based on ROI 
feature. 

Table 11.6: Average of the best matching results based on diagnosis for TM-DM for pairs of SB 
mammograms. 

I Diagnosis II Average ARoc I Average Cfb I Average K I 
Best Results 

Benign O.74±O.19 O.23±O.35 O.O8±O.1O 
Indeterminate O.52±O.l9 O.Ol±O.O2 O.Ol±O.OI 
Malignant O.68±O.17 OA3±O.38 O.1O±O.O8 

Best Mass Results 
Benign O.79±O.14 O.27±O.37 O.O9±O.lO 
Indeterminate O.75±O.O2 O.O4±O.OO O.O2±O.OO 
Malignant O.68±O.17 OA3±O.38 O.1O± O.O8 

Best Calcification Results 
Benign OA3±O.07 O.OO±O.OO O.OO±O.OO 
Indeterminate OAO±O.07 O.OO±O.OO O.OO±O.OO 
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Figure 11.17: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for each 
mammogram pair for TM-DM. 
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11.10 MI-Matching Evaluation Results 
The MI-matching algorithm, using grey-level histograms and GLCMs to estimate the probability 

density functions (Algorithm 8.2 on page 98) was applied to pairs of SB mammograms. 

11.10.1 Evaluation ofMI-Matching with Histograms 

The results of applying MI -matching with histograms to pairs of SB mammograms, are presented 

and discussed. The dependence of matching accuracy on nbits, nbins and w is examined. Results 

are presented in the formats described in §8.2 (page 93). Dependence on matching accuracy is 

indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples of 1C vs. w in Figure 1l.18(a) show how matching accuracy varies with nbits 

and w. For S19S18 and S28S27, all plots overlap completely, and for S10S9 and S13S12, all plots 

with nbits>5 bits, overlap completely, indicating that matching accuracy is independent of nbits. 

The 5-bit plot has the maximal matching accuracy for S10S9 and S13S12. 

The results of the ACF analysis are plotted as vertical lines for each value of nbits, and there 

is separation of the plots at the different bit-depths. The ACF-widths and ACF-heights are similar 

for the calcifications, but not for the masses. There appears to be poor correlation between the 

ACF results and the maximum values ofK. The ACF results are discussed in §11.12. 

Figure 1l.18(b) shows the average matching accuracy (over all image pairs) as a function of 

d, to highlight the general dependence of matching accuracy on nbits. Most plots overlap almost 

completely for w< 160 pixels. For w ~ 160 pixels, optimal matching accuracy occurs for the lowest 

bit-depth. 

Effect of nbins on Matching Accuracy 

Some examples of 1C VS. ware shown in Figure 1l.19(a) to demonstrate how matching accuracy 

varies with nbins and w. All plots for the different values of nbins generally overlap almost com­

pletely, indicating that there is no dependence of matching accuracy on d for these examples. 

However, for S 10S9 there is a slight indication that the matching accuracy is best for the highest 

bit-depth and the fewest histogram bins. 

Figure 1l.19(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on nbins. The degree of separation 

of the nbins-plots increases as sampling window size increases. Matching accuracy generally 

improves as nbins decreases for all sampling window sizes. 
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Figure 11.18: Effect of nbits on matching accuracy for MI-histograms applied to pairs of SB mam­
mograms. (a) Typical examples oflC vs. w. Each row contains the information for a single image pair. 
The vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width and 
the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy as a 
function of nbins, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of SB mammograms. 
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Figure 11.19: Effect of nbins on matching accuracy for MI-histograms applied to pairs of SB mam­
mograms. (a) Typical examples ofK VS. w. Each row contains the information for a single image pair. 
(b) Average matching accuracy as a function of bit-depth, at different values of nbins to highlight the 
general dependence of matching accuracy on nbins for the pairs of SB mammograms. 
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Effect of w on Matching Accuracy 

The example plots ofK VS. w in Figures 11.18(a) and 11.19(a) show that matching accuracy varies 

as sampling window size varies. The variation is however unique to each image and the optimal 

sampling window size is most likely determined by the scale sizes of the textures in each image. 

Summary of Best Results 

Figure 11.20 shows the best results for each pair of SB mammograms according to whether the 

ROI contained a mass or a calcification. Results are spread over a wide range of AROC- and Cjb­

values, but there is a cluster around AROC=O.5 and Cjb=O for the masses. Four masses were not 

matched and one calcification was not matched. 
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Figure 11.20: Scatter plot of the best results for MI-histograms applied to SB mammograms, based 
on diagnosis. 

Figure 11.21 shows the best matching accuracies as functions ofROI area and ROI visibility. 

Matching accuracies are generally very low irrespective of the ROI area or visibility. There is no 

correlation between matching accuracy and ROI area or ROI visibility. 
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Figure 11.21: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for each 
mammogram pair for MI-histograms. There is poor correlation between visibility or ROI area and 
matching accuracy, since the correlation coefficients are very low. 

Table 11.7 shows the best matching accuracies as a function of diagnosis. The matching of 
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the malignant masses had the lowest matching accuracy, while the indeterminate and benign ROIs 

were matched with slightly higher accuracies. Matching accuracies are very low. 

Table 11.7: Average of the best matching results based on ROI feature for MI-histograms for pairs of 
SB mammograms. 

I Diagnosis II Average AROC I Average Cjb I Average K I 
Best Results 

Benign O.64±O.14 O.26±O.26 O.10±O.14 
Indeterminate O.65±O.14 O.29±O.31 O.10±O.O8 
Malignant O.58±O.O9 O.17±O.O7 O.O3 ± O.O3 

Best Mass Results 
Benign O.66± O.14 O.30± O.26 O.l2± O.l4 
Indeterminate O.73±O.14 O.29±O.Ol O.l3 ± O.O7 
Malignant O.58±O.O9 O.l7±O.O7 O.O3±O.O3 

Best Calcification Results 
Benign O.57±O.l6 O.O2±O.O2 O.OO± O.OO 
Indeterminate O.61±O.l5 O.29±O.40 O.O8± O.O8 

11.10.2 Evaluation ofMI-Matching with GLCMs 

The results of applying MI-matching with GLCMs to pairs of SB mammograms, are presented 

and discussed. The dependence of matching accuracy on nbits, d and w is examined. Results 

are presented in the formats described in §8.2 (page 93). Dependence on matching accuracy is 

indicated by separation of the different coloured plots. 

Effect of nbits on Matching Accuracy 

Typical examples ofK vs. ware shown in Figure 1l.22(a) to demonstrate the effect of nbits and w 

on matching accuracy. The plots are well separated for S 1 OS9 and S28S27, showing that matching 

accuracy improves as bit-depth increases. All points overlap completely for S13S12 and there is no 

apparent pattern regarding the behaviour of matching accuracy as bit-depth changes. For S19S18, 

matching accuracy appears to improve with decreasing nbits. 

The results of the ACF analysis are plotted as vertical lines for each value of nbits, and there 

is separation of the plots at the different bit-depths. The ACF -widths and ACF-heights are similar 

for the calcifications, but not for the masses. There appears to be poor correlation between the 

ACF results and the maximum values of K . The ACF results are discussed in § 11 .12. 

Figure 1l.22(b) shows the average matching accuracy (over all image pairs) as a function of 

d, to highlight the general dependence of matching accuracy on nbits. The degree of separation 

of the nbits-plots increases with decreasing sampling window size. Matching accuracy improves 

as bit-depth increases for all window sizes, but the dependence is most apparent as the sampling 

window sizes get smaller. 
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Figure 11.22: Effect of nbits on matching accuracy for MI-GLCMs applied to pairs of SB mammo­
grams, (a) Typical examples of K vs. w. Each row contains the information for a single image pair, 
The vertical lines indicate the results of the ACF analysis. The solid line represents the ACF-width 
and the dotted line represents the ACF-height, at different bit-depths. (b) Average matching accuracy 
as a function of d, at different bit-depths to highlight the general dependence of matching accuracy on 
bit-depth for pairs of SB mammograms. 
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Effect of d on Matching Accuracy 

Some examples of K VS. ware shown in Figure 11.23(a) to demonstrate how matching accuracy 

varies with d and w. There is some separation of the plots for S 1 OS9 and S28S27, and it appears 

that optimal matching accuracy occurs at the lowest values of d, for the masses. There is no 

consistent pattern of dependence of matching accuracy on bit-depth for the calcifications, with 

the results for S13S12 overlapping completely and the results for S19S18 showing that matching 

accuracy improves with increasing d. 

Figure 11.23(b) shows the average matching accuracy (over all image pairs) as a function of 

nbits, to highlight the general dependence of matching accuracy on d. Plots at the different values 

of d overlap almost completely for the small sampling windows (w:S;80 pixels). For w>80 pixels, 

matching accuracy appears to improve as d decreases. 

Effect of w on Matching Accuracy 

The example plots of K VS. w in Figures 11.22(a) and 11.23(a) show that matching accuracy 

generally improves as sampling window size decreases. 

Summary of Best Results 

Figure 11.24 shows the best matching results for each pair of SB mammograms. Most results have 

Cjb >O.5 andARoc>O.70, but there are 6 image pairs (S22S21, S25S24, S31S30, S31S32, S34S33 

and S34S35) that were not matched. If these image pairs are examined (page 193) it is obvious 

that the average grey-levels of the reference images vary significantly from the test images. These 

examples highlight one weakness of using GLCMs to estimate a probability density, since there is 

poor correlation in the GLCM if the average grey-levels are different in each image. This problem 

would probably be solved with some pre-processing to equalise grey-levels. 

Table 11.8 shows the best matching accuracies as a function of diagnosis. The matching of 

the malignant masses had the highest matching accuracy, considerably higher than the matching 

accuracies for the other matching methods. The matching results for the benign masses are com­

parable to the results for TM-D£ . However, the indeterminate ROIs and calcifications are very 

poorly matched. 

Figure 11.25 shows the best matching accuracies as functions of ROI area and ROI visibil­

ity. Apart from the results for the malignant masses, matching accuracies are generally very low 

irrespective of the ROI area or visibility. 
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Figure 11.23: Effect of d on matching accuracy for MI-GLCMs applied to pairs of SB mammograms. 
(a) Typical examples of l( vs. w. Each row contains the information for a single image pair. (b) 
Average matching accuracy as a function of bit-depth, at different values of d to highlight the general 
dependence of matching accuracy on d for the pairs of SB mammograms. 
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Figure 11.24: Scatter plot of the best results for MI-GLCMs applied to SB mammograms, based on 
ROI feature. 

Table 11.8: Average of the best matching results based on diagnosis for MI-GLCMs for pairs of SB 
mammograms. 
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Figure 11.25: Best matching accuracy as functions of (a) ROI area and (b) ROI visibility for each 
mammogram pair for MI-GLCMs. 
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11.11 Overall Matching Results 

11.11.1 Results 
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Figure 11.26 shows the best matching results for each pair of SB mammograms. The highest 

lC-value was selected over all matching parameters, for each pair ofSB mammograms. 
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Figure 11.26: Scatter plot of AROC vs. Cjb with the best matching accuracies for all matching methods 
and for each SB mammogram pair. The points are colour-coded according to the diagnosis (B - benign, 
I - indeterminate, M - malignant). 

The AROC- and Cjb-values are only clustered for TM-DES and are generally quite scattered for 

the remaining four methods (TM-DE, TM-DM, MI-histograms, MI-GLCMs). Matching accura­

cies are only very high for the malignant masses matched with MI-GLCMs, otherwise, matching 

accuracies are very poor, with low ARoc-values and low Cjb-values. The average of the best 

matching accuracies is summarised in Table 11.9, for each method. Results are generally lower 

than the equivalent values for the mosaic images and for the standard mammograms, and this is 

most probably because the features in the SB mammograms all have very low visibilities. 

Matching accuracies for the masses are comparable to the results for the standard mammo­

grams, but the matching accuracies for the calcifications are very low. 

The combination of matching parameters that yielded the maximum lC-values is listed for 

each image pair in Table A.S for TM-matching and in Table A.6 for MI-matching. 
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Table 11.9: Average of the best matching accuracies for all matching methods applied to SB mammo­
grams. 

IMethod K 

Overall Results 
TM-D£ 0.75± 0.11 0.38± 0.26 0.20± 0.14 
TM-D£s 0.79± 0.09 0.27± 0.17 0.15± 0.09 
TM-DM 0.67±0.20 0.21±0.33 0.06±0.09 
MI-histograms 0.63± 0.13 0.25 ± 0.25 0.09± 0.11 
MI-GLCMs 0.68± 0.21 0.35 ±OA3 0.27±0.32 

Masses 
TM-D£ 0.75± 0.10 OA2±0.27 0.21±0.15 
TM-D£s 0.79±0.09 0.30±0.18 0.17±0.10 
TM-DM 0.76± 0.14 0.28±0.35 0.08±0.09 
MI-histograms 0.65± 0.13 0.27± 0.22 0.10±0.12 
MI-GLCMs 0.73±0.20 OA8±OAO 0.35±0.33 

Calcifications 
TM-D£ 0.76± 0.13 0.27±0.23 0.17±0.14 
TM-D£s 0.80±0.09 0.18±0.13 0.09±0.04 
TM-DM OAl±O.07 O.OO±O.OO O.OO±O.OO 
MI-histograms 0.60± 0.14 0.20±0.34 0.05±0.08 
MI-GLCMs 0.51±0.18 -0.05 ± 0.23 0.01±0.02 

11.11.2 Statistical Significance Analysis 

The results of performing a paired (-test analysis (§8.1 0 on page 103) on the distribution of the 

best lC-values for each method are presented in Table 11.10. 

