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Abstract

Breast cancer is one of the most common cause of cancer death in women
worldwide. In most western countries, screening programs are organized in
order to detect breast cancers at an early stage. To improve breast cancer
detection, many radiologists use computer-aided detection and diagnosis
(CAD) systems which are able to detect and characterize mammographic
signs of malignancy such as clustered microcalcifications and masses through
computerized image analysis. Even though effective in terms of sensitivity,
these systems produce a too high number of false alarms, which potentially
limits the benefit they can provide. This thesis addresses the problem of
accurately detecting and classifying clustered microcalcifications in full field
digital mammograms. The goal is to reduce the gap between CAD systems
and radiologists in terms of false alarms while maintaining the high sensi-
tivity typical of the commercial CAD systems. To this end, three main con-
tributions are proposed by exploiting innovations and advantages of novel
machine learning algorithms, based on deep learning convolutional neural
networks (CNNs) : (i) a new proposal of combination of a deep cascade of
boosting classifiers and a CNN to deal with the high-imbalance problem of
classifying individual pixels in a mammogram as belonging to a microcal-
cification or not; (ii) a novel method for detecting individual calcifications
that provides for the use of multiple-depth CNNs, to exploit both the local
features and the surrounding context of MCs; and (iii) a novel end-to-end
system able to combine both detection and classification of malignant clus-
ter, by additionally segmenting individual calcifications. Along with these
contributions, experimental comparisons with other existing methods in the
literature are provided and show significant reduction in the number of false
alarms. Moreover a novel end-to-end model that combines detection and
classification steps is presented, by showing a significant improvement with
respect to single-task systems. When applied to a clinical setting, this
would help the radiologists to reduce the number of unnecessarily recalled
women with microcalcification clusters, thus improving the effectiveness of
screening and diagnosis processes.
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Chapter 1

Introduction

Worldwide, breast cancer is the most common cancer (24.2%) and the first
known cause of death (13,7%) among women aged between 35 and 55 [1].
Detecting breast cancer as early as possible is vital to improve patient’s
chances and quality of life after treatment. With this aim, population-
based screening program started in the late 70s and have been adopted as
organized nation-wide programs in many developed countries since then. In
the screening programs asymptomatic women within a certain age range
are regularly invited (every year or every two years) to obtain a screening
exam. It is important to underline that the positive effects of screening are
mainly due to the principle of repetition. For this reason, the first round
should be considered differently from the repeated rounds and monitored
and reported separately.

The chosen technique for screening mammography, is a noninvasive and
relatively cheap test which uses x-rays to obtain a two-dimensional(2D)
image of the breast. Although using ionizing radiation, the risk for an
average 50 year old woman to develop cancer from a mammography exam
is estimated to be about 9 in 10000 [2]. Screen film mammography was
initially used, until it was replaced by digital mammography (DM) in the
mid-2000s, showing an improvement in breast cancer detection accuracy,
especially for women with dense breasts [3].

The large number of acquired screening mammograms are interpreted by
radiologists, who look for mammographic indicators of cancer like clusters of
microcalcifications (MCs) and masses, and subsequently make a final deci-
sion whether the woman has to be recalled for further assessment. However,
interpreting screening mammograms is a big challenge even for an expert
radiologist since the low prevalence makes finding abnormalities difficult.
In [4] are pointed out several subjective factors that may lead to a lack of
perception or to mistakes in interpretation. Among the established methods
to improve radiologist performance, it has been reported that having more
than one radiologist or a CAD system improves the detection of cancer in
mammograms [5, 6]. It is common practice that each woman’ screening
exam is reviewed by two readers, in an independent double reading fashion.
If the two radiologists disagree, the final decision on the need to recall the
woman can be either by consensus of the two radiologists, by arbitration by
a third radiologist, or the woman can be recalled if either of the two radiolo-
gists decides that a recall is warranted. If recalled, the woman is referred to
go to a hospital for further tests (diagnostic work-up). Double reading and
therefore combining assessments by two or more readers improves overall
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CHAPTER 1. Introduction

performance. However several studies have shown that unfortunately up to
25% of mammography detectable cancers are still missed at screening even
after double reading [7, 8].Consequently in the last few decades, Computer-
Aided Detection and Diagnosis (CADe/CADx) systems have been proposed
to assist radiologists in finding and locating abnormalities on the images and
supporting their diagnosis response [9, 10].To this end, several commercial
CAD systems are nowadays available and their use is widespread among
radiologists. However, even though CAD systems show a sensitivity similar
to radiologists [11], there are still a few hundred false positives for every
true positive in a screening setting, which is about two orders of magni-
tude higher than what the radiologists achieve [5]. This can potentially
limit the benefit that a CAD system can provide, for example by resulting
in an increase of the recall rate [5] and subsequently of the false positive
case (i.e., patients that are recalled unnecessary), thus causing unnecessary
anxiety and thereby discouraging women to participate to screening and
generating lack of trust of the readers towards CAD [12]. Nevertheless, the
recent developments in Artificial Intelligence techniques for Computer Vi-
sion tasks, in particular Deep Neural Networks, have brought their positive
effects also in the medical image field, showing to be very effective for med-
ical image analysis tasks [13, 14, 15]. As a consequence a new generation
of CADe/CADx has been enabled with new solutions and perspective for
digital mammograms tools [16, 17].

The objective of the studies described in this thesis is to develop a full
CAD system for the detection and diagnosis of clusters of MCs, able to
reduce the gap between CAD systems and radiologists in terms of false
positives while maintaining the high sensitivity typical of commercial CAD
systems. In this way, the effectiveness of CAD in assisting radiologists
in screening could be improved to avoid unnecessary and invasive further
work-ups in healthy women as it still happens nowadays. In this chapter
an overview of the framework in which this research has been carried out is
provided. Starting from a short description of the breast anatomy and the
breast diseases, particular emphasis is given to the presence of suspicious
and malignant MCs as one of the most important early indicator of breast
cancer in mammography. Subsequently, a more detailed description of CAD
system and evaluation metrics is given. Finally, an outline of the thesis is
presented.

1.1 Anatomy of the breast

Anatomically the breast can be subdivided into the following structural
entities [18, 19, 20]:

Chest wall
The boundary of the thoracic cavity (see Fig. 1.1a-1).

Pectoralis muscles
Thick, fan-shaped muscles, situated at the chest (anterior) of the hu-
man body (see Fig. 1.1a-2).