For a significance level of 0.05, the average values of lC for TM-DE and MI-GLCMs are not 

statistically different. The average values ofTM-DEs and TM-DE as well as the average values of 

TM-DM and MI-histograms are also not statistically different. 

Table 11.10: Results of significance (I-test) analysis for best matching accuracies from pairs of SB 
mammograms for the various matching methods. 

TM-D£s TM-DM MI-histograms MI-GLCMs 
Method t-value p-value t-value l£-value t-value lP-value t-value lP-value 
TM-D£ 1.41 0.17 3.88 0.00 2.90 0.Q1 -0.95 0.35 
TM-D£s 3.18 0.00 1.94 0.06 -1.73 0.09 
TM-DM -0.90 0.37 -2.99 0.01 
MI-histograms -2.55 0.02 

11.11.3 TM-matching 

TM-DE and TM-DES had the best matching accuracies with 1 mass (out of 25) not matched for 

TM-DE and all ROIs matched for TM-DEs. Matching accuracies for TM-DM were very low, and 

no calcifications (out of9) were matched. 

The overall results are considerable lower than for the mosaic images and for the standard 

mammograms. This is most likely because the visibilities of all ROls are very low. There was also 

no correlation between matching accuracy and ROI area or ROI visibility for the TM-matching 

methods. 

Patients subjected to stereotactic biopsies generally have smaller, impalpable masses, most 

of which are poorly visualised on standard mammograms. The visibility of the masses in the SB 

mammograms is most likely low because these represent more difficult cases. 
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The dependence of matching accuracy on bit-depth was influenced by the sampling window 

size for all methods and there was no consistent pattern to the dependence of matching accuracy 

on bit-depth. Matching accuracy was independent of d for all methods. 

11.11.4 MI-matching 

The matching results for MI-histograms were very low with 4 masses (out of25) and I calcification 

(out of 9) not matched. Matching accuracy improved with decreasing bit-depth and decreasing 

nbins. 

The matching accuracy for the malignant masses was very high for MI-GLCMs, but there 

were still 6 masses (out of 25) and 4 calcifications (out of 9) not matched, the most non-matches 

of all five matching methods. The results for the remaining ROI-types were very low. Matching 

accuracy improved with increasing bit-depth and decreasing d. 

There was no correlation between matching accuracy and ROI area or ROI visibility for both 

MI-histograms and MI-GLCMs. 

11.12 Results of ACF Analysis 
The autocorrelation function was used to determine the characteristic scale width and scale height 

of the textural features in each reference image. The ACF results were compared to the optimal 

sampling window sizes that were obtained from the matching analysis. 

The ACF results appear in Table 11.12 and were generated at different bit-depths because 

the characteristic scales of textural features are expected to change as bit-depth changes. Only a 

few ROIs demonstrated some variation ofthe ACF-widths and ACF-heights as bit-depth changed, 

but most ROIs had ACF-results that were independent of bit-depth. This is most likely because 

most of the ROIs are very small, and the features therein would not vary significantly as bit-depth 

changed. 

The optimal sampling window sizes, for TM- and MI-matching appear in Table 11.11. The 

results of a linear Pearson correlation analysis (§8.1 0 on page 103) between the ACF-results and 

the optimal sampling window sizes are detailed in Table 11.13. The correlation results indicate 

that the ACF-results are correlated with the optimal sampling window sizes. Correlation improves 

as bit-depth decreases, for all methods, except MI-histograms where correlation improves as bit­

depth increases. 

The correlation results for ACF-widths are similar to those for the ACF-heights, which means 

that the scale widths and scale heights of the textures in the mammogram ROIs are similar and it 

is appropriate to use square sampling windows. 
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Table 11.11: Optimal sampling window sizes for SB mammograms with DE, DES, DM, histograms 
(GLH) and GLCMs (G). 

5-bits 6-bits 7-bits 8-bits Image 
DE DES DM GLH G DE DES DM H GI D E DES DM GLH GI DE DES DM GLH G 

S1S0 96 32 96 128 64 64 64 16 128 32 80 112 96 128 32 144 96 128 112 32 
S1S2 96 96 96 128 128 16 48 144 128 32 16 144 32 128 32 112 48 144 96 32 
S4S3 64 16 48 32 16 48 32 96 32 16 48 32 80 32 16 16 16 80 32 16 
S4S5 64 16 96 16 16 64 32 64 32 16 64 32 16 32 16 32 32 48 32 16 
S7S6 64 80 128 64 32 48 48 48 32 32 16 48 48 32 32 48 96 128 32 32 
S7S8 80 48 64 16 32 80 64 64 32 32 64 64 48 64 32 32 80 96 48 32 
SIOS9 160 176 176 176 16 96 32 64 80 32 128 128 128 80 32 16 16 48 80 32 
S10S11 176 32 64 160 32 96 32 48 128 48 16 32 80 96 48 16 16 48 96 64 
S13S12 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S13S14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S16S15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S16S17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S19S18 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S19S20 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
S22S21 272 176 48 288 16 32 32 176 288 16 16 16 256 288 16 16 16 48 288 16 
S22S23 176 176 176 256 48 80 288 288 256 48 16 112 112 256 48 16 16 176 256 48 
S25S24 16 16 80 16 16 48 48 16 32 16 16 16 48 16 16 80 16 80 16 16 
S25S26 32 96 16 80 48 80 64 64 48 16 96 96 96 16 16 16 96 96 16 16 
S28S27 96 64 96 32 16 96 96 96 96 16 96 96 80 32 32 96 96 96 32 16 
S28S29 16 16 32 16 48 16 32 16 32 96 16 32 96 32 16 128 64 128 32 16 
S31S30 32 32 16 16 16 32 32 16 96 16 16 16 96 96 16 16 16 64 96 16 
S31S32 96 48 64 16 16 32 96 48 96 16 16 16 16 96 16 16 16 48 48 16 
S34S33 96 64 144 48 16 16 96 32 144 16 128 144 48 144 16 144 112 112 144 16 
S34S35 96 112 128 64 16 32 16 32 48 16 16 48 16 48 16 80 128 128 64 16 

Table 11.12: Results of ACF analysis for SB mammograms. 

Reference 
5-bits 6-bits 7-bits 8-bits 

WACFhACFI WAcFhACFI WACFhAcF WACFhAcF 

SI 88 114 76 67 54 66 62 65 
S4 37 54 40 51 41 49 40 49 
S7 101 82 100 77 98 77 98 78 
S10 77 68 62 65 62 65 61 66 
S13 8 7 8 8 8 8 8 8 
S16 12 7 11 11 11 11 11 11 
S19 13 12 12 15 10 12 10 12 
S22 132 287 266 287 270 287 270 287 
S25 48 80 34 46 44 50 44 49 
S28 43 53 50 57 51 73 51 73 
S31 44 39 47 38 47 40 46 40 
S34 64 53 64 60 71 62 71 62 

Table 11.13: Correlation coefficients between ACF results and optimal sampling window sizes for SB 
m~mo~ams. The linear Pearson correlation coefficient was computed between the optimal sampling 
wmdow sizes and WACF (Pw) and hACF (Ph). Results indicate that the ACF results are correlated with 
the optimal window sizes for some matching methods. 

Method 5-bits 6-bits 7-bits 8-bits I 
Pw Ph Pw Ph Pw Ph Pw Ph 

TM-DE 0.80 0.78 0.29 0.29 -0.05 -0.04 -0.03 -0.01 
TM-DES 0.75 0.75 0.63 0.63 0.24 0.26 0.04 -0.01 
TM-DM 0.65 0.45 0.84 0.86 0.73 0.76 0.49 0.47 
MI-histograms 0.80 0.87 0.87 0.87 0.87 0.87 0.90 0.90 
MI-GLCMs 0.40 0.32 0.24 0.23 0.43 0.43 0.38 0.36 
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11.13 Multiple Reference Regions 
The effect of using multiple reference regions was investigated by dividing each single reference 

region into four smaller regions, as depicted in Figure 10.29. The resulting matching map from 

each small reference region was then averaged, in an attempt to highlight different regions of the 

test image. The TM-matching and MI-matching algorithms were applied to the 24 pairs of SB 

mammograms. 

Figure 11.27 shows the best matching accuracies, lC, for each of the 24 pairs of SB mammo­

grams. 
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Figure 11.27: Summary of best matches for multiple reference regions (SB mammograms). 

The AROC- and Cjb-values for each method are quite scattered. The matching accuracies are 

quite low, generally as a result of low contrast values. TM-DE performs best overall, but MI­

GLCMs performs best at matching the malignant masses. The matching accuracy of TM-DES is 

comparable to that ofMI-GLCMs and the matching accuracy ofTM-DM is comparable to that of 

MI -histograms. 

Average matching accuracies are listed in Table 11.14 for single and multiple reference re­

gions. These results show that using multiple reference regions does not improve overall matching 

accuracy. 
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Table 11.14: Average of the best matching accuracies for single and multiple reference regions for all 
matching methods applied to pairs of SB mammograms. Results show that using multiple reference 
regions doe~ not improve the overall matching accuracy. 

Single Reference Region Multiple Reference Regions 
Method Overall 

AROC C[b K I A ROC C[b K 

TM-D£ 0.75 ± O.l1 0.38± 0.26 0.20± O.l4 0.73 ± O.l6 0.29± 0.23 O.l5 ± O.l4 
TM-D£s 0.79±0.09 0.27±O.l7 O.l5± 0.09 0.76±O.lO 0.22±0.21 O.l2±O.l1 
TM-DM 0.67±0.20 0.21±0.33 0.06±0.09 0.61±0.17 O.l9±0.30 0.05±0.08 
MI-histograms 0.63±O.l3 0.25±0.25 0.09±O.l1 0.57±O.l3 O.l7±0.23 0.06±O.l2 
MI-GLCMs 0.68±0.21 0.35 ± 0.43 0.27± 0.32 0.67±0.22 0.39±0.38 0.26± 0.31 

Masses 
TM-D£ 0.75±O.lO 0.42±0.27 0.21±O.l5 0.74±0.09 0.36±0.21 O.l8±O.l5 
TM-D£s 0.79±0.09 0.30±O.l8 O.l7±O.lO 0.75±0.10 0.26±0.22 O.l4±O.l1 
TM-DM 0.76±O.l4 0.28±0.35 0.08±0.09 0.68±O.l4 0.26±0.33 0.07±0.09 
MI-histograms 0.65±0.13 0.27±0.22 O.lO±O.l2 0.59±O.l2 0.22±0.24 0.08±0.13 
MI-GLCMs 0.73±0.20 0.48±0.40 0.35±0.33 0.72±O.l9 0.48±0.40 0.33±0.32 

Calcifications 
TM-D£ 0.76±O.l3 0.27± 0.23 O.l7± O.l4 0.67±0.28 0.08± 0.13 0.07± 0.09 
TM-D£s 0.80±0.09 O.l8±0.13 0.09±0.04 0.79±0.1l O.lO±0.07 0.06±0.05 
TM-DM 0.41±0.07 O.OO±O.OO O.OO±O.OO 0.41±0.07 O.OO±O.OO O.OO±O.OO 
MI-histograms 0.60±O.l4 0.20±0.34 0.05±0.08 0.52±O.l8 0.00±0.09 0.00±0.01 
MI-GLCMs 0.51±0.18 -0.05±0.23 0.01 ± 0.02 0.54±0.25 O.lI±O.l4 0.03±0.04 

11.14 Point Analysis for Improving Localisation Accuracy 

The first stage of the evaluation of the matching results resulted in very few very good matches 

that could be analysed for selection of points. For the point analysis to be effective, it is necessary 

to have a good contrast as well as a good value for AROC. Further to that, both stereoscopic views 

must have good matches with the scout view. Only 3 cases satisfied these requirements for TM­

DE and only 4 cases satisfied the requirements for MI-GLCMs. No other methods had sufficiently 

accurate matches. For stereotactic biopsies, only shifts in the x-direction are relevant, so the x­

coordinate of the centroid of the ROI, ROIx, drawn by the radiologist and the x-coordinate of 

the pixel with the maximum intensity in the matching map (indicating the best match), mx were 

determined for each view. The results are shown in Figure 11.28 and Figure 11.29 and detailed 

in Table 11.15. 

Table 11.15: Results from point analysis applied to best matching results of selected SB mammo­
grams. 

Label w ROIx mx Label w ROlx mx 
TM-D£ 

S10S9 16 133 88 SlOS11 16 84 67 
S22S21 16 94 10 S22S23 16 59 61 
S28S27 16 84 37 S28S29 16 37 129 

MI-GLCM 
S1S0 32 97 140 S1S2 32 58 62 
S4S3 16 98 39 S4S5 16 28 5 
S7S6 32 84 195 S7S8 32 49 47 
S10S9 32 131 133 SI0S11 32 83 85 

All results, except one, are very poor. In most cases the maximum of the matching map 

does not even occur within the ROI. There is only one case (S10S9 for MI-GLCMs) where the 

positions differ by 2 pixels for each stereoscopic view, resulting in the same shift in the matching 
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map. However, since the matching map was generated for a sampling window size of 16 pixels, 

the 2 pixel-difference corresponds to 16.3 mm, which is significant on the scale of localisation 

accuracy. 