Lobules
The basic functional unit in the breast is the lobule, also called the
tdlu (see Fig. 1.1a-3). The tdlu consists of 10-100 acini, that drain

2



1.1 Anatomy of the breast

(c) (d) 

(b) 

(a) 

with calcifications 

Figure 1.1: (a) Anatomy of the breast: (1) chest wall, (2) pectoralis mus-
cles, (3) lobules, (4) nipple, (5) areola, (6) milk ducts, (7) fat and con-
necting tissue, (8) skin. (b) Terminal ductal lobular unit. (c) Lobular
calcifications. (d) Intraductal calcifications. Source: www.wikipedia.org

and www.radiologyassistant.nl.

into the terminal duct (see Fig. 1.1b). The terminal duct drains into
larger ducts and finally into the main duct of the lobe (or segment),
that drains into the nipple. The breast contains 15-18 lobes, each
containing 20-40 lobules. The tdlu is an important structure because
most invasive cancers arise from the tdlu. It is also the site of origin
of dcis, lcis, fibroadenoma and fibrocystic disease, like cysts, apocrine
metaplasia, adenosis and epitheliosis. Most calcifications in the breast
form either within the acini (lobular calcifications, see Fig. 1.1c) or
within the terminal ducts (intraductal calcifications, see Fig. 1.1d).

Nipple
A small projection of skin containing the outlets for 15-20 lactiferous
ducts arranged cylindrically around the tip (see Fig. 1.1a-4). The skin
of the nipple is rich in a supply of special nerves that are sensitive
to certain stimuli. The physiological purpose of nipples is to deliver
milk to the infant, produced in the female mammary glands during
lactation.

Areola
Pigmented area around the nipple (see Fig. 1.1a-5).

Milk duct
Milk ducts (or lactiferous ducts) form a tree branched system con-
necting the lobules of the mammary gland to the tip of the nipple
(see Fig. 1.1a-6). They are the structures which carry milk toward
the nipple in a lactating female.

3
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(a) (b)

1

2

I

II

III

basement 
membrane

Figure 1.2: (a) Lobular Carcinoma In Situ (LCIS): (1) normal lobular cells,
(2) lobular cancer cells. (b) Different stages of cancer cells growing from the
milk ducts: (I) normal cells, (II) Ductal Carcinoma In Situ (DCIS), (III)
Invasive Ductal Carcinoma (IDC). Source: www.breastcancer.org.

Fat, ligaments and connective tissue
Spaces around the lobules and ducts are filled with fat, ligaments and
connective tissue (see Fig. 1.1a-7). The amount of fat in the breast
largely determines their size. The actual milk-producing structures
are nearly the same in all women. Female breast tissue is also sensi-
tive to cyclic changes in hormone levels. Younger women might have
denser and less fatty breast tissue than do older women who have gone
through menopause.

1.2 Malignant breast diseases

Malignancy can grow within all types of breast tissue, but in the classical
sense breast cancer originates in either the milk-ducts, in which breast milk
is transported to the nipple, or the lobules, where breast milk is produced.
Several types of breast cancer can arise in other parts of the breast as well,
but are less common (< %8 of all breast cancers). The basement membrane
(see Fig. 1.2) plays a key role in determining whether a carcinoma is “in situ”
(i.e., it has not grown through the basement membrane) or “invasive” (i.e.,
it has grown through the basement membrane). When in situ carcinomas
develop into invasive cancers, they can form metastases to lymph nodes
and other organs which will decrease the survival chance. In the breast the
following forms of malignancy can be considered [21]:

Lobular Carcinoma In Situ (LCIS)
LCIS is an area (or areas) of abnormal cell growth in the lobule (see
Fig. 1.2a). The abnormal cells start growing in the lobules and remain
inside the lobule without spreading to surrounding tissues. People

4
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1.2 Malignant breast diseases

diagnosed with LCIS tend to have more than one lobule affected.
Despite the fact that its name includes the term “carcinoma”, LCIS
is not a true breast cancer. Rather, LCIS is an indication that a person
is at higher-than-average risk for getting breast cancer at some point
in the future.

LCIS is usually diagnosed before menopause, most often between the
ages of 40 and 50. Less than 10% of women diagnosed with LCIS have
already gone through menopause. LCIS does not cause symptoms and
usually does not show up on a mammogram. It tends to be diagnosed
as a result of a biopsy performed on the breast for some other reason.

Invasive lobular Carcinoma(ILC)
ILC is the second most common type of breast cancer after Invasive
Ductal Carcinoma (IDC). The cancer begins in the milk-producing
lobules and breaks through the wall of the lobule thus invading the
tissues of the breast. Over time, ILC can spread to the lymph nodes
and possibly to other areas of the body. About 10% of all invasive
breast cancers are invasive lobular carcinomas. ILC tends to occur
later in life than Invasive Ductal Carcinoma (IDC): the early 60s as
opposed to the mid to late 50s. At first, ILC may not cause any
symptoms. Sometimes, an abnormal area turns up on a screening
mammogram, which leads to further testing. ILC tend to be more
difficult to see on mammograms than IDC are. That is because in-
stead of forming a lump, the cancer cells more typically spread to the
surrounding connective tissue in a line formation.

Ductal Carcinoma In Situ (DCIS)
DCIS is the most common type of non-invasive breast cancer and it
represents the 25-30% of all reported breast cancers [20]. The cancer
starts inside the milk ducts and remain in the ducts without spread-
ing to the surrounding tissues (see Fig. 1.2b-II). DCIS is not life-
threatening, but having DCIS can increase the risk of developing an
invasive breast cancer later on. When a woman has had DCIS, she
is at higher risk for the cancer coming back or for developing a new
breast cancer than a woman who has never had breast cancer before.
Most recurrences happen within the 5 to 10 years after diagnosis. The
chances of a recurrence are under 30%. DCIS generally has no signs or
symptoms. A small number of women may have a lump in the breast
or some discharge coming out of the nipple. However, approximately
95% of all DCIS is diagnosed because of mammographically detected
microcalcifications [20], making it the most easily detectable cancer
in mammography among the early stages of cancer.

Invasive Ductal Carcinoma(IDC)
IDC is the most common type of breast cancer. About 80% of all
breast cancers are IDC. The cancer starts inside the milk ducts and
breaks through the wall of the duct thus invading the tissues of the
breast (see Fig. 1.2b-III). Over time, IDC can spread to the lymph
nodes and possibly to other areas of the body. Although IDC can
affect women at any age, it is more common as women grow older.
According to the American Cancer Society, about two-thirds of women
are 55 or older when they are diagnosed with an IDC. At first, IDC
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may not cause any symptoms. Often, an abnormal area (mass) turns
up on a screening mammogram, which leads to further testing.

1.3 Breast imaging

Imaging of the breast is currently done using either X-ray (mammography,
tomosynthesis,CT), sound waves or radio waves:

• Mammography: Mammography involves exposing the breast to a
small dose of ionizing radiation. The breast is placed in a C ark
between an X-ray source emitting radiation and a detector.

• Tomosynthesis: Similar to mammography, tomosynthesis is based on
X-ray. In this case the x-ray tube moves in an arc over the compressed
breast, by capturing multiple images of each breast from different
angles. The digital images are then reconstructed or “synthesized”
into a set of three-dimensional images to get a better view of structures
that would otherwise be hidden. The dose of radiation is slightly
higher tough within the limits of safe radiation outlined by the FDA.