51059 
-;; 140 .--~~-~~~~-. 
~ 120 
.0. 100 
--; 80 
·2 60 
"if! 40 

ROl li( 
Matching Algorithm 0 

Z) 0 
~ 28 L-____________ -J 

-;; 148 
~ 12 
~ 100 
c 80 
~ 60 
.~ 40 
0 

28 a. 
I 

>- a 50 100 150 200 250 >- a 
x-Position (pixels) 

52252 1 

ROI lI( 

-;; 148 r---------------. 
~ 12 
.0. 100 
--; 80 
g 60 

~ ;8 .0 
Matching Algorithm 0 

0 
-;; 148 
~ 12 
~ 100 
c 80 
~ 60 
.~ 40 
0 

28 a. 
I 

50 100 150 200 250 >.. 
~ 0L---~----------~ 

0 

-;; 148 
~ 12 
~ 100 
c 80 

02 60 
"in 40 

x-Posi tion (pixels) 

528527 

ROl li( 
Matching Al gorithm 0 

-;; 148 
~ 12 

:§; 100 
c 80 
~ 60 
.~ 40 0 

0 0 
28 a. 

I 

50 100 150 200 250 >-

t 28 L-____________ -J 

o 
x- Position (pixels) 

0 

510511 

ROl li( 
Matching Algorithm 0 

50 100 150 200 250 
x- Position (pixe ls) 

522523 

ROl li( 
Matching Algorithm 0 o 
50 100 150 200 250 
x-Position (pixels) 

528529 

ROlli( 
Matching Algorithm 0 

o 

50 100 150 200 250 
x-Position (pixels) 

Figure 11.28: Results of point analysis for TM-D£. The ROI drawn by the radiologist is shown 
together with the centroid of the ROI. The position of the pixel with the maximum intensity in the 
matching map is also shown. In most cases, the latter position does not even occur within the ROI. 

5150 5152 
~ ~ 

1i 120 1i 120 
100 100 

~ 80 
ROI lI( ~ 80 

ROl li( 

c 60 
Matching Algorithm 0 c 60 

Matching Al gorithm 0 

~ 40 ~ 40 0 .~ 0 0 .~ 

0 20 0 20 a. a. 
~ a I a 

0 50 100 150 200 250 >- 0 50 100 150 200 250 
x-Posit ion (pixels) x- Position (pixels) 

~ 140 
5453 

~ 140 
5455 

~ 120 ~ 120 
~ 100 ROl li( ~ 100 ROl li( 

c 80 Matching Algorithm 0 c 80 Matching Algorithm 0 
0 60 ~ 60 z 
.~ 40 0 0 .~ 40 0 0 

28 
0 

28 a. a. 
~ I 

0 50 100 150 200 250 >- 0 50 100 150 200 250 
x- Position (pixels) x-Position (pixels) 

5756 5758 
~ 120 ~ 120 1i 100 () 1i 100 (J ~ 80 0 ~ 80 
c 60 c 60 
~ Centroid of ROI *' 0 Centroid of ROI *' 40 z 40 .~ Matching Algorithm 0 . ~ Matching Algorithm 0 0 20 0 20 a. a. 
~ 0 I 0 

a 50 100 150 200 250 >- a 50 100 150 200 250 
x- Position (pixels) x-Position (pixels) 

5 1059 5105 11 
~ 120 ~ 120 1i 100 1i 100 
~ 80 

ROl li( ~ 80 
ROl li( 

c 60 
Matching Algorithm 0 

c 60 
Matching Algorithm 0 

.g 

~ 
0 

40 "' 40 ~ .~ . ~ 

0 20 0 20 a. 
0 a. 

0 ~ I 

0 50 100 150 200 250 >- 0 50 100 150 200 250 
x-Position (pixels) x-Position (pixels) 

Figure 11.29: Results of point analysis for MI-GLCMs. The ROI drawn by the radiologist is shown 
together with the centroid of the ROI. The position of the pixel with the maximum intensity in the 
matching map is also shown. In some cases, the latter position does not even occur within the ROI. 
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11.15 Summary of Effects of Matching Parameters 

11.15.1 Effect of Wstep on Matching Accuracy 

A fixed value of 4 pixels was used for Wstep · 

11.15.2 Effect of w on Matching Accuracy 

227 

Matching accuracy varies with wand the optimal sampling window sizes are correlated with the 

ACF results, for all methods. 

11.15.3 Effect of nbits on Matching Accuracy 

There was no clear dependence of matching accuracy on nbits for TM-matching, while matching 

accuracy improved with decreasing nbits for MI-histograms and improved with increasing nbits 

for MI-GLCMs. 

11.15.4 Effect of d on Matching Accuracy 

Matching accuracy was independent of d for all TM-matching methods and improved with de­

creasing d for MI-GLCMs. 

11.15.5 Effect of nbins on Matching Accuracy 

Matching accuracy improved with decreasing nbins. 

11.15.6 Sensitivity of Matching Methods to Choice of Parameter Values 

Figure 11.30 shows all pairs of AROC and Cjb, across all parameters, for each matching method. 

An examination of this data gives an indication of how sensitive each method is to the choice of 

parameter values. The sensitivity of the choice of parameter values was quantified by counting 

the number of pairs of ARoc and Cjb that fell into different zones, as detailed in Figure 9.22 (page 

140). The results of this analysis are summarised in Table 11.16 and shows that MI-GLCMs is 

most accurate for masses with the most points falling into zone 1, while TM-DE is most accurate 

for calcifications with the most points falling into zone 2 (there were no points in zone 1 for the 

calcifications). However, both TM-DE and MI-GLCMs have a wide range of data, for the masses, 

which indicate that these methods are very sensitive to the choice of parameter values used for the 

matching. Results for the calcifications are scattered for all methods. 

11.15.7 Comparison ofTM-Matching and MI-Matching for SB Mammograms 

Matching results for the stereotactic biopsy mammograms are generally worse than those obtained 

for the mosaic images and pairs of mammograms. 

TM-DE and TM-DES have similar matching results for all ROIs irrespective of diagnosis 

or whether the ROI contained a mass or a calcification. The matching results for TM-DM and 
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Figure 11.30: Scatter plot of AROC vs. Cfb for all combinations of matching parameters to demonstrate 
sensitivity of choice of matching parameter values for each method applied to SB mammograms. 

MI-histograms are generally very poor. MI-GLCMs only performs very well with matching the 

malignant masses, but performs very poorly with matching the calcifications. Also, the MI-GLCM 

algorithm did not match 6 image pairs because the implementation of the GLCM appears to be 

sensitive to grey-level shifts. 

For TM-matching, the dependence of matching accuracy on bit-depth was influenced by the 

size of the sampling window and there was no apparent dependence of matching accuracy on d. 

For MI-matching, matching accuracy improved with increasing bit-depth and decreasing d. All 

these patterns of behaviour are consistent with the results obtained for the mosaic images and the 

standard mammograms. 

The results of the analysis of the sensitivity of each method to the choice of matching pa­

rameter values was similar to those for the standard mammograms with TM-DE and MI-GLCMs 

being most accurate, but most sensitive to the choice of matching parameter values. 

Using multiple reference views did not improve the matching accuracy of any method. 
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Table 11.16: Results of zone analysis for pairs of SB mammograms to demonstrate sensitivity of 
choice of matching parameters for each method. An ideal method would have a high percentage of 
points in Zone 1 and none in Zone 5. 

I Method I Zone 1 (%) I Zone 2 (%) I Zone 3 (%) I Zone 4 (%) I Zone 5 (%) I 
Masses 

TM-DE 0.000 8.94 17.3 52.1 21.7 
TM-DES 0.000 2.15 3.38 77.2 17.3 
TM-DM 0.000 0.000 9.38 61.0 29.6 
MI-histograms 0.000 0.284 2.27 84.0 13.4 
MI-GLCMs 22.7 20.0 12.3 31.8 13.2 

Calcifications 
TM-DE 0.000 9.04 0.000 70.1 20.9 
TM-DES 0.000 0.00 0.000 78.4 21.6 
TM-DM 0.000 0.000 0.000 0.000 100. 
MI-histograms 0.000 0.000 34.0 42.6 23.4 
MI-GLCMs 0.000 0.000 0.000 52.3 47.7 

Since the matching results were so poor, very few cases satisfied the conditions of the second 

stage of the evaluation. A total of 7 pairs were analysed for point correspondence between the 

3 stereoscopic views. Results were generally very poor. In most cases, the position of the pixel 

with the maximum intensity (indicating the best match) did not occur within the ROI drawn by the 

radiologist. 

These results therefore indicate that the matching algorithms are not sufficiently sensitive to 

be used to improve the localisation accuracy for stereotactic breast biopsies. 

There are two possible reasons for the poor results: quality of images and quality of ground 

truth data. The contrasts between the ROIs and the surrounding breast tissue in the SB mam­

mograms were very low and there were differences in average grey-level between images in a 

triplet. These problems can be addressed equalising average grey-levels or by applying a contrast 

enhancement algorithm to the images before the matching analysis. 

The second reason is the quality of the ground truth data. Since only one radiologist, retro­

spectively, marked the borders, it is not possible to obtain any consensus regarding the accuracy 

of the regions marked, as was done for the breast border analysis. 

11.16 Summary 

Stereotactic biopsies use two mammographic views of the breast, from slightly different angles to 

determine the depth of the abnormality to be biopsied. The sampling of the correct tissue critically 

depends on the point to be sampled identified correctly in each stereoscopic view. The TM- and 

MI-matching algorithms were applied to stereotactic biopsy mammograms to investigate whether 

the algorithms could be used to improve localisation accuracy, by identifying the same point in all 

mammographic views from using only a single view as a reference. Results were evaluated in two 

stages. The first stage of the analysis was identical to that for the mosaic images and the standard 

mammograms. The second stage only examined the matched regions to determine whether the 

same point had been identified in all views. 
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The results of the first evaluation stage were very poor, generally much poorer than the results 

for the mosaic images and the standard mammograms. Consequently, only 7 pairs satisfied the 

criteria for the second evaluation stage. However, only one case had the maximum ofthe matching 

map (indicating the best match) close to the centroid of the ROI drawn by the radiologist. 

Results were most likely poor because the ROls had a low contrast in comparison to the 

surrounding breast tissue, which can be addressed by applying a contrast enhancement algorithm 

to the images before the matching analysis. Generally contrast is very good in mammograms. 

However, the stereotactic biopsy mammograms represent cases that are generally more difficult 

than those selected for testing the algorithms on standard mammograms. Another area for concern 

is the quality of the ground truth data. Since only one radiologist, retrospectively, identified the 

ROIs, it is impossible to obtain consensus ifthere is any discrepancy. 

These results therefore indicate that the matching algorithms are not sufficiently sensitive to 

be used to improve the localisation accuracy for stereotactic breast biopsies. 



Chapter 12 

Conclusions and Future Work 

12.1 Summary of Thesis 

12.1.1 Chapter 1: Introduction 

Breast cancer is the most common form of cancer among women, worldwide. Successful treat­

ment relies on early detection. Currently, mammography is the most widely available method of 

detecting breast cancer, but suffers from the problem that radiologists, in their visual interpretation 

of the resulting mammograms, sometimes miss the subtle signs of breast cancer. Computer-aided 

diagnosis was introduced as a means to assist radiologists by consistently highlighting abnormal 

regions for the radiologist to further analyse. The shortcomings of CAD i.e. high false-positive 

rates, and the current lack of systems that fully utilise all available mammographic information, 

form the basis of the motivation for this research. 

12.1.2 Chapter 2: Image Processing Techniques in Mammographic CAD 

The detection accuracy of CAD-systems for microcalcification clusters is higher than that for 

masses. Due to the varied appearance of masses on mammograms, many image-processing meth­

ods have been used to detect and classify masses as malignant or benign. Methods of segmenting 

suspicious regions from the surrounding breast tissue include removal of normal tissue structures, 

contrast enhancement, the Wavelet transform, active contours, symmetry between left and right 

breasts and changes in the breast over time. Once these suspicious regions have been identified, 

morphological, geometrical and textural information are extracted, which is used to reduce false­

positives, i.e. separate any normal tissue regions from truly abnormal regions. This reduced set of 

regions is then passed to a classifier like linear discriminant analysis, a binary classification tree 

or an artificial neural network that performs the final distinction between whether the region is 

benign or malignant. 

12.1.3 Chapter 3: Multiple Mammographic-View Analysis 

One of the concerns regarding current CAD algorithms is the high false-positive rate, which arises 

as a consequence of the requirement that the algorithm have a high sensitivity. Radiologists use 

all available mammographic views of a single breast for diagnosis, but very little research has 

been done into the use of multiple single-breast mammograms for confirmation of abnormalities 

and false-positive reduction in CAD-systems. This study is concerned with the development of 

an analysis technique that uses both standard mammographic views (CC and MLO) of the same 

231 
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breast with the aim of confirming the presence of abnormalities and ultimately to eliminate false­

positives. The algorithms developed employ standard image processing methods based on texture 

analysis. Regions of interest or templates are identified in a reference image and are compared to 

a test image to find a match. Texture is quantified with grey-level co-occurrence matrices, texture 

measures and grey-level histograms and is compared using distance metrics and mutual informa­

tion as similarity metrics. The output of the algorithm takes the form of a matching map, which 

has maximal intensity at optimal match. All algorithms developed can be easily incorporated into 

existing CAD-systems. 

12.1.4 Chapter 4: Pre-processing Mammograms 

A novel, simple method of finding the breast edge using areas enclosed by iso-intensity contours 

that improves on traditional thresholding methods for segmentation, by incorporating spatial infor­

mation into the segmentation, was presented. The method does not rely on models of the breast or 

background and borders. Results were evaluated by comparison to breast borders drawn by three 

radiologists in their normal working environment. The effect of various pre-processing methods 

on the accuracy of the automated borders was investigated. Results were generally good for those 

images containing clear breast edges. It was found that smoothing with a Lorentzian kernel as a 

pre-processing method, with the width automatically determined for each mammogram worked 

acceptably well for those with clear breast edges. The best results for mammograms with clear 

breast edges was 3.0 mm±0.3 mm. 

The semi-automatic algorithm used to remove the pectoral muscle was based on the work 

of Karssemeijer [1998]. The arc method was used to define an annular, reduced search region, 

by using the position of the mass in one standard mammographic view and the positions of the 

nipple in both views, following the work ofPaquerault et al. [2002]. The overall result of the three 

pre-processing steps is a significantly reduced region in the test image, which is searched for a 

match. 

12.1.5 Chapter 5: Quantification of Image Texture 

The analysis of texture forms an important part of image processing. Textural information must be 

quantified before images can be compared. The main quantification methods are statistical, struc­

tural and spectral. Statistical methods (like grey-level histograms) only incorporate the number of 

grey-levels in an image. Structural methods (like grey-level co-occurrence matrices) incorporate 

numbers of grey-levels and information about the location of the pixels in the image. Spectral 

methods (like the autocorrelation function) examine the periodic and scale properties of an image. 
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12.1.6 Chapter 6: Similarity Metrics 

Similarity metrics quantify how similar two quantities are to each other. The similarity metrics that 

are used in this research are: Euclidean distance, Mahalanobis distance and mutual information. 

The Euclidean distance similarity metric suffers from the problem that a single input can dominate 

the final distance value, if this input is considerably larger than the other inputs. Standardising the 

inputs to a normal distribution with a variance of 1 and a mean of 0 solves this problem. However, 

standardisation does not consider correlations between inputs. Hence, the Mahalanobis distance 

similarity metric is often preferred. 

Mutual information has been shown to be a robust similarity metric in image registration 

problems, but has also been applied to template matching, feature selection and segmentation 

problems. Mutual information measures a general statistical dependence between inputs compared 

to e.g. linear correlation coefficient. 

12.1.7 Chapter 7: Evaluation of Results 

Receiver operating characteristic (ROC) analysis is a standard method of evaluating and ranking 

medical diagnostic tests. To perform any evaluation, the 'truth' must be known so that it can be 

compared with the output of the test. The evaluation and ranking of CAD algorithms is analogous 

to that of a standard medical diagnostic test and is therefore perfectly suited to the use of ROC 

analysis. 

For this study, the accuracy of the matching maps is evaluated by using ROC analysis and 

contrast. The area under the ROC curve, AROC, gives a measure of how much of the ROI has been 

matched while contrast, Cjb, gives a measure of how well the matched ROI stands out from the 

background in the matching map. 

12.1.8 Chapter 8: Matching Methods 

TM-matching uses GLCM-based texture measures to quantify texture and distance similarity met­

rics to compare textures between images to determine similarity. MI-matching uses grey-level 

histograms and GLCMs, to quantify texture and mutual information as a similarity metric to com­

pare textures between images to determine similarity. Matching accuracy, 1(, is defined as a com­

bination of AROC and Cjb . Matching parameters like sampling window size (w), sampling window 

step size (wstep), bit-depth (nbits), distance in the GLCM (d) and the number of histogram bins 

(nbins) are varied to investigate their effect on matching accuracy. The autocorrelation function 

was investigated as a possible independent method of extracting an optimal sampling window size. 

The image processing components used in this study are summarised in Table 12.1. 
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Table 12.1: Summary of texture-based image processing methods used in this study 

ITM matching IMI-matching -

Texture Quantification 
1. GLCM-based texture measures 1. grey-level histograms 

2. GLCMs 
1. Euclidean distance (DE) 1. mutual information 

Similarity Metric 2. Standardised Euclidean distance (DES) 
3. Mahalanobis distance (DM ) 

12.1.9 Chapter 9: Matching Results: Mosaic Images 

The TM-matching and MI-matching algorithms were applied to test images made up of a mosaic of 

single texture reference images to test matching performance under the ideal condition of knowing 

how the reference images are transformed in the test image. 

The purpose of this chapter was two-fold: (1) to test the performance of the matching algo­

rithms on images with clear borders between the textures, accurate ground truth data and where 

there were known transformations of the textures to give insight into whether the matching algo­

rithms have any potential for identifying similar textures in mammograms; and (2) to investigate 

how the matching accuracy is affected by the various matching parameters. 

TM-matching and MI-matching show some potential for use as matching schemes. Results 

from the mosaic images do provide evidence to support the hypothesis that using texture based 

image-processing methods allows a textural region to be matched with a reference texture. How­

ever, it was shown that the choice of matching parameter values can significantly affect matching 

accuracy, so the following parameters were still varied for the pairs of mammograms and the 

stereotactic biopsy mammograms: nbits, d, w. As a consequence of the effect of sampling win­

dow step size, WSlep, on matching accuracy for the mosaic images, WSlep were fixed for the analysis 

of the pairs of mammograms and the stereotactic biopsy mammograms. 

The three matching methods with the best matching results, based on averages of 1C for the 

best matches, are: MI-matching with GLCMs (1(=0.63±0.20), TM-DE (1(=0.56±O.l3) and TM­

DES (1(=0.55±0.23). However, these three results are not statistically different (p > 0.05). 

TM-DM and MI-histograms performed poorly as matching schemes. 

The recommended values of the matching parameters for implementation of the matching 

schemes on similar images are given in Table 12.2. The values for TM-DE and TM-DEs are ob­

tained from the few cases where there was some dependence of matching accuracy on the matching 

parameters. 

Table 12.2: Recommended values for matching parameters for application ofTM-DE, TM-DES and 
MI-GLCMs to images similar to the mosaics 

! Matching Parameter! MI GLCMs - -
Wstep 4 pixels 4 pixels 4 pixels 
W rectangular from ACF rectangular from ACF rectangular from ACF 
nbits 5 bits 5 bits 8 bits 
d 10 pixels 1 pixel 1 pixel 
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12.1.10 Chapter 10: Matching Results: Mammograms 

The TM-matching and MI-matching algorithms were applied to 68 pairs ofCC and MLO mammo­

grams to confirm whether a reference region of interest identified by a radiologist in one standard 

mammographic view can be matched to the corresponding region in another standard mammo­

graphic view, to determine whether the matching algorithms can be utilised in a CAD-system. 

TM-matching with DE and MI-matching with GLCMs showed great potential for use in a 

CAD scheme. MI-matching with GLCMs had an average best matching accuracy of 1(=0.41 ± 

0.39 corresponding to average best values of AROC=0.77±0.25 and Cjb=0.50±0.42. TM-matching 

with DE had an average best matching accuracy of 1(=0.33±0.25 corresponding to average best 

values of ARoc=0.80±0.17 and Cjb=0.46±0.26. The results for these two methods were not sta­

tistically different (p >0.05) 

TM-matching with DES was the third most accurate method with 1(=0.24±0.21, correspond­

ing to average values of ARoc=0.81±0.20 and Cjb=0.28±0.25. The matching accuracy for TM­

matching with DM and MI-matching with histograms was very low. The results for these three 

methods were statistically different from TM-DE and MI-GLCMs. 

MI-matching with GLCMs had the best matching accuracy for matching malignant masses 

(1(=0.84±0.23 corresponding to AROC=0.96±0.05 and Cjb=0.90±0.21), while the results for the 

other types of regions of interest (benign, indeterminate, normal) were similar for MI-GLCMs and 

TM-DE. 

There was correlation between the results of the autocorrelation function analysis and the 

optimal sampling window sizes obtained from the matching analysis. TM-DE at 8 bits and TM­

DM at 5 bits had the highest correlations. The ACF-results also justified the use of square windows 

for the analysis of the mammogram ROls, since the ACF-widths and ACF-heights were similar. 

The results for MI-GLCMs showed some correlation, but this was significantly lower than for TM­

DE. The autocorrelation function can therefore be used to determine an optimal sampling window 

size. 

While MI-GLCMs was more sensitive to matching parameters than TM-DE, the overall, 

matching accuracies are better for MI-GLCMs than TM-DE. Therefore TM-DE and MI-GLCMs 

are closely matched as matching schemes. 

If these algorithms were to be applied in a CAD-system, it is recommended that ACF-analysis 

of the reference ROI be used to determine the sampling window size. Then both, TM-DE and 

MI-GLCMs should be used as matching schemes. The recommended values of the matching 

parameters are summarised in Table 12.3. 

12.1.11 Chapter 11: Matching Results: Stereotactic Biopsy Mammograms 

Stereotactic biopsies use two mammographic views of the breast, from slightly different angles to 

determine the depth of the abnormality to be biopsied. The sampling of the correct tissue critically 
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Table 12.3: Recommended values for matching parameters for practical application of TM-DE and 
MI-GLCMs in a CAD-system 

I Matching Parameter I MI-GLCMs 

Wstep 4 pixels 4 pixels 
W from ACF analysis at 8 bits from ACF analysis at 8 bits 
nbits 8 bits 8 bits 
d 10 pixels 1 pixel 

depends on the point to be sampled identified correctly in each stereoscopic view. The TM- and 

MI-matching algorithms were applied to stereotactic biopsy mammograms from 12 patients to 

investigate whether the algorithms could be used to improve localisation accuracy, by identifying 

the same point in all mammographic views from using only a single view as a reference. Results 

were evaluated in two stages. The first stage of the analysis was identical to that for the mosaic 

images and the standard mammograms. The second stage only examined the matched regions to 

determine whether the same point had been identified in all view. 

The results of the first evaluation stage were very poor, generally much poorer than the results 

for the mosaic images and the standard mammograms. Consequently, only 7 pairs satisfied the 

criteria for the second evaluation stage. However, only one case had the maximum of the matching 

map (indicating the best match) close to the centroid of the ROI drawn by the radiologist. 

Results were most likely poor because the ROIs had a low contrast in comparison to the sur­

rounding breast tissue in the original mammogram. This can be addressed by applying a contrast 

enhancement algorithm to the images before the matching analysis. Another area for concern 

is the quality of the ground truth data. Since only one radiologist, retrospectively, identified the 

ROIs, it is impossible to obtain consensus if there is any discrepancy. 

These results therefore indicate that the matching algorithms are not sufficiently sensitive to 

be used to improve the localisation accuracy for stereotactic breast biopsies. 

12.2 Comparison of Results between the Image Sets 
The TM-matching and MI-matching algorithms were applied to three image sets (mosaics, mam­

mograms, stereotactic biopsy mammograms) to ultimately determine whether there was potential 

for the matching algorithms to be used in a mammographic CAD-scheme. There were many 

similarities and a few differences in the results for each image set. 

TM-matching with DE and DES and MI-matching with GLCMs had the three best matching 

accuracies for each image set. 

The general behaviour of the matching parameters was similar for each image set: TM­

matching generally was independent of d and the dependence of nbits depended on the sampling 

window size; MI-matching with histograms had optimal matches for the lowest value ofnbits and 

the lowest value of nbins; and MI-GLCMs had optimal matches at the highest value of nbits and 

at the lowest value of d. 
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The other similar characteristic concerned the results of the three distance similarity metrics. 

Matching accuracy always decreased from DE to DES to DM. The results for DES, while lower 

than those for DE, were often statistically similar. Both these results were, however, very different 

from those for DM, and strongly suggests that the use of DM for matching is not appropriate. It 

was surprising that the significantly different ranges of texture measure values did not affect DE 

as expected. 

The overall matching accuracies for each image set were not similar. Matching accuracies 

were very high for the mosaic images, decreased slightly for the pairs of mammograms and de­

creased further for the stereotactic biopsy mammograms. Table 12.4 shows that the ARoc-values 

were very high for the mosaics and pairs of mammograms, but the Cjb-values, which were high 

for the mosaics, were very low for the two sets of mammograms. 