• Breast CT: Similar to mammography and tomosynthesis, breast CT is
based on X-ray, but instead images are taken from many different an-
gles so as to create a full 3D reconstruction of the breast, where voxels
have a quantitative meaning. Breast CT still has limited application
in the clinic.

• Breast Ultrasound : Ultrasound devices use soundvawes to produce
an image of the internal structure of the breast. Ultrasound is typi-
cally used as a complementary modality to mammography to diagnose
lumps that were found suspicious on mammogram. Ultrasound can
not look as deep inside the breast as mammography can, does not
image the whole breast at once and can not see all indications (such
as calcifications) that are visible on a mammogram. Is therefore un-
suitable for stand-alone imaging.

• Magnetic Resonance Imaging: MRI uses magnetic fields and radiowaves
to generate images of internal structure. Similar to breast ultrasound,
calcifications in the breast are typically not visible in MRI. It is often
used as complementary to a mammogram for women in high risk pop-
ulations. The sensitivity of readers is substantially higher, but MRI is
also substantially more expensive than mammography and in general
with lower specificity.

1.3.1 Mammography

Mammography is the oldest and still most common breast imaging tech-
nique that is used to detect and characterize breast cancer thanks to its
high performance and low costs [22, 5, 23] and are used both for screening
and diagnostic purposes. In general, screening mammography is performed
on asymptomatic women to identify suspicious signs at an early, and there-
fore more treatable stage. Diagnostic mammography is performed on symp-
tomatic patients, or to work up abnormalities found on screening images.
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1.3 Breast imaging

Hence, the aim is to characterize the pathology and define a diagnosis. In
a standard examination, two images of each breast are taken: one from the
top, called craniocaudal (CC) and one with the X-ray tube angled approxi-
mately 45◦ medially, called mediolateral oblique (MLO). This ensures that
the images display as much breast tissue as possible. An overview of the
mammography apparatus is given in Fig. 1.3. X-ray photons are emitted
from the anode that is located in the X-ray tube on the top of the machine.
Whereas most x-ray tubes use tungsten as the anode material, mammogra-
phy equipment uses molybdenum anodes or in some designs, a dual material
anode with an additional rhodium track. These materials are used because
they produce a characteristic radiation spectrum that is close to optimum
for breast imaging. After x-ray photons are emitted, they pass through
a molybdenum (or rhodium) filter to reduce unnecessary exposure to the
patient and also to improve contrast sensitivity. Part of the radiation then
goes through the breast, which is compressed primarily to spread the breast
tissue laterally in order to minimize the likelihood of occult cancers, and
secondarily to reduce the thickness of the breast thus obtaining a clear x-ray
image. As a result of interaction between breast tissue and radiation, X-ray
photons may undergo a change in direction before hitting the receptor. By
positioning a grid in front of the receptor, influence of scatter is reduced.
Both film/screen and digital receptors are used for mammography, thus
obtaining Screen-Film Mammography (SFM) and Full-Field Digital Mam-
mography (FFDM) (see Fig. 1.3c), respectively, whose characteristics are
detailed in the following.

1.3.2 Screen-film mammography

In screen-film based mammography, the radiation is absorbed by a scintilla-
tor (the screen) that transfers the incident X-ray photons into light photons
that blacken the film, which is located just in front of the screen. The film
serves as the media for recording within the receptor, transporting and stor-
ing images, and is the image display device. The significant characteristic
is that the contrast of the image is “fixed” and cannot be changed after the
film is exposed and chemically processed. In addition, the relation between
optical film density and exposure values is non-linear (see Fig. 1.5a) and
depends on the type of film used. For these reasons, it has been shown that
although SFM has high sensitivity and specificity, it has some important
limitations as well [24, Chapter 1]. The film used to capture, store and dis-
play the mammographic image is one of the major technical restrictions of
SFM. The visibility of breast cancer depends on different attenuation of the
X-ray beam by the suspect regions compared with the surrounding tissue.
Suspect regions lying in dense areas of the breast may not be noticeable
because film contrast decreases in the densest breast areas. This is due to
limited dynamic range of conventional films. Furthermore, the image data
obtained using a SFM-based system cannot be manipulated once the im-
age is processed in a film processor. Specifically, over- and under-exposed
images have to be recorded again. Contrast levels in the image cannot be
altered to improve the relative visibility of structures in the image without
recording additional images of the patient. Most of the several technical lim-
itations associated with SFM are overcame by FFDM, which is described
in the following section.
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Figure 1.3: (a) Mammography apparatus : (1) anode, (2) filter, (3) X-rays,
(4) compression plate, (5) scattering, (6) grid, (7) receptor.

1.3.3 Full-field digital mammography

In the last few years, FFDM-based systems have been developed and are
increasingly used in clinical practice. In FFDM, the radiation is captured
by a digital detector that inherently produces a signal that is linearly pro-
portional to the intensity of X-rays transmitted by the breast (see Fig. 1.5).
There are several key features of FFDM that distinguish it from SFM and
contribute to its potential advantages [24, Chapter 1]. First of all FFDM
decouples the processes of image acquisition from the subsequent stages of
archiving, retrieval, image display and digital image processing. Unlike the
situation in SFM where these processes are inextricably linked, this facili-
tates optimization of each of the separate functions and great flexibility in
the adjustment of image display characteristics. Secondly FFDM it is often
possible to design detectors that allow efficient use of the incident X-rays
without excessive loss of spatial resolution and signal to-noise ratio. This
permits a substantial reduction in the radiation dose to the breast when
compared with SFM without sacrifice of image quality. Moreover, because
of the differences in technology between SFM and FFDM, the optimum ex-
posure conditions may shift toward the use of higher energy spectra than
would be used with film, particularly for dense or thick breasts. In an SFM-
based system, the relation between optical film density and exposure values
is highly non linear and it tends to flatten for exposures above and below
a fairly restricted range (see Fig. 1.5a). This limited range has important
implications on image quality [24, Chapter 1]. On the contrary, in FFDM
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1.4 Signs of breast cancer in mammography

Figure 1.4: (a)(b) Standard digital mammography exam with craniocaudal
(right) and mediolateral oblique (left) views of both breasts (source: The
Breast Journal).
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Figure 1.5: (a) Characteristic curve of a mammographic screen-film system.
(b) Characteristic response of a detector designed for digital mammography.

the detector inherently produces a signal that is linearly proportional to the
intensity of X-rays transmitted by the breast (see Fig. 1.5b). It has a very
large dynamic range, so that it is possible to produce a faithful representa-
tion of X-ray transmission for all parts of the breast.

1.4 Signs of breast cancer in mammography

The main signs of malignancy on mammography can roughly be divided
into two groups: microcalcifications and soft tissue lesions[25].