Table 12.4: Average of the best matching accuracies for each matching method 

I Method I Average AROC I Average Cfb I Average J( I 
Mosaics 

TM-DE O.84±O.O8 O.79±O.18 O.55±O.23 
TM-DES O.91±O.O4 O.68±O.O9 O.56±O.13 
TM-DM O.82± O.O9 O.45± O.18 O.31 ± O.17 
MI-histograms O.77±O.10 O.29±O.18 O.15±O.11 
MI-GLCMs O.94±O.O6 O.70±O.16 O.63±O.19 

Mammograms 
TM-DE O.80±O.17 O.46±O.26 O.33±O.25 
TM-DES O.81±O.20 O.28±O.25 O.24±O.21 
TM-DM O.79± O.17 O.25± O.20 O.19± O.17 
MI-histograms O.85± O.11 O.16± O.15 O.12± O.13 
MI-GLCMs O.77±O.25 O.50±O.42 O.41±O.39 

Stereotactic Biopsy Mammograms 
TM-DE O.75±O.11 O.38±O.26 O.20±O.14 
TM-DES O.79±O.O9 O.27±O.17 O.15±O.O9 
TM-DM O.67± O.20 O.21±O.33 O.O6±O.O9 
MI-histograms O.63± O.13 O.25± O.25 O.O9± O.11 
MI-GLCMs O.68± O.21 O.35± O.43 O.27± O.32 

The high matching accuracy of the mosaic images is most likely because the borders between 

the textures in the mosaic images were clear and the ground truth data was easily and accurately 

extracted. Both sets of mammograms did not have clear borders around the region of interest and 

so the ground truth data might not be that accurate, and this would decrease the average matching 

accuracy. One significant problem with the ground truth data for the mammograms was that only 

one radiologist was used for each image set. Matching accuracy would probably be improved if 

at least three radiologists marked borders of regions of interest. Then the results for each region 

of interest could be evaluated on the basis of three sets of ground truth data, which might provide 

some consensus to the results. 
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12.3 Novel Features of this Study 

The novel features of this study are: 

1. Graphical summary of how a radiologist analyses a mammogram. 

2. Flow chart summarising steps of a mammographic CAD-system. 

3. A novel method of detecting the breast border using iso-intensity contours was presented. 

4. Faster GLCM algorithm using the IDL functions HISL2D and SHIFT. 

S. The use ofGLCM-based texture measures and distance similarity metrics to determine sim­

ilarities between regions in mammographic views of the same breast. 

6. The use of GLCMs and mutual information to determine similarities between regions in 

mammographic views of the same breast. 

7. Detailed analysis of the effect of sampling window size on matching accuracy and the use 

of the autocorrelation function to determine optimal sampling window sizes. 

8. The combined use of ARoc and contrast to evaluate matching results. 

9. The application of matching methods to stereotactic biopsy mammograms. 

12.4 Strengths of the TM- and MI-Matching Algorithms 

1. The TM- and MI-matching algorithms show potential for providing more information for 

use in a false-positive reduction scheme in a CAD-system. The ideal solution would be to 

try to incorporate mutual information ideas into the texture measure method. 

2. One advantage of using the distance similarity metrics and mutual information for matching 

is that there is no training required which is quite important for a mammographic CAD­

system since breast tissue varies considerably from patient to patient. 

3. The TM- and MI-matching algorithms can be applied to any image-matching problem. 

4. If the object is present in both mammographic views, only one view needs to be analysed 

to detect the object, while the second view is analysed with information extracted from the 

object in the first view, for confirmation of a true object. However, if the algorithm is made 

more efficient (i .e. faster), then it would be best to analyse both views, from both directions. 

This could be used to confirm the results of the matching. 

12.5 Weaknesses of the TM- and MI-Matching Algorithms 

1. There is no guarantee that if two textures match, then they refer to the same mass. 

2. The current algorithms are very time-consuming and will have to be re-designed for any 

implementation in a CAD-system. 

3. The MI-matching algorithm using GLCMs has also been shown to perform very badly if 

there are any global differences in grey-levels between the reference and test images. 
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12.6 Future Work 
The results of this study have shown that the following should be investigated further to improve 

the matching accuracy of the matching algorithms so that they can be of clinical use in a CAD-

system. 

12.6.1 Effect of Spatial Resolution 

The spatial resolution of the images were kept constant in this investigation and it might be in­

teresting to see whether processing times can be reduced by performing the matching at a spatial 

resolution higher than that used by radiologists. 

12.6.2 Optimising of Breast Border Detection Algorithm 

Investigations should be performed into improving the speed of the breast border detection algo­

rithm. 

12.6.3 Improvement of TM-Matching by use of Feature Selection 

The accuracy of the TM-matching algorithm could be improved by implementing a feature selec­

tion algorithm, which selects the dominant texture measures (from the full set of 12) and only uses 

this reduced set in the matching. 

12.6.4 Quality of Ground Truth Data 

The performance of the matching algorithms depends critically upon the quality of the ground 

truth data and it might be advantageous, especially for the mammograms, to employ a method 

similar to double reading with arbitration employed by radiologists to obtain consensus with a 

diagnosis. If there is a difference in opinion between the two radiologists performing the double 

reading, then a third radiologist arbitrates and makes the final decision. 

For the evaluation of the matching algorithms, it is therefore necessary to obtain ground truth 

data from at least three radiologists. The evaluation is performed separately for each radiologist 

and the results of the evaluation are analysed to obtain consensus in the final result. 

12.6.5 Effect of Image Pre-processing 

The only pre-processing performed, merely removed undesirable features in the image, and it was 

observed that the contrast of the SB mammograms was very poor as well as there being differences 

in average grey-level between images in a triplet. 

It is therefore necessary to investigate the effect on matching accuracy of image enhancement 

pre-processing methods, like contrast enhancement and grey-level equalisation. 
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12.6.6 Grey-level Offset Invariance 

The method used to determine the grey-level histograms and GLCMs was not invariant to constant 

grey-level offsets between the images, which meant that the reference and test images could not 

be matched ifthere was a difference in average grey-level. 

It is therefore necessary to compute the grey-level histogram and the GLCM in such a manner 

that they are invariant to grey-level offsets. It is expected that this should improve the histogram 

results considerably. 

12.6.7 Shape of Sampling Windows 

Square sampling windows of varying sizes were used in this investigation. However, analysis of 

the reference images using the autocorrelation function show that the characteristic scale widths 

and heights of the textures are sometimes unequal. While the scale widths and heights are similar 

for the mammograms, the results were statistically different for the mosaic images. 

It is therefore necessary to: 

1. perform matching at the sampling window sizes obtained from the autocorrelation function 

analysis to determine matching accuracy, and 

2. investigate the effect of non-square sampling windows (e.g. rectangular or elliptical) on 

matching accuracy. 

12.6.8 Invariance to Directional and Scaling Factors 

Normal breast tissue and benign masses are generally texturally inhomogeneous. The averaging 

of the GLCMs in this study strongly favoured homogeneous textures. The poor matching accu­

racy for non-malignant mammograms might indicate that there is a directional component to the 

analysis, which is not adequately considered by the averaging ofthe GLCMs. 

It is necessary to investigate the effect on matching accuracy if, for example, a log-polar 

transform [Wolberg, G. and Zokai, S. 2000] or other invariant texture methods [Zhang et al. 2002, 

Zhang & Tan 2003] are used to remove rotational, directional and scaling effects. 

12.6.9 Improvements to the Evaluation Algorithm 

The scaling of individual matching maps (each with a different minimum and maximum) between 

o and 255 can lead to problems with the evaluation. Some maps can have a very small range of 

intensities, while other maps can have a very large range and each of these get scaled between 0 and 

255. The scaled maps are then treated as if they are equivalent, which might explain why so many 

methods exhibited an independence of matching accuracy on a particular matching parameter. 

Also, while the trapezoidal rule used to calculate the area under the ROC curve is simple to 

implement, it systematically underestimates the area [Hanley & McNeil 1983]. 

So, in order to confirm the accuracy of the results, it is necessary to examine the values of 
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distances and mutual information across the range of window sizes and scale the matching maps 

between the minimum and maximum of all distance and mutual information values. Results might 

also improve if the area under the ROC curve were calculated using the binomial model. 

12.6.10 False-Positive Reduction Algorithm 

If the recommendations of improvement to the matching algorithms are successful enough to 

improve matching between regions in two mammographic views, it will then be necessary to ' 

design and test a false-positive reduction algorithm based on the TM- and MI-matching algorithms. 

12.6.11 Improvement of Stereotactic Biopsy Localisation Accuracy 

If the recommendations of improvement to the matching algorithms are successful enough to 

accurately match regions between stereotactic mammograms, it will then be necessary to design 

an experiment to physically test the effectiveness ofTM- and MI-matching algorithms to improve 

localisation accuracy during stereotactic biopsies. 

12.7 Conclusions 
It is possible to match a reference region from one standard mammographic view to the corre­

sponding region in another standard mammographic view of the same breast, using texture based 

image processing methods. The matching algorithms, using grey-level co-occurrence matrices, 

grey-level histograms, distance similarity metrics and mutual information, perform especially well 

at matching malignant masses. This dual-view analysis method can therefore be used to provide 

complementary information to a false-positive reduction scheme. 



Appendix A 

Detailed Results 
Details of the matching parameters of the best matches are shown in the following tables for each 

set of images. 

Table A.I: Matching parameters and evaluation results for the best matches ofTM-matching applied 
to mosaic images, listed for each image pair. 

Images 
TM-DE TM-DES I TM-DM 

w d nbits AROC Cfb 1C W d nbits AROC Cfb 1C I w d nbits AROC Cfb 1C 

R1Tl 176 10 6 0.89 0.94 0.73 320 \0 8 0.92 0.75 0.63 400 2 6 0.88 0.60 0.45 
R2Tl 80 \0 5 0.85 0.74 0.51 80 1 5 0.91 0.75 0.61 80 \0 7 0.88 0.55 0.41 
R3Tl 160 1 5 0.67 0.58 0.20 160 1 8 0.87 0.64 0.47 176 1 6 0.83 0.59 0.39 
R4Tl 80 5 7 0.85 0.88 0.62 320 1 5 0.95 0.80 0.72 160 \0 5 0.90 0.74 0.60 
R5T2 128 5 5 0.82 0.86 0.55 128 5 8 0.90 0.73 0.59 128 5 7 0.88 0.33 0.25 
R6T2 80 1 6 0.84 0.94 0.65 160 \0 7 0.89 0.57 0.44 368 2 6 0.78 0.57 0.32 
R7T2 224 1 8 0.99 0.99 0.97 336 10 5 0.98 0.82 0.80 368 1 8 0.90 0.46 0.36 
R8T2 80 \0 5 0.76 0.75 0.39 128 2 5 0.87 0.64 0.47 112 \0 6 0.85 0.39 0.28 
R5T3 128 10 5 0.84 0.78 0.54 128 \0 5 0.88 0.52 0.39 240 1 7 0.71 0.19 0.08 
R6T3 288 1 7 0.82 0.82 0.53 288 10 7 0.83 0.62 0.41 288 \0 7 0.68 0.36 0.13 
R7T3 160 2 8 0.95 0.96 0.86 160 5 5 0.93 0.70 0.60 176 1 5 0.63 0.12 0.03 
R8T3 176 \0 7 0.86 0.72 0.52 304 10 5 0.95 0.68 0.61 288 1 5 0.91 0.52 0.42 

Table A.2: Matching parameters and evaluation results for the best matches ofMI-matching applied 
to mosaic images, listed for each image pair. 

Images 
MI -Histograms MI-GLCMs 

w nbins nbits ARoc Cfb 1C w d nbits AROC Cfb 1C 

RITl 400 16 8 0.67 0.43 0.15 32 \0 8 0.91 0.53 0.44 
R2Tl 368 32 8 0.78 0.69 0.39 48 5 8 0.97 0.77 0.72 
R3Tl 400 16 6 0.68 0.35 0.13 48 10 8 0.96 0.57 0.53 
R4Tl 16 32 8 0.75 0.11 0.06 16 1 8 0.98 0.70 0.66 
R5T2 16 16 8 0.67 0.08 0.03 16 2 8 0.97 0.95 0.90 
R6T2 96 32 5 0.72 0.34 0.15 208 1 8 0.99 0.63 0.62 
R7T2 80 16 6 0.87 0.15 0.11 48 \0 8 1.00 0.94 0.93 
R8T2 64 128 8 0.99 0.17 0.17 16 2 7 0.88 0.64 0.49 
R5T3 384 16 5 0.66 0.24 0.08 32 \0 8 0.98 0.71 0.69 
R6T3 96 32 5 0.80 0.35 0.21 112 2 8 0.80 0.42 0.25 
R7T3 176 128 8 0.90 0.43 0.34 80 \0 8 0.98 0.79 0.75 
R8T3 64 64 7 0.74 0.14 0.07 16 5 8 0.91 0.74 0.60 

242 
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Table A.3: Matching parameters and evaluation results for the best matches ofTM-matching applied 
to pairs of mammograms, listed for each image pair. 

II ilE I lJES ~ ilM I 
Images w I a nllltsjARocl Lfb 1C II w I a nDlt.S'IiRoc ~ I 1C II W I a InOltsjAROC L,~ 1C 

~~~b ~g Ilg ~ I U.94 IU.4lS 19:~~ I~g [l5U 
~ I g:~~ 

IU.j,! u.3U ~: j I g:~~ K~~ 19:~; 0.99 0.58 0.47 0.46 
M2M3 16 I 8 0.88 0.49 0.37 16 10 5 0.87 0.28 0.21 16 I 8 0.79 0.19 0.11 
M3M2 32 I 5 0.89 0.30 0.23 48 I 8 0.94 0.37 0.33 48 10 5 0.74 0.25 0.12 
M4M5 16 5 5 0.86 0.65 0.47 32 1 8 0.92 0.41 0.35 48 5 7 0.92 0.45 0.38 
M5M4 16 2 7 0.71 0.80 0.34 16 10 5 0.78 0.55 0.31 48 10 8 0.85 0.55 0.39 
M6M7 32 I 5 0.62 0.55 0.13 16 10 8 0.64 0.19 0.05 48 10 8 0.72 0.09 0.04 
M7M6 48 5 7 0.74 0.24 0.12 48 2 5 0.48 -0.04 0.00 16 2 5 0.50 -0.05 0.00 
M8M9 32 10 8 0.84 0.60 0.41 16 5 5 0.92 0.37 0.31 16 10 8 0.87 0.07 0.05 
M9M8 48 2 5 0.86 0.37 0.27 48 I 6 0.79 0.20 0.12 16 5 8 0.71 0.10 0.04 

MIOMII 16 10 6 0.58 0.12 0.02 64 2 6 0.87 0.09 0.07 48 10 6 0.87 0.11 0.08 
MIIMIO 32 5 8 0.92 0.68 0.57 32 I 8 0.96 0.37 0.34 32 5 8 0.93 0.33 0.29 
M12MI3 16 5 5 0.93 0.46 0.39 16 5 6 0.55 0.22 0.02 32 2 8 0.22 0.00 0.00 
MI3MI2 32 I 6 0.72 0.05 0.02 32 1 6 0.26 -0.04 -0.02 32 5 6 0.84 0.05 0.04 
MI4MI5 48 10 7 0.93 0.56 0.49 96 I 5 0.98 0.18 0.18 48 10 8 0.84 0.30 0.21 
MI5MI4 48 10 6 0.88 0.44 0.34 64 10 5 0.94 0.26 0.23 48 10 8 0.87 0.22 0.16 
MI6MI7 16 10 7 0.80 0.43 0.26 16 10 7 0.87 0.31 0.23 641 5 0.92 0.14 0.12 
MI7MI6 96 2 7 0.85 0.39 0.28 32 2 8 0.85 0.37 0.25 16 5 8 0.53 0.22 0.01 
MI8MI9 16 2 8 0.58 0.15 0.02 16 I 8 0.89 0.06 0.05 32 5 5 0.73 0.03 0.01 
MI9MI8 16 10 5 0.70 0.29 0.12 16 10 6 0.79 0.09 0.05 16 2 7 0.81 0.09 0.06 
M20M21 80 10 6 0.97 0.29 0.27 80 10 7 0.99 0.17 0.17 64 2 6 0.92 0.38 0.33 
M21M20 641 8 0.85 0.91 0.64 64 2 8 0.98 0.42 0.41 641 7 0.91 0.43 0.36 
M22M23 96 2 7 0.83 0.64 0.42 96 10 7 0.87 0.53 0.39 96 10 6 0.88 0.40 0.31 
M23M22 96 10 5 0.95 0.64 0.58 112 I 5 0.99 0.48 0.47 96 2 5 0.81 0.33 0.21 
M24M25 16 5 7 0.71 0.43 0.18 16 10 5 0.85 0.22 0.15 32 10 8 0.77 0.09 0.05 
M25M24 32 10 8 0.26 0.00 0.00 32 I 5 0.19 -0.07 -0.05 32 I 5 0.19 -0.09 -0.06 
M26M27 16 I 5 0.87 0.53 0.40 16 5 5 0.90 0.43 0.34 32 1 8 0.77 0.21 0.11 
M27M26 256 10 6 0.93 0.83 0.71 256 10 5 0.94 0.64 0.56 32 I 8 0.93 0.49 0.42 
M28M29 128 10 8 0.91 0.48 0.39 96 I 5 0.77 0.31 0.17 80 2 5 0.80 0.29 0.17 
M29M28 48 2 6 0.71 0.43 0.18 48 10 6 0.76 0.60 0.32 96 10 5 0.76 0.22 0.11 
M30M31 112 10 7 0.96 0.75 0.69 144 I 7 0.98 0.58 0.56 144 I 5 0.96 0.65 0.60 
M31M30 112 10 8 0.98 0.88 0.85 144 I 7 0.99 0.66 0.65 144 I 7 0.96 0.50 0.45 
M32M33 32 10 6 0.88 0.70 0.53 32 10 6 0.95 0.45 0.41 48 10 8 0.85 0.37 0.26 
M33M32 32 10 5 0.82 0.27 0.17 80 I 7 0.80 0.12 0.07 80 I 7 0.77 0.31 0.17 
M34M35 64 10 6 0.89 0.30 0.24 80 10 6 0.96 0.14 0.\3 80 I 5 0.94 0.20 0.17 
M35M34 64 2 8 0.86 0.53 0.38 64 2 8 0.94 0.31 0.27 641 8 0.85 0.26 0.18 
M36M37 32 5 7 0.84 0.30 0.20 80 I 5 0.96 0.24 0.22 80 10 5 0.90 0.19 0.16 
M37M36 80 5 8 0.89 0.67 0.53 96 10 7 0.99 0.37 0.36 641 8 0.84 0.33 0.22 
M38M39 641 8 0.95 0.89 0.79 641 8 0.98 0.57 0.54 144 10 5 0.87 0.43 0.32 
M39M38 48 10 7 0.96 0.71 0.65 48 5 7 0.95 0.35 0.31 48 10 8 0.75 0.19 0.10 
M40M41 64 10 7 0.88 0.36 0.27 48 I 8 0.97 0.25 0.23 48 2 7 0.97 0.24 0.23 
M41M40 48 10 6 0.80 0.72 0.44 48 5 5 0.94 0.19 0.17 48 5 8 0.94 0.21 0.19 
M42M43 64 10 7 0.91 0.66 0.54 48 5 7 0.88 0.32 0.24 48 10 7 0.81 0.27 0.16 
M43M42 32 10 5 0.87 0.41 0.30 16 10 5 0.80 0.24 0.15 112 10 6 0.95 0.21 0.19 
M44M45 176 10 7 0.97 0.88 0.82 176 I 8 0.97 0.65 0.61 176 I 7 0.89 0.61 0.48 
M45M44 112 10 8 0.95 0.86 0.78 128 10 7 0.94 0.54 0.47 96 2 8 0.81 0.43 0.27 
M46M47 32 2 6 0.90 0.38 0.31 32 10 5 0.95 0.26 0.23 32 10 5 0.95 0.19 0.17 
M47M46 32 1 8 0.80 0.32 0.19 32 1 6 0.59 0.02 0.00 32 5 8 0.84 0.14 0.10 
M48M49 32 1 5 0.51 0.10 0.00 16 2 6 0.63 0.04 0.01 32 10 5 0.53 0.08 0.01 
M49M48 48 10 8 0.78 0.26 0.15 48 10 8 0.56 0.07 0.01 16 5 6 0.66 0.33 0.11 
M50M51 16 1 6 0.60 0.14 0.03 16 2 5 0.50 -0.34 0.00 32 10 6 0.63 0.03 0.01 
M51M50 16 10 6 0.60 0.27 0.05 32 5 5 0.85 0.09 0.06 32 10 5 0.81 0.08 0.05 
M52M53 16 1 6 0.40 -0.10 -0.02 16 I 6 0.64 0.12 0.03 16 5 7 0.41 -0.01 0.00 
M53M52 32 5 7 0.73 0.34 0.16 32 10 7 0.74 0.06 0.03 32 10 7 0.80 0.22 0.13 
M54M55 176 10 7 0.99 0.85 0.83 176 1 7 0.99 0.74 0.73 176 I 7 0.93 0.98 0.83 
M55M54 128 10 6 0.98 0.96 0.92 32 5 5 0.99 0.95 0.93 144 2 7 0.95 0.74 0.66 
M56M57 32 1 5 0.37 -0.17 -0.04 32 1 7 0.64 0.01 0.00 32 5 5 0.81 0.23 0.14 
M57M56 16 1 5 0.75 0.30 0.15 32 2 5 0.91 0.22 0.19 32 1 5 0.75 0.10 0.05 
M58M59 16 10 5 0.28 0.03 -0.01 32 10 7 0.29 0.01 0.00 16 1 6 0.31 0.01 0.00 
M59M58 16 10 8 0.70 0.15 0.06 16 2 7 0.50 -0.28 0.00 16 10 8 0.74 0.03 0.01 
M60M61 64 10 5 0.98 0.73 0.70 641 7 0.99 0.58 0.56 641 8 0.94 0.32 0.28 
M61M60 32 10 7 0.80 0.47 0.28 32 2 5 0.93 0.21 0.18 32 1 5 0.91 0.16 0.13 M62M63 16 5 5 0.64 0.62 0.18 16 5 5 0.70 0.67 0.27 32 10 8 0.71 0.51 0.21 M63M62 32 10 7 0.66 0.38 0.12 48 10 8 0.66 0.15 0.05 48 10 7 0.66 0.11 0.04 M64M65 16 10 5 0.82 0.43 0.27 32 10 7 0.94 0.32 0.28 16 5 7 0.88 0.26 0.20 M65M64 32 10 5 0.63 0.38 0.10 32 10 5 0.47 -0.01 0.00 32 10 8 0.49 -0.20 0.00 M66M67 32 2 6 0.81 0.09 0.06 32 I 6 0.50 -0.16 0.00 112 10 6 0.92 0.41 0.35 M67M66 48 5 6 0.75 0.70 0.36 48 2 7 0.88 0.45 0.34 641 6 0.82 0.40 0.26 
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Table A.4: Matching parameters and evaluation results for the best matches ofMI-matching applied 
to pairs of mammograms, listed for each image pair. 

~Y~b IJ~ J~ ~ 
u.97 10.13 0.13 I~~ 1

2
0 ~ 0.96 

I g:~~ K~~ 0.92 0.06 0.05 0.99 
M2M3 16 16 6 0.95 0.33 0.30 16 I 6 0.87 0.86 0.64 
M3M2 32 32 5 0.87 0.23 0.17 80 10 5 0.49 -0.03 0.00 
M4M5 16 16 5 0.90 0.18 0.15 48 5 5 0.97 0.18 0.17 
M5M4 32 32 5 0.98 0.57 0.55 32 5 5 0.81 0.58 0.36 
M6M7 48 16 5 0.56 0.29 0.03 16 I 5 0.29 0.00 0.00 
M7M6 32 16 5 0.70 0.25 0.10 32 2 7 0.50 -0.14 0.00 
M8M9 16 16 6 0.92 0.15 0.12 16 5 8 0.94 0.87 0.77 
M9M8 32 16 5 0.86 0.14 0.10 16 10 5 0.84 0.15 0.10 

MIOMII 48 16 5 0.74 0.12 0.06 32 10 5 0.88 0.31 0.24 
MIIMIO 32 16 5 0.85 0.18 0.13 32 10 5 0.85 0.08 0.06 
MI2MI3 16 16 5 0.66 0.31 0.10 16 I 5 0.36 0.00 0.00 
M13MI2 16 16 5 0.89 0.21 0.17 32 5 6 0.57 0.12 0.02 
MI4MI5 16 16 7 0.82 0.05 0.03 32 10 5 0.99 0.98 0.96 
MI5MI4 16 16 7 0.69 0.03 0.01 16 I 6 0.95 1.00 0.90 
MI6MI7 32 128 8 0.91 0.07 0.06 96 10 5 0.85 0.07 0.05 
MI7MI6 32 32 5 0.96 0.55 0.50 96 I 5 0.23 0.00 0.00 
MI8MI9 16 16 7 0.91 0.04 0.03 16 5 8 0.87 0.47 0.35 
M19MI8 16 32 6 0.88 0.09 0.07 16 5 7 0.65 0.20 0.06 
M20M21 16 16 8 0.99 0.10 0.10 32 10 6 1.00 1.00 0.99 
M21M20 16 16 7 0.75 0.03 0.01 48 5 5 0.93 0.23 0.19 
M22M23 16 16 8 0.55 -0.15 -0.01 16 1 8 0.79 0.60 0.35 
M23M22 16 16 8 0.97 0.08 0.08 32 10 6 1.00 1.00 1.00 
M24M25 16 16 5 0.80 0.22 0.13 16 1 5 0.48 0.00 0.00 
M25M24 32 32 5 0.88 0.17 0.13 32 2 5 0.10 -0.31 -0.25 
M26M27 16 16 8 0.93 0.35 0.30 48 I 8 0.97 0.95 0.89 
M27M26 16 16 8 0.88 0.24 0.18 48 1 8 0.99 1.00 0.98 
M28M29 16 16 8 0.86 0.02 0.01 32 10 8 0.97 0.47 0.44 
M29M28 16 16 8 0.76 -0.01 0.00 32 10 8 0.94 0.35 0.31 
M30M31 16 16 8 0.91 0.17 0.14 80 2 8 1.00 0.99 0.99 
M31M30 16 16 8 0.81 0.11 0.07 64 2 5 1.00 0.99 0.98 
M32M33 16 16 7 0.90 0.03 0.03 16 10 7 0.96 0.84 0.77 
M33M32 16 16 8 0.84 0.02 0.01 16 5 6 0.86 0.16 0.12 
M34M35 16 16 7 0.86 0.02 0.02 32 10 8 1.00 0.92 0.92 
M35M34 16 16 8 0.84 0.04 0.02 16 10 8 0.90 0.85 0.68 
M36M37 16 16 5 0.93 0.12 0.10 32 2 5 0.94 0.95 0.84 
M37M36 16 16 7 0.92 0.04 0.03 16 2 5 0.99 0.58 0.57 
M38M39 16 16 8 0.99 0.26 0.25 64 10 7 0.99 0.99 0.97 
M39M38 16 16 8 0.86 0.10 0.07 16 I 8 0.98 0.96 0.92 
M40M41 16 16 8 0.91 0.06 0.05 16 10 8 0.82 0.61 0.39 
M41M40 48 32 5 0.78 0.20 0.11 16 10 8 0.67 0.24 0.08 
M42M43 16 16 7 0.74 0.06 0.03 16 5 8 0.85 0.84 0.60 
M43M42 16 32 5 0.88 0.22 0.17 16 10 8 0.90 0.77 0.61 
M44M45 16 16 8 0.95 0.35 0.32 96 1 5 0.93 0.99 0.86 
M45M44 16 16 8 0.87 0.06 0.04 32 1 6 0.92 1.00 0.84 
M46M47 16 16 7 0.85 0.04 0.03 16 2 8 0.84 0.43 0.30 
M47M46 16 32 6 ·0.91 0.13 0.11 16 10 5 0.62 0.26 0.06 
M48M49 32 16 5 0.73 0.24 0.11 48 I 6 0.13 -0.01 -0.01 
M49M48 16 32 6 0.90 0.29 0.23 16 10 8 0.29 0.00 0.00 
M50M51 32 16 5 0.93 0.12 0.10 32 10 5 0.90 0.03 0.02 
M51M50 16 32 6 0.87 0.08 0.06 16 2 8 0.61 0.70 0.16 
M52M53 32 32 5 0.94 0.24 0.21 16 1 5 0.75 0.10 0.05 
M53M52 16 16 5 0.80 0.08 0.05 16 2 5 0.53 0.36 0.02 
M54M55 16 16 7 0.98 0.40 0.38 48 I 7 1.00 0.99 0.99 
M55M54 16 16 7 0.99 0.75 0.73 64 5 7 0.99 1.00 0.98 
M56M57 32 32 6 0.89 0.15 0.12 32 2 5 0.25 -0.12 -0.06 
M57M56 16 32 6 0.79 0.18 0.11 16 10 8 0.41 0.00 0.00 
M58M59 16 128 8 0.34 0.01 0.00 32 5 6 0.23 0.00 0.00 
M59M58 16 64 7 0.79 0.08 0.04 32 10 5 0.86 0.02 0.02 
M60M61 16 16 8 0.95 0.09 0.08 16 2 8 0.98 0.70 0.67 
M61M60 16 32 8 0.89 0.01 0.01 16 10 7 0.97 0.52 0.48 
M62M63 16 16 7 0.69 0.27 0.10 16 2 5 0.68 0.98 0.36 
M63M62 16 64 6 0.88 0.17 0.13 48 I 8 0.60 0.06 0.01 
M64M65 16 16 7 0.90 0.08 0.07 16 2 7 0.86 0.92 0.65 
M65M64 48 16 5 0.83 0.16 0.11 16 10 5 0.62 0.12 0.03 
M66M67 48 32 5 0.92 0.27 0.22 16 5 7 0.88 0.29 0.22 
M67M66 48 16 5 0.72 0.32 0.14 32 2 7 0.72 0.96 0.42 
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Table A.5: Matching parameters and evaluation results for the best matches of TM-matching applied 
to pairs of SB mammograms, listed for each image pair. 

Images 
TM-DE TM-DES TM-DM 

w d nbits AROC Cfb 1C W d nbits AROC C{b 1C w d nbits AROC Cfb 1C 

S1S0 96 I 5 0.56 0.24 0.03 64 10 6 0.75 0.220.11 96 I 5 0.56 0.24 0.03 
SIS2 112 I 8 0.84 0.15 0.1 96 10 5 0.83 0.09 0.06 96 2 5 0.53 I 0.05 
S4S3 16 I 8 0.68 0.15 0.05 16 10 5 0.61 0.45 0.1 80 2 7 0.94 0.06 0.06 
S4S5 32 2 8 0.62 0.69 0.17 16 10 5 0.77 0.690.37 64 5 6 0.94 0.02 0.02 
S7S6 64 10 5 0.73 0.05 0.02 96 2 8 0.85 0.160.11 12810 8 0.76 0.060.03 
S7S8 6410 7 0.84 0.31 0.21 80 2 8 0.92 0.190.16 96 2 8 0.81 0.030.02 
SIOS9 128 2 7 0.82 0.45 0.29 176 I 5 0.76 0.150.08 176 5 5 0.86 0.290.21 

SIOSII 16 5 8 0.86 0.58 0.42 32 10 5 0.7 0.4 0.16 6410 5 0.79 0.2 0.11 
SI3S12 16 I 5 0.89 0.25 0.19 16 2 5 0.76 0.18 0.1 16 1 5 0.43 0 0 
S13SI4 16 10 5 0.94 0.37 0.32 16 2 5 0.670.430.15 16 I 6 0.49 0 0 
SI6S15 16 2 8 0.76 0.680.35 16 I 8 0.9 0.13 0.1 16 I 5 0.32 0 0 
SI6S17 16 10 7 0.59 0.01 0 16 5 6 0.73 0.160.08 16 I 5 0.37 0 0 
SI9S18 16 5 5 0.66 0.150.05 16 10 6 0.84 0.05 0.03 16 I 6 0.48 0 0 
SI9S20 16 5 6 0.75 0.170.09 16 2 6 0.88 0.13 0.1 16 I 5 0.39 0 0 
S22S21 16 10 8 0.68 0.9 0.32 16 10 8 0.780.280.16 48 2 5 0.54 I 0.08 
S22S23 16 I 8 0.85 0.64 0.45 17610 5 0.82 0.3 0.19 176 1 5 0.82 0.17 0.11 
S25S24 16 10 7 0.7 0.2 0.08 16 I 7 0.69 0.08 0.03 80 I 8 0.68 0.020.01 
S25S26 16 10 8 0.7 0.56 0.22 96 10 8 0.94 0.3 0.27 96 10 8 0.94 0.23 0.2 
S28S27 96 I 6 0.86 0.63 0.45 96 I 6 0.89 0.5 0.39 96 10 5 0.89 0.48 0.37 