1.4.1 Microcalcifications

Microcalcifications are calcium deposits that appear as small white specks
on the mammogram. Typical size of a MCs is between 0.1 mm and 1 mm

9
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CHAPTER 1. Introduction

[26] and they may appear scattered over the whole breast or distributed in
one or more clusters. Microcalcification clusters may appear in both in situ
and invasive breast cancer but also in benign diseases. Many of the breast
cancers that are at an early stage are currently detected by the presence of
microcalcifications. Approximately 95% of all DCIS is diagnosed because
of mammographically detected microcalcifications [20].

Most calcifications in the breast form either within the TLDU (intra-
ductal calcifications) or within the acini (lobular calcifications) [20]. More
details on these two types of calcifications are given in the following.

Lobular calcifications
These calcifications fill the acini, which are often dilated (see Fig. 1.1c).
This results in uniform, homogeneous and sharply outlined calcifica-
tions, that are often punctate or round. When the acini become very
large, as in cystic hyperplasia, “milk of calcium” may fill these cav-
ities. However when there is more fibrosis, as in sclerosing adenosis,
the calcifications are usually smaller and less uniform. In these cases
it can be difficult to differentiate them from intraductal calcifications.
Lobular calcifications usually have a diffuse or scattered distribution,
since most of the breast is involved in the process that forms the
calcifications. Lobular calcifications are almost always benign.

Intraductal calcifications
These calcifications are calcified cellular debris or secretions within
the intraductal lumen (see Fig. 1.1d). The uneven calcification of the
cellular debris explains the fragmentation and irregular contours of
the calcifications. These calcifications are extremely variable in size,
density and form (i.e., pleomorphic from the Greek pleion “more” and
morphe “form”). Sometimes they form a complete cast of the ductal
lumen. This explains why they often have a fine linear or branch-
ing form and distribution. Intraductal calcifications are suspicious of
malignancy.

The diagnostic approach to breast calcifications is to analyze the mor-
phology, distribution and sometimes change over time.

Morphology

The form or morphology of calcifications is the most important factor in
deciding whether calcifications are typically benign or not. If not, they are
either suspicious (intermediate concern) or of a high probability of malig-
nancy. Usually biopsy in these cases is needed to determine the etiology
of these calcifications. Using morphology as classification criterion, we can
distinguish microcalcifications as follows:

• Skin calcifications: these are usually lucent-centered deposits. Skin
calcifications may simulate parenchymal breast calcifications and may
look like malignant-type calcifications, but when looking at MLO and
CC views these calcifications look exactly the same.

• Vascular calcifications: These are linear or form parallel tracks, that
are usually clearly associated with blood vessels. They may simulate
intraductal calcifications.
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1.4 Signs of breast cancer in mammography

• Popcorn-like calcifications: These calcifications are produced by invo-
luting fibroadenomas. They usually do not cause a diagnostic prob-
lem.

• Rod-like calcifications: These benign calcifications form continuous
rods that may occasionally be branching. They are different from
malignant-type fine branching calcifications, because they are usually
> 1mm in diameter. They may have lucent centers if the calcium is in
the wall of the duct. These calcifications follow a ductal distribution,
radiating toward the nipple and are usually bilateral.

• Round and punctuate calcifications: Round calcifications are 0.5 −
1mm in size and frequently form in the acini of the terminal duct
lobular unit. When smaller than 0.5mm, the term punctuate is used.

• Milk of Calcium: These are benign sedimented calcifications. On CC
views they appear as fuzzy, round or amorphous whereas on MLO
view they may appear as semilunar crescent shaped.

• Coarse irregular lava-shaped: These calcifications are larger than 0.5mm
and often have a lucent center. They are seen in irradiated breast or
following trauma. They develop 3− 5 years after treatment in about
30% of women. These calcifications are also described as fat necrosis.

• Amorphous calcifications: Amorphous or indistinct calcifications are
defined as without a clearly defined shape or form. These calcifica-
tions are usually so small or hazy in appearance, that a more specific
morphologic classification cannot be determined.

• Coarse heterogeneous: Coarse heterogeneous microcalcifications, for-
merly called coarse granular, are irregular, conspicuous calcifications
that are generally larger than 0.5mm . They are considered to be of
intermediate concern, along with amorphous microcalcifications.

• Fine pleomorphic microcalcifications: These calcifications vary in size
and shapes. They are more conspicuous than the amorphic calcifica-
tions. There is a 25− 40% risk of malignancy.

• Fine linear branching: These are thin, linear or curvilinear irregular
calcifications. They may be discontinuous and their appearance sug-
gests filling of the lumen of a duct. They have a high probability of
malignancy

Distribution

Based on the distribution calcifications can be classified as see Figs.( 1.6
1.7):

• Diffuse or Scattered: diffuse calcifications may be scattered calcifica-
tions or multiple appearing throughout the whole breast. It is typi-
cally seen in benign entities.

• Regional: scattered in a larger volume (> 2cc ) and not in the expected
ductal distribution. Such a distribution is considered a non ductal
distribution, which means associated with a benign entity.
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Figure 1.6: Classification of breast calcifications into benign, suspicious and
malignant types basing on their distribution
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1.4 Signs of breast cancer in mammography

Figure 1.7: Classification of breast calcifications into benign, suspicious and
malignant types basing on their distribution
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• Clustered: at least 5 calcifications occupying a small volume of breast
tissue. Clustered microcalcifications are seen either in benign or ma-
lignant disease and are of intermediate concern. When several clusters
are scattered throughout the breast tissue, this is usually considered
a sign of a benign entity. On the contrary a single isolated cluster
favors a malignant entity.

• Linear: calcifications arrayed in a line, suggesting deposits in a whole
duct. This kind of distribution appears when DCIS fills the entire
duct and its branches with calcifications.

• Segmental: calcium deposits in ducts and branches of a segment or
lobe. It usually favors a ductal distribution, i.e. malignancy.

Change over time

There are conflicting data concerning the value of absence of changeover
time. It is said that the absence of interval change in microcalcifications
that are probably benign on the basis of morphologic criteria is a reassuring
sign and an indication for continued mammographic follow-up. On the other
hand in a retrospective study that included indeterminate and suspicious
clusters of microcalcifications, stability can not be relied on as a reassuring
sign of benignancy.

1.4.2 Soft tissue lesions

When DCIS develops into an invasive cancer, the breast cancer also becomes
a soft-tissue lesion, which is the term for masses, architectural distortions
and asymmetrical densities within the breast. Most soft tissue lesions have
the main appearance of masses and consist of cancer cells that are more
densely packed together and invades the surrounding tissue, which consists
mainly of fat cells and fibrous tissue. The boundary of this type of lesion can
vary between circumscribed, indistinct or spiculated. The latter type, are
stellated patterns of lines that are directed towards the center of the mass.
These spiculations are an important sign for malignancy of the lesion. Ar-
chitectural distortions are a disruption of the normal pattern in the breast
without a visible mass and are less often an invasive cancer. The asym-
metrical densities, a mismatch between the density pattern between the left
and right breast or acquisitions at different view angels of the breast, are
also less often a malignancy.