S28S29 16 2 5 0.69 0.970.37 16 5 5 0.67 0.64 0.22 32 I 5 0.55 I 0.09 
S31S30 32 I 6 0.7 0.220.09 16 I 7 0.72 0.110.05 96 2 7 0.72 0.060.02 
S31S32 16 2 7 0.72 0.350.15 48 10 5 0.82 0.210.14 64 I 5 0.89 0.08 0.06 
S34S33 96 10 5 0.76 0.170.09 64 I 5 0.83 0.36 0.24 48 10 7 0.73 0.040.02 
S34S35 96 10 5 0.94 0.25 0.22 11210 5 0.86 0.26 0.19 128 I 8 0.76 0.04 0.02 

Table A.6: Matching parameters and evaluation results for the best matches of Ml-matching applied 
to pairs of SB mammograms, listed for each image pair. 

Images MI -Histograms MI-GLCMs 
w nbins nbits AROC C{b 1C w d nbits AROC C{b 1C 

SISO 112 16 8 0.59 0.23 0.04 32 I 8 0.95 0.67 0.6 
SIS2 96 16 8 0.45 0.08 -0.01 32 I 7 0.96 0.86 0.8 
S4S3 32 32 5 0.65 0.65 0.19 1610 8 0.74 0.76 0.36 
S4S5 16 16 5 0.71 0.86 0.37 16 I 6 0.9 0.59 0.47 
S7S6 32 16 8 0.57 0.06 0.01 32 I 7 0.7 0.92 0.37 
S7S8 48 16 8 0.69 0.05 0.02 32 I 5 0.75 0.57 0.29 
SIOS9 80 16 8 0.63 0.21 0.06 32 5 8 0.96 I 0.92 
SIOSll 96 16 8 0.64 0.16 0.05 64 10 8 0.99 0.93 0.9 
SI3S12 16 32 5 0.6 0.26 0.05 16 I 5 0.36 0 0 
SI3S14 16 32 5 0.56 0.8 0.1 16 5 6 0.54 0.01 0 
SI6S15 16 32 8 0.47 -0.17 -0.01 16 5 5 0.27 0 0 
SI6S17 16 16 5 0.82 0.29 0.19 16 2 7 0.77 0.Q7 0.04 
SI9S18 16 16 8 0.68 0 0 1610 5 0.5 -0.51 0 
SI9S20 16 16 8 0.45 0.04 0 16 I 5 0.65 0.15 0.04 
S22S21 288 16 7 0.91 0.47 0.39 16 I 5 0.46 0 0 
S22S23 256 32 5 0.85 0.24 0.17 48 I 6 0.88 0.74 0.57 
S25S24 32 16 6 0.5 0.08 0 16 1 5 0.49 0 0 
S25S26 80 32 5 0.7 0.42 0.17 16 5 8 0.84 0.9 0.61 
S28S27 32 16 8 0.75 0.26 0.13 1610 6 0.76 0.61 0.31 
S28S29 32 16 8 0.47 0.03 0 16 I 8 0.83 0.14 0.1 
S31S30 96 16 8 0.56 0.25 0.03 16 I 5 0.49 0 0 
S31S32 96 16 7 0.48 0.22 -0.0 I 16 I 5 0.49 0 0 
S34S33 144 16 6 0.82 0.28 0.18 16 I 5 0.5 0 0 
S34S35 48 16 7 0.63 0.3 0.08 16 I 5 0.47 0 0 



Appendix B 

About Images 

In this research an image refers to a two-dimensional light intensity function f(x ,y) where x and 

y denote spatial co-ordinates and f is proportional to the brightness or intensity or grey-level of 

the image at that point. A digital image is an image that has been discretised in both spatial co­

ordinates and brightness and is represented in software by a matrix whose row and column indices 

indicate a point in the image. The elements of the matrix are referred to as pixels [Gonzalez & 

Wintz 1987]. 

Figure B.1 shows an example of an image together with the axis convention used. The origin 

is taken to be at the bottom left corner of the image, following the convention used in IDL. 

!N- I ,O . .. !N- I ,M- I 

fxJ'= 

!O,O . . . !O,M-I 

(b) 

Figure B.t: (a) Example of an image together with the axis convention used, with the origin at the 
bottom left comer. (b) Pixels are discrete spatial elements in a digital image and are represented by 
the elements in a matrix. 

The bit-depth of an image indicates how many shades of grey are available to describe the 

information in an image. The relation between bit-depth and brightness or grey-levels of the image 

is shown in Table B.t. 

Table B.t : Bit-depth, nbits, of image vs. number of grey-levels 

number of bits number of grey-levels 
nbits 2nbits 

1 
2 
3 
4 
8 
14 
16 
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2 
4 
8 
16 

256 
16384 
65536 



Appendix C 

Information Theory 

Probability Theory Basics 

The following is a summary of probability theory notation and terminology [Shlens 2003]. 

Notation and Variables 

Let X and Y be two discrete random variables, with a finite number of states, n, denoted by 

[XO,Xi ,X2 ,'" ,xn-d and [YO,Yi ,y2,' " ,Yn- d . X is governed by a discrete probability distribution, 

that is an assignment of a probability P(Xi) to each state Xi, denoted by P(X) . Similarly, Y is 

governed by P(Y). The joint probability between X and Y is P(X · Y). 

Marginal Probability, p(Xi) 

m- i 

P(Xi ) = I, P(Xi' Yj) 
j=O 

Conditional Probability, p(xiIY) 

Entropy 

m- i 

P(Xi!Y) = I, P(yj)P(Xi 'Yj) 
j=O 

(C-1) 

(C-2) 

Entropy was introduced as a measure of the uncertainty associated with a set of probabilities and 

is defined by Shannon [1948, p18] to be: 

n- i 

H(X) = - L P(Xi) logp(xi) . (C-3) 
i= O 

Properties of Entropy 

The following properties of entropy make it a reasonable measure of uncertainty [Shannon 1948] 

1. H ~ 0 except if the outcome is certain then H = O. This corresponds to the situation where 

only one, known outcome is possible. 

2. If P(Xi) = l/t (for a given t) then H = lnt is a maximum. This corresponds to the most 

uncertain situation. 

3. H(X · Y) :s: H(X) + H(Y) for two quantities X and Y, with equality if and only if both 

quantities are independent. This shows that the uncertainty of two quantities considered 

jointly is less than the sum of the uncertainties of the individual quantities 
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4. Any change in probabilities that causes them to be more equal results in an increase in H 

Additionally, with H(X · Y), the joint entropy, and f a function, the following applies [Jumarie 

1990]: 

H(XIY) + H(Y) = 

H(XIY) ::; 

H(XIY) = 

H(XIY) ::; 

H(XIY) ::; 

H(X·Y) 

H(X) 

H(YIX) 

H(X)+H(Y) 

H(Xlf(Y)) 

(conditioning reduces entropy) 

(symmetry) 

(equality iff X, Y independent) 

H(XIY) = ° ~ X = f(Y) (special case H(XIX) = 0) 

Entropy Examples 

Consider the tossing of a fair coin. In this situation there is an equal probability of getting heads 

or tails. Let X = [xo ,xJ] represent the set of possible results of tossing the coin with Xo = heads, 

Xl = tails. The probability density function associated with X is then P(X) = [0.5,0.5]. The 

entropy associated with X is: 

n-l 

H(X) = - LP(x;)logp(x;) = -2(0.5 log2 0.5) = 1, 
;= 0 

which is maximal. If however the coin is slightly more biased to 'heads' , then P(X) = [0.6,0.4] 

and 
n- l 

H(X) = - LP(x;)logp(x;) = - (0.4log20.4) - (0.610g20.6) = 0.87. 
;= 0 

These examples demonstrate that entropy is maximal when there is the greatest choice or when all 

probabilities are equal. 

Conditional Entropy 

LetX and Y be discrete random variables, with P(XIY) the conditional probability. The conditional 

entropy H(XIY) , which is a measure of the uncertainty inX given knowledge ofY, is then defined 

as [Jumarie 1990]: 
n-ln- l 

H(XIY) = - L LP(x; .yj}logp(x;IYj) 
;=0 j =O 

(C-4) 
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Description of some IDL Functions 

For convenience, descriptions of some IDL functions are given here. 

The HISL20 function is explained by means of an example. Consider two images, 11 and hand 

the corresponding two-dimensional histogram, Pit h . 

012 120 [201] 
11= 012 h= 210 PIth=HISL20(11,h)= 210 

021 200 012 

PIt h is built up as follows: 

1. 11[0,0] = 0 andh[O,O] = 2, so PIth [0,2] gets incremented. 

2. 11[1,0] = 1 andh[I,O] = 0, SOPIth[I ,O] gets incremented. 

3. 11 [2,0] = 0 and h[2,0] = 2, so PIth [0,2] gets incremented. 

4. 11[0,1] = 1 andh[O,I] = 0, SOPIth[I,O] gets incremented. 

5. 11 [1,1] = 2 and h[I,I] = 2, so PIt h [2, 2] gets incremented. 

6. 11[2,1] = 1 andh[2,1] = I, so PIth[l, 1] gets incremented. 

7. 11 [0,2] = 2 and h[0,2] = 0, so PIth [2 , 0] gets incremented. 

8. 11 [1,2] = 0 and h [1 ,2] = 1, so PIt h [0, 1] gets incremented. 

9. 11 [2,2] = 2 and h[2,2] = 0, so PIth [2, 0] gets incremented. 

SHIFT 

From IDL help: 

The SHIFT function shifts elements of vectors or arrays along any dimension by any 

number of elements. Positive shifts are to the right while left shifts are expressed as a 

negative number. All shifts are circular. 

Elements shifted off one end wrap around and are shifted onto the other end. In the 

case of vectors the action of SHIFT can be expressed as: 

Resu!t(i+s)modulation = ArraYi for 0 ~ i < n 

where s is the amount of the shift, and n is the number of elements in the array. 
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Overview of artificial neural network and Texture Based Techniques for Computer 

Aided Diagnosis in Mammography 

J. Padayachee, W. I. D. Rae * , M. Gar-Elnabi and M. J. Alport 

University of Natal, Durban; * Addington Hospital, Durban 

According to the Cancer Association of South Africa (http://www.cansa.co.za/). breast can­

cer is currently the most common cancer among women worldwide, including South Africa. Al­

though much progress has been made in the treatment of breast cancer, the key is early detection. 

Mammography is currently the most effective method of detecting breast cancer in its early stages, 

but the analysis of mammograms is sometimes difficult due to the complex and varying structure 

of the human breast. Adding to the complexity are benign masses (e.g. lipomas), which may be 

palpable and have abnormal structure compared with the surrounding tissue. The ability to reliably 

diagnose these benign masses will reduce cost and patient trauma because some biopsies may be 

safely avoided. 

Computer-aided diagnosis (CAD) systems are a vital aid in the analysis of mammograms to 

highlight and classify those features that may be missed by a radiologist, largely because of fatigue 

and distractions. Kegelmeyer et al (1994) and Zheng et al (2001) show that the performance of 

radiologists in analysing mammograms are enhanced when "prompted" by a CAD system. 

There are currently three CAD systems that have been approved by the U. S. Food and Drug 

Administration (FDA) for use in screening and diagnostic mammography: ImageCheckerTM(R2 

Technology), MammoReader™(lntelligent Systems Software, Inc) and Second LookTM(CADx 

Medical Systems). ImageChecker™uses pattern recognition algorithms to identify spiculated 

masses and microcaicifications, and artificial neural networks to distinguish lesions from nor­

mal tissue. In a study of 12 860 screening mammograms, Freer and Ulissey (2001) compared 

radiologists performance with and without ImageChecker™and found that radiologists detected 

19.5% more cancers, and there was an increase (from 73% to 78%) in the proportion of early-stage 

malignancies detected in a prompted environment. 

In FDA (http://www.fda.gov/) clinical studies, it was found that 23% of the women diag­

nosed with breast cancer, who had had prior screening mammograms, could have had their can­

cers discovered an 14 months earlier with MammoReader™while Second LookTM(using pattern 
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recognition algorithms) reduced the number of missed cancers by 26.2%. 

This paper will focus on some techniques used in the detection and classification of benign 

masses. Techniques that are reviewed in detail include enhancing the contrast of suspicious areas, 

segmentation to separate the pectoral muscle and the background (non-breast area) from the breast 

tissue in a mammogram, comparison ofleft and right breasts using symmetry and texture analysis. 

1. Freer, T. W. and Ulissey, M. 1. Screening mammography with computer-aided detection: 

prospective study of 12 860 patients in a community breast center. Radiology 220 (2001) 

781-786 

2. Kegelmeyer, W. P., Pruneda, J. M., Bourland, P. D., Hillis, A., Riggs, M. W. and Nipper, 

M. L. Computer-aided Mammographic Screening for Spiculated Lesions. Radiology 191 

(1994) 331-337 

3. Zheng, B., Ganott, M. A. , Britton, C. A., Hakim, C. M., Hardesty, L. A., Chang, T. S., Rock­

ette, H. E., Gur, D. Soft-copy mammographic readings with different computer-assisted 

detection cuing environments: Preliminary findings. Radiology 221 (2001) 633-40. 
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Computer-Aided Diagnosis in Mammography - Segmenting the Breast Border 

1. Padayachee1, M. J. Alport1, W. 1. D. Rae2 
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1 Applied Physics Group, School of Pure and Applied Physics, University of Natal, Durban, South 

Africa 

1 Medical Physics Department, Addington Hospital, Durban, South Africa 

According to the Cancer Association of South Africa (http://www.cansa.org.zaJ), breast can­

cer is currently the most common cancer among women worldwide. Although much progress 

has been made in its treatment, the key is early detection. Mammography is currently the most 

effective method of detecting breast cancer in its early stages, but the analysis of mammograms is 

sometimes difficult due to the complex and varying structure of the human breast. Adding to the 

complexity are benign masses (e.g. lipomas), which may be palpable and have abnormal structure 

compared with the surrounding tissue. The ability to reliably diagnose these benign masses will 

reduce cost and patient trauma because some biopsies may be safely avoided. 

Computer-aided diagnosis (CAD) is a vital aid in the analysis of mammograms to highlight 

and classify those features that may be missed by a radiologist, largely due to fatigue and distrac­

tions. Kegelmeyer et al (1994) and Zheng et al (2001) show that the performance of radiologists 

is enhanced when "prompted" by a CAD system. 

An important step in the automatic analysis of a mammogram is the segmentation of different 

parts of the breast (i.e. pectoral muscle, fatty tissue, glandular tissue, etc) for further processing. 

One of the first steps is to segment the breast region from the rest of the mammogram. This is 

done to eliminate the background and to identify the breast border. Certain signs of malignancy 

manifest themselves in changes in the skin, causing a change to the outline of the breast, which 

can be identified if the breast border is known. Finding the breast border also enables the selection 

of reference points that are required for the registration of mammograms, especially when two 

mammographic views are being compared or when radiographs are being compared over time 

(Masek et aI, 2000). 

Boundary tracking (Mendez et aI, 1996) and grey-level thresholding (Chandrasekhar and 

Attikiouzel, 2000) are two common methods of detecting the breast border. This study uses grey­

level thresholding, but also an analysis of the area enclosed by contours of varying grey-levels. 

Various methods have been investigated to extract the breast border including an analysis of the 

contour bending energy and enclosed area. 

Results obtained from using the contour bending energy were inconclusive, but analysing the 

contour area yielded positive results. The algorithms were tested on a data set that contained an 
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extreme of mammography examples. Fitted breast borders are compared with borders determined 

manually by a radiologist. The radiologist 's borders were absolutely registered with the fitted 

results and the mean error was determined by taking differences in radial distances from a central 

point. Results using the derivative are found to be between O.13cm to 1.23cm of the radiologist's 

borders whereas the results using an empirically fitted function are found to be between O.3cm and 

1.95cm of the radiologist's borders. 

The techniques are completely automatic and hence can be used to segment the breast outline 

without user intervention. 
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According to the Cancer Association of South Africa, breast cancer is currently the most 

common cancer among women worldwide. Although much progress has been made in its treat­

ment, the key is early detection. Mammography is currently the most effective method of detecting 

breast cancer in its early stages, but the analysis of mammograms is sometimes difficult due to the 

complex and varying structure of the human breast. Computer-aided diagnosis (CAD) is a vital 

aid in the analysis of mammograms to highlight and classify those features that may be missed by 

a radiologist, largely due to fatigue and distractions. An important first step in the automatic anal­

ysis of mammograms is the segmentation of the breast region from the rest of the mammogram to 

eliminate the background and to identify the breast border. Certain signs of malignancy manifest 

themselves in changes in the skin, causing a change to the outline of the breast, which can be iden­

tified if the breast border is known. Finding the breast border also enables the selection of reference 

points that are required for the registration of mammograms, especially when two mammographic 

views are being compared or when radiographs are being compared over time. This study uses 

grey-level thresholding by analysing various characteristics of contours at different grey-scale val­

ues. Various methods have been investigated to extract the breast border including an analysis of 

the contour bending energy and enclosed area. Results obtained from using the contour bending 

energy require further investigation, but analysing the contour area yielded positive results. The 

algorithms were tested on a data set that contained some extreme mammography examples with 

marked contrast, and some very dense structures. Fitted breast borders were compared with bor­

ders determined manually by a radiologist. The radiologist's borders were absolutely registered 

with the fitted results and the mean error was determined by taking differences in radial distances 

from a central point. Results range between O.Bcm and 1.95cm of the radiologist's borders. The 

techniques are completely automatic and hence can be used to segment the breast outline without 

user intervention. 
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Matching Features in Two Mammographic Views of the Same Breast Using Image Anal­

ysis Techniques 

J. Padayachee1, M. J. Alport1, and W. 1. D. Rae2 , 1 

1 School of Pure and Applied Physics, University of KwaZulu-Natal, Durban 

2 Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, Durban 

Breast cancer can be treated successfully if it is detected early. Mammography is used to 

image the breast to detect cancer. Generally two mammographic views of each breast are visually 

analysed by two radiologists for signs of breast cancer. For various reasons, about 10-20% of 

cancers are missed in current analyses. Computer aided diagnosis (CAD) is being developed 

in an attempt to improve diagnosis. Each mammographic view is a projection of a compressed 

breast and distortions and overlapping tissue means that there is no global transform to match 

features between both views. Towards achieving CAD, this investigation demonstrates the use of 

a statistical similarity metric (mutual information) to match features (e.g. tumours) between two 

views of the same breast. This allows meaningful comparison of areas containing comparable 

information and thus simultaneously assessing both views for signs of malignancy. Examples of 

the successful matching of similar areas are presented. 



Glossary 

acutance Measure of the gradient between light and dark regions in an image. 

bit-depth Maximum number of grey-levels or brightness or intensities that can be assigned to a 

pixel in an image. A bit-depth of nbits means that 2nbits grey-levels are available to describe 

the information content of an image. 

centroid The point within an area or volume at which the centre of mass would be if the surface 

or body had a uniform density. For a symmetrical area or volume it coincides with the centre 

of mass. For a non-symmetrical area or volume it has to be found by integration. 

diagnostic mammogram A mammogram taken of a patient experiencing physical symptoms 

consistent with breast cancer, or taken to evaluate a specific finding. 

fractal dimension Rate at which the perimeter or surface area of an object increases as the mea­

surement scale gets smaller. A small fractal dimension implies a fine texture while a large 

value implies a coarse texture. 

lacunarity Measure that describes characteristics of textures that have the same fractal dimension, 

but different visual appearance. 

mammogram X-ray image of human breast 

mammography Method of using low energy x-rays to image the breast for the diagnosis of breast 

cancer 

matching accuracy Combination of AROC- and Cjb-values used as an indication of how accurate 

a match is and how easily discemable the matched area is, from the background, in the 

matching map. 

modality A form or method of imaging 

recall Getting the patient to return for a repeat examination for some reason. 

screening mammogram A mammogram of a woman not exhibiting physical symptoms of breast 

cancer, and who was not undergoing further evaluation for a specific finding, at the time of 

the exam. Screening mammograms are routinely taken. 

segmentation The isolating of specific features 

sensitivity Fraction of abnormal cases actually diagnosed as abnormal 

spatial resolution Physical size that a pixel in an image represents. 

specificity Fraction of normal cases actually diagnosed as normal 
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spiculated lesion Lesion with lines radiating from a central mass. 

ultrasonography Diagnostic imaging in which ultrasound is used to image an internal body struc­

ture. Also known as ultrasound. 
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