1.5 Computer aided detection and diagnosis

The advancement of medical imaging over the past decades resulted in a
big amount of medical images, with a substantial increasing of the work-
load of radiologists. This is particularly true for screening programs, such
as breast cancer screening , where millions of medical images are acquired
each year [27, 28]. Besides the increasing workload, manual interpretation
of medical images is subjective to the individual skills of radiologist and
also depends on experience and their compliance with reporting guidelines.
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For consistent reporting, different reporting systems are available for dis-
eases and modalities such as the BI-RADS for breast imaging [29]. The
difference in reading quality between radiologists can result in a difference
in the diagnosis of a patient and can have a big impact on the number
of detected cancers. For instance, a sensitivity difference varying between
18% and 40% has been observed when mammograms are read by individual
breast cancer screening radiologists [30, 31]. Therefore, in many european
countries, double reading has been introduced to reduce the variability in
breast cancer screening performance and to increase sensitivity. However,
double reading demands additional radiologists which increases their work-
load even more and increases costs. Moreover the low prevalence of exams
with cancer (approximately 10 per thousand women screened) within the
total amount of screening examinations in fact decreases radiologists’ sen-
sitivity, and therefore even double reading might not be enough. Several
studies have shown that unfortunately up to 25% of mammographycally
detectable cancers are still missed at screening even after double reading
[8]. To reduce the radiologists workload and to improve quality of read-
ing medical images, computer-aided detection and diagnosis systems have
been developed and have been extensively explored for the past decades
[32, 33, 34, 10, 35, 36, 37, 38, 39]. In these systems, various automatic al-
gorithms are used to analyse medical images and give a response to aid the
radiologists. In general, there are two types of responses and, consequently,
two types of CAD systems. In a CADe (computer-aided detection) system,
the general aim of the system is to detect abnormalities in medical images.
Therefore, the output of a CADe system are marks (or findings) of potential
locations of abnormalities within the image. This type of system is mainly
used to reduce the number of abnormal regions that could potentially be
overlooked by the radiologist. Additionally, many of these systems supply
a score with the supplied findings to show how certain the system is about
a specific location to be abnormal. The second type of CAD systems are
computer-aided diagnosis (CADx) systems. These systems are developed to
be an aid for the radiologist in the interpretation of abnormal regions. For
example, CADx systems can help in the interpretation and classification
of benign and malignant disease in various diseases and imaging modalities
such as breast cancer in mammography. The implementation of a CAD sys-
tem into the daily workflow of radiologists can be done with different setups.
For instance, a CAD system can be leveraged directly from the radiologists
in reading medical images. In this setup, the aid of the system can be ei-
ther aimed at the detection of abnormalities (CADe) or as an interactive
decision support for the evaluation of found abnormalities (CADx). In the
first scenario, CADe findings can be prompted on the image when desired to
check if certain regions were not overlooked, whereas in a CADx perspective
they can be shown when the radiologist wants to know if a certain region
is found to be suspicious by the system. In another setup, a CAD system
can be used as a completely independent reader of medical images. When
used as a first reader, a possibility is the automatic preselection of mammo-
grams based on an exam-based score denoting the likelihood that cancer is
present. Furthermore the system can be a substitute of one radiologist in
double reading.
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Figure 1.8: An example of an ROC curve

1.6 Evaluation of CAD

When a new CAD system is developed, its performance need to be vali-
dated. The validation strategy should be done as properly as possible to be
able to compare the performance of the new proposed system to other CAD
systems. In this section, the evaluation methods are described which are
used throughout this thesis. Commonly, a CAD system is validated on a
reference dataset (or ground truth) that is created based on the diagnostic
findings of radiologists and the histopathological findings after diagnostic
follow up. Based on these findings, annotations are drawn by capturing the
malignant lesion (i.e. calcifications or soft-tissue lesions) in the image. The
CAD system is applied on this dataset and the percentage of detected malig-
nancies (the true positive rate or sensitivity) and the percentage of detected
normals (the false positive rate or 1 - specificity) are calculated. Because
the findings produced by the CAD system have a classification score, Re-
ceiver Operating Characteristics (ROC) analysis can be performed. With
ROC analysis, all samples in the dataset are ranked according to their clas-
sification score. To obtain an ROC curve, various thresholds (Th) are set on
the classification scores and at each threshold the number of true positives
(detected malignancies) and false positives (detected non-malignancies) are
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calculated to determine the operating point, i.e. the combination of the
sensitivity and specificity at a given Th. When various thresholds are set,
various operating points can be calculated and an ROC curve can be plot-
ted: an example of an ROC curve is shown in Figure 1.8. Often the Area
Under the ROC Curve (AUC) is calculated to give an overall metric of the
performance. The value of the AUC lies in the range of 0 and 1 where
an AUC of 1 means perfect performance, i.e all malignancies are detected
without any false positive. However, to obtain a ROC curve it should be
specified clearly when a finding of the CAD system is a true positive or
a false positive. Moreover, when a certain range is of interest, e.g. the
high specificity range between 0.8 and 1.0, the partial AUC (pAUC) can be
evaluated. Furthermore, the mean sensitivity of the ROC curve in the speci-
ficity range on a logarithmic scale can be evaluated. The mean sensitivity
is defined as in [40]:

S(a, b) =
1

ln(b)− ln(a)

∫ b

a

s(f)

f
df (1.1)

where a and b are the lower and upper bound of the false positive frac-
tion and s(f) is the sensitivity at the false positive fraction f . Another
analysis that can give a good insight in the performance of a CAD system
is the Free-response ROC (FROC). Similar to ROC analysis, the number
of true positives and false positives are calculated at various classification
scores and the definitions are the same. However, instead of plotting the
sensitivity in terms of the specificity, it is plotted in terms of the number
of false positives per (normal) image(FP/I). To obtain the FROC curve, Th
is set at various values and for each value the number of false positives is
determined and divided by the total number of normal images in the test
set. Calculating these operating points for a FROC curve makes it possible
to see how the CAD system would fit in a clinical environment because
it directly show the number of false positive marks generated at a certain
sensitivity. Besides directly comparing ROC (FROC) curves between dif-
ferent systems, a statistical comparison is also relevant for evaluation. To
compare two systems bootstrapping can be used [41]. Bootstrapping is a
non-parametric method to obtain confidence intervals for each curve. The
bootstrapping method consists of resampling reference dataset with replace-
ment n-times (commonly, n > 100), and for each sample set performance
metrics are evaluated for each system and compared. Statistical significance
levels can be set, as for example the p-value that is defined as the fraction
of performance measure values that are negative or zero, corresponding to
cases in which the method performs worse or equally than the method under
comparison. Hence the lower the p-value, the more statistically significant
the measured performance difference. In general, it is assumed that two
systems are statistical different at a p < 0.05.

1.7 Outline of the thesis

The final goal of the research activity described in this thesis was to de-
velop a full CAD system for the detection and diagnosis of suspicious and
malignant clusters of MCs in FFDM, with the aim of reducing the gap be-
tween CAD and radiologists in terms of FPs, while maintaining the high
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sensitivity of state-of the art CAD commercial system. This is achieved by
exploiting many of the most recent advances in deep learning techniques.

In Chapter 2 the main ideas behind deep learning are explained, focus-
ing on the specific network architectures and advantages of convolutional
neural networks.

Chapter 3 addresses the problem of detecting individual microcalcifi-
cations. The proposed method is based on a combination of a supervised
learning technique which was specifically designed to handle efficiently and
effectively the computational complexity and the high class imbalance and
a supervised deep learning model.

Chapter 4 still addresses the problem of detecting individual MCs by
focusing on the importance of the lesion context. The proposal is a multi-
context ensemble of deep neural networks, aiming at learning different levels
of the image spatial context, with the goal of improving detection perfor-
mance.

Chapter 5 bridges the gap between the detection of individual MCs
and the detection and diagnosis of clustered MCs. The proposed approach
overcomes the limitations of traditional full CAD scheme, by training an
end-to-end system for the detection and classification of MCs clusters.

Chapter 6 provides a final summary and conclusions.
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Chapter 2

Deep Learning

Deep learning is a growing trend in general data analysis and it is emerging
as the leading machine-learning tool in the imaging and computer vision do-
mains. Machine learning is an application of Artificial Intelligence (AI) that
provides systems with the ability to automatically learn and improve from
experience without being explicitly programmed. Machine-learning tech-
nology powers many aspects of modern society and is nowadays involved in
many applications. They are used, for example, to identify objects in im-
ages, transcribe speech into text and select relevant results of web searches.
Conventional machine learning techniques were limited in their ability to
process natural data in their raw form. For decades, constructing a pat-
tern recognition or machine learning system required careful engineering
and considerable domain expertise to design a feature extractor that trans-
formed the raw data (such as the pixel values of an image) into a suitable
internal representation or feature vector from which the learning subsys-
tem, often a classifier, could detect or classify patterns in the input [42].
The attempt of AI researchers has been focused on trying to develop algo-
rithms acting like human intelligence. For example, let us consider a simple
task like interpreting a natural image. When humans try to solve such a
problem, they usually exploit their intelligence in order to decompose the
problem into sub-problems and multiple levels of representation. Humans
usually describe a complex concept, task or situation in a hierarchical way,
defining several levels of abstraction. It can be assumed that human brain
is organized in a deep architecture such that, an input is represented in
multiple levels of abstraction, each level corresponding to a different area of
the cerebral cortex. Therefore human brain shows to elaborate information
coming from a specific situation, through multiple stages of transforma-
tion and representation. This is particularly evident when humans manage
visualization tasks: the problem is decomposed in several steps, each one
detecting more abstract features from edges detection up to complex visual
shapes [43]. Therefore a possible and common way to extract useful infor-
mation from a natural image is to design different modules that transform
the raw pixel representation into gradually more abstract representation,
starting from the presence of edges, the detection of more complex but lo-
cal structures, up to the identification of abstract categories associated with
objects present in the image. Putting all these representations together al-
lows to build enough understanding of the scene. All these observations
lead to the definition of representation learning [44]. Representation learn-
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Figure 2.1: An example of deep feed forward neural network

ing consists of a set of methods in which a machine is supposed to take raw
data as input and automatically learn the features necessary to perform
the detection or the classification. Deep Learning methods are represen-
tation learning methods with multiple levels of representation obtained by
composing simple but non linear modules such that the complexity of the
obtained representation increases with the number of levels designed. The
term deep learning identifies computational models that are composed of
multiple transformation layers able to learn representations of data with
multiple levels of abstraction. Deep learning methods aim at automati-
cally learn high-level features hierarchies by combining lower level features.
Automatically learning features at multiple levels of abstraction allows a
system to learn very complex functions that map the input to the output
directly from data itself, without using human hand-crafted features [42].
Deep learning models are based on deep feedforward neural networks. In
the following sections a general description of feedforward neural networks
is given, for then focusing on convolutional neural networks, a particular
kind of neural networks specifically designed to work with images.

2.1 Deep Feedforward Neural Networks

The aim of a feed forward networks is to approximate some function y =
f(x) that, in the case of a classifier, maps an input x to a category y. A
feedforward network determines a mapping y = f(x; θ) and learns the value
of the parameters θ that results in the best function approximation [45].
These models are called feedforward because there are no feedback connec-
tions between the units, which means that the information flows through
the function being evaluated from x, through the intermediate computations
used to determine f , and finally to the output y. Deep feedforward neural
networks are considered the basis of many machine learning applications.
This kind of models are mathematically based on the composition of many
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different functions, building the final f(x), according to a chain structure.
Let us suppose to combine three functions f (1), f (2), f (3) in a chain struc-
ture, to form f(x) = f (3)(f (2)(f (1)(x))). In this model, f (1) is defined as the
first layer of the network, f (2) is the second layer, and so on. The overall
length chain represents the depth of the model and in general the terminol-
ogy “deep learning” derives from this structure. The final layer of a feed
forward neural network is called the output layer. During the training of
the neural network the evaluated function f(x) is supposed to match f ∗(x).
Each sample x provides a label y ≈ f ∗(x). The training examples specify
directly what the output layer must do at each point x: it must produce
an output value that is as closest as possible to y. However, the training
data does not show the desired output for each layer interposed between the
input layer and the output layer. For this reason these intermediate layer
are called hidden layers (see Fig. 2.1). Finally, these networks are defined
neural because they are inspired to brain neural networks. Each hidden
layer is made up of many units, acting in parallel, which are supposed to
resemble brain neurons since they receive input from many other units and
calculate its own activation value [45]. Now it is important to understand
the importance of the activation functions that are used to compute the
hidden layers values. In modern neural networks the recommendation is to
use the Rectified Linear Unit (ReLU) [46], defined by the function

g(z) = max {0, z} (2.1)

depicted in Fig. 2.2. Applying this function to the output of a linear trans-
formation gives a non-linear transformation. The function remains very
similar to a linear function, with the main difference that a rectified linear
unit outputs zero across half of its domain. This makes ReLU preserv-
ing many of the properties that make linear models easy to optimize with
gradient-based methods that will be discussed later. Typically, Rectified
Linear Units are used on top of an affine transformation in this way:

f = g(W Tx+ b) (2.2)

The learning process of a deep feedforward neural network learns the weights
that express the importance of the respective inputs to the output. The aim
is to develop a learning algorithm able to find weights and biases so that
the output from the network approximates the actual value for all training
inputs to be classified.

2.1.1 Gradient-based Learning: Stochastic Gradient
Descent

The training procedure of a deep feedforward neural network consists of
an iterative propagation of samples through the network and modification
of its weights, which are properly initialized [47]. Deep neural networks
are trained using the back-propagation algorithm by minimizing a given
objective function, cost function or loss function with respect to the weights
w. For a dataset D, the optimization objective is the average loss over all
|D| data instances:

L(w) =
1

|D|

|D|∑
i=1

fw(x(i)) (2.3)
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Figure 2.2: ReLu activation function

Since D can be very large, a stochastic approximation of this objective is
used, where the cost over the entire training set is approximated with the
cost over mini-batches of data. Drawing a mini-batch of N << |D| instances
the optimization function becomes:

L(w) ≈ 1

|N |

|N |∑
i=1

fw(x(i)) (2.4)

The gradient of a function generalizes the notion of derivative to the case of
functions with multiple inputs. Local and global minima of the loss function
can be found by moving in the direction of the negative gradient. This is
known as the gradient descent method. Training a neural network consists
in training the model with gradient descent. Nearly all of deep learning
architectures, and also deep feedforward neural networks, are trained using
an extension of the gradient descent algorithm: the Stochastic gradient
descent (SGD).

The stochastic gradient descent updates the weights w by a linear com-
bination of the negative gradient ∇Lw and the previous weight update Vt
according to the following formula:

Vt+1 = µVt − α∇L(wt) (2.5)

where α and µ are two hyperparameters that are chosen for the learning
procedure.

2.1.2 Learning rate

The coefficient α is called the learning rate and controls the size of the
weight updates (see Fig. 2.3) A too high learning rate will make the learn-
ing jump over minima, but a too low learning rate will either take too

22
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Figure 2.3: Stochastic Gradient descent: the role of learning rate

long to converge or get stuck in an undesirable local minima. In order to
achieve faster convergence, prevent oscillations and getting stuck in unde-
sirable local minima the learning rate is often varied during training either
in accordance to a learning rate schedule or by using an adaptive learning
rate. Common learning rate schedules include time-based decay, step decay
and exponential decay.

2.1.3 Momentum

The parameter µ is the momentum that indicates the contribution of the
previous weight update in the current iteration. The momentum algorithm
accumulates an exponentially decaying moving average of past gradient and
continues to move in their direction as shown in Fig. 2.4 by determining
how quickly the contributions of previous gradients exponentially decay [45].

2.1.4 Dropout

When training a network with a large number of parameters, an effective
regularization mechanism is essential to prevent overfitting. Regularization
consists in adding a penalty on the different parameters of the model to
reduce the freedom of the model itself and hence reducing probability of
fitting the data noise. Classical regularizers such as L1 or L2 regularization
have been found to be insufficient in this context. Dropout is a powerful
regularization method [48] which has been shown to improve generalization
for large neural nets. With dropout, a subset p of network units is drawn
at random and temporarily “switched off” during training 2.5. When in
this state, those units do not propagate signals when a sample is presented,
nor participate in the process of error backpropagation. As a result, only
a random subset of neurons are trained in a single iteration of SGD by
forcing the neural network to learn more robust features that are useful

23



CHAPTER 2. Deep Learning

Figure 2.4: Stochastic Gradient descent: the role of momentum

in conjunction with many different random subsets of the other neurons.
At test time, all neurons are used, and the activation of each neuron is
multiplied by p to account for the scaling.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [49] are a particular kind of deep
neural networks well suited to work with images as they directly take in
input 2D or 3D structures, preserving configuration information of the data.
CNNs are based on three main architectural ideas: local receptive fields,
weight sharing, and subsampling in the spatial domain. A typical CNN
principally consists of three types of layers: (i) convolutional layers, (ii)
sub-sampling layers, and (iii) output layers, that are arranged in a feed-
forward structure [42] (see Fig. 2.6).

2.2.1 Convolutional layers

Convolutional layers are responsible for detecting local features in all loca-
tions of the input images. To detect local structures, each node in a con-
volutional layer is connected to only a small subset of spatially connected
neurons in the input image channels, called receptive field. Furthermore, to
enable the search for the same local feature, connection weights are shared
between all the nodes in the convolutional layers; each set of shared weights
is called convolutional kernel. For each convolutional layer, a set of convolu-
tional kernels W = {W1,W2, . . . ,Wn} is convolved with the input image X,
and biases B = {b1, b2, . . . , bn} are added, so as to generate a new feature
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Figure 2.5: Comparison between a standard deep neural network and the
same network with dropout application. The circles with a cross symbol
inside denote deactivated units.

map Xi through an element-wise non-linear transform σ:

Xi = σ(Wi ∗X + bi) ∀i = 1, . . . , n (2.6)

Due to the local connectivity and weight sharing, the number of param-
eters compared to a fully connected neural network are greatly reduced,
and thus it is possible to avoid overfitting. Further, when the input image
is shifted, the activation of the units in the feature maps is also shifted by
the same amount, which allows a CNN to be equivariant to small shifts, as
illustrated in Fig. 2.7. In the figure, when the pixel values in the input
image are shifted by one-pixel right and one-pixel down, the outputs after
convolution are also shifted by one-pixel right and one-pixel down.

2.2.2 Max pooling layers

Each sequence of convolutional layers is followed by max pooling layers, that
are applied to reduce the size of feature maps by selecting the maximum
value in local neighbourhoods. Specifically, each feature map in a pooling
layer is linked with a feature map in the convolution layer, and each unit in
a feature map of the pooling layer is computed based on a subset of units in
its receptive field. Similar to the convolution layer, the receptive field that
finds a maximal value among the units in its receptive field is convolved with
the convolution map but with a stride of the size of the receptive field so that
the contiguous receptive fields are not overlapped. The role of the pooling
layer is to progressively reduce the spatial size of the feature maps, and thus
reduce the number of parameters and computation involved in the network.
Another important function of the pooling layer is for translation invariance
over small spatial shifts in the input. In Fig. 2.7, while the bottom leftmost
image is a translated version of the top leftmost image by one-pixel right
and one-pixel down, their outputs after convolution and pooling operations
are the same (see units in green).
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Figure 2.6: Convolutional neural network with two convolutional layers, one
pooling layer and one dense layer. The activations of the last layer are the
output of the network.

Table 2.1: A list of commonly applied last layer
activation functions for various tasks

Task Last layer activation function

Binary classification Sigmoid

Multi-class classification Softmax

Regression to continuous values Identity

2.2.3 Fully connected layers

At the end of the convolutional stream of the network, a number of con-
secutive fully connected layers is added, and the class distribution over the
classes is generated by feeding them through an activation function. Neu-
rons in a fully connected layer have connections to all activations in the
previous layer, as in regular non-convolutional artificial neural networks
2.1. Their activations can thus be computed as an affine transformation,
with matrix multiplication followed by a bias offset.

Last layer activation function

The activation function applied to the last fully connected layer is usually
different from the others. An appropriate activation function needs to be
selected according to each task. An activation function applied to the mul-
ticlass classification task is a softmax function which normalizes outputs of
the last fully connected layer to target class probabilities, where each value
ranges between 0 and 1 and all values sum to 1. Typical choices of the last
layer activation function for various types of tasks are summarized in Table
2.1.
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Figure 2.7: Illustration of translation invariance in convolutional neural
network. The bottom leftmost input is a translated version of the upper
leftmost input image by one-pixel right and one-pixel down.

2.3 Deep CNN architectures

When architecting a CNN for a particular task there are multiple factors
to consider, including understanding the task to be solved and the require-
ments to be met and optimize computation and memory footprint. In the
early days of modern deep learning it was common to use very simple com-
binations of the building blocks. Later on, network architectures became
much more complex, resulting in updates to the state-of-the-art. In this
section a general overview about the best-known CNN network architec-
tures is given, with a particular focus on the ones that are commonly used
for medical image tasks, i.e medical image classification and segmentation.

2.3.1 Classification architectures

LeNet [49] and AlexNet [50], introduced over a decade ago, were the very
first convolutional architecture to be proposed, being in essence very sim-
ilar models. Both networks were relatively shallow, consisting of two and
five convolutional layers, respectively, and employed kernels with large re-
ceptive fields in layers close to the input and smaller kernels closer to the
output. AlexNet did incorporate rectified linear units instead of the hy-
perbolic tangent as activation function, which are now the most common
choice in CNNs. After 2012 the exploration of novel architectures took off,
and in the last years there is a preference for far deeper models. By stack-
ing smaller kernels, instead of using a single layer of kernels with a large
receptive field, a similar function can be represented with less parameters.
This approach ensures the same effective receptive field, by increasing at the
same time the number of non-linearities (which makes the decision function
more discriminative) and decreasing the number of parameters. Simonyan
et al.[51] were among the first to explore much deeper networks, and em-
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ployed small, fixed size kernels in each layer. This is the idea behind the
VGGNet that won the ImageNet challenge of 2014. Rather than using rela-
tively large receptive fields in the first convolutional layers (e.g. 11×11 with
stride 4 as in Alexnet) they use very small 3× 3 receptive field throughout
the whole net, which are convolved with the input at every pixel, with stride
1 (see Fig. 2.8). It is easy to see that a stack of two 3 × 3 layers (without
spatial pooling in between) has an effective receptive field of 5 × 5; three
such layers have a 7× 7 effective receptive field, like in the aforementioned
Alexnet. Because there are now three ReLU units instead of just one, the
decision function is more discriminative. There are also fewer parameters
(27 times the number of channels instead of AlexNets 49 times the number
of channels). This can be seen as imposing a regularisation on the 7 × 7
convolutional filters, forcing them to have a decomposition through the 3×3
(with non-linearity injected in between). On top of the deeper networks,
more complex building blocks have been introduced that improve the effi-
ciency of the training procedure and again reduce the amount of parameters.
Szegedy et al. [52] introduced a 22-layer network named GoogLeNet, also
referred to as Inception, which made use of so-called inception blocks [53],
a module that replaces the mapping defined in Eq. 2.6 with a set of con-
volutions of different sizes. Similar to the stacking of small kernels, this
allows a similar function to be represented with less parameters. However
as CNNs became increasingly deep, a new research problem emerged: as
information about the input or gradient passes through many layers, it can
vanish and “wash out” by the time it reaches the end (or beginning) of the
network. He et al. [54] addressed the vanishing gradient problem by pre-
senting the ResNet architecture. Resnet introduces skip connections, which
makes it possible to train much deeper networks. Having skip connections
in addition to the standard pathway gives the network the option to simply
copy the activations from layer to layer (more precisely, from ResNet block
to ResNet block), preserving information as data goes through the layers.
Some features are best constructed in shallow networks, while others re-
quire more depth. The skip connections facilitate both at the same time,
increasing the network’s flexibility when fed input data. DenseNet was pre-
sented in [55] as a logical extension of ResNet. In DenseNet, each layer
obtains additional inputs from all preceding layers and passes on its own
feature-maps to all subsequent layers. Differently from Resnet that adds
the activations produced by one layer to later ones, here concatenation is
used. This encourages feature reuse and lowers the number of parameters
for a given depth. Xie et al. [56] proposed ResNext, that is an extension of
the deep residual network which replaces the standard residual block with
one that leverages a “split-transform-merge” strategy used in the Incep-
tion models. Squeeze-and-Excitation Networks [57] which won the ILSVRC
2017 competition, builds on ResNext but adds trainable parameters that
the network can use to weigh each feature map, where earlier networks
simply added them up. These SE-blocks allows the network to model the
channel and spatial information separately, increasing the model capacity.
SE-blocks can easily be added to any CNN model, with negligible increase
in computational costs.
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Figure 2.8: VGGnet configurations. The depth of the congurations in-
creases from the left (A) to the right (E), as more layers are added. Source:
Simonyan et al. [48]

2.3.2 Segmentation architectures

Segmentation is a common task in both natural and medical image anal-
ysis and can be defined as a problem of structured prediction where every
pixel in the image grid needs to be assigned to a class label. Medical image
segmentation, identifying the pixels of organs or lesions from background,
is one fundamental step in medical image analysis since it delivers critical
information about the shapes and volumes of these lesions, helping clini-
cians in detecting and diagnosing certain diseases. Segmentation of medical
images is a very challenging tasks due to the large shape and size variations
of anatomy between patients. Furthermore, low contrast to surrounding
tissues can make automated segmentation even more difficult. To tackle
this, CNNs were firstly used to classify each pixel in the image individu-
ally, by presenting it with patches extracted around the particular pixel.
A drawback of this “sliding-window” approach is that input patches from
neighbouring pixels have huge overlap and the same convolutions are com-
puted many times. Fortunately, the convolution and dot product are both
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Figure 2.9: U-net architecture (example for 32x32 pixels in the lowest res-
olution). Each blue box corresponds to a multi-channel feature map. The
number of channels is denoted on top of the box. The x-y-size is provided at
the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations. Source: Ronneberger et al. [56]

linear operators and thus inner products can be written as convolutions and
vice versa. By rewriting the fully connected layers as convolutions, the CNN
can produce likelihood map, rather than an output for a single pixel. The
resulting “fully convolutional network” (FCN) can then be applied to an
entire input image or volume in an efficient fashion. However, because of
pooling layers, this may result in output with a far lower resolution than the
input. “Shift-and-stitch” [58] is one of several methods proposed to prevent
this decrease in resolution. The FCN is applied to shifted versions of the
input image. By stitching the result together, it is possible to obtain a full
resolution version of the final output, minus the pixels lost due to the con-
volutions. Ronneberger et al. [59] took the idea of the FCN one step further
and proposed the U-net architecture (see Fig. 2.9 ). The core of a U-Net
is a U-shaped architecture, consisting of a contracting path on the left side
(encoder) and of a symmetric expansive path on the right one (decoder).
The encoder path consists of the repeated application of double convolution
blocks, each one followed by a max pooling operation for downsampling with
a pooling size of 2×2 and stride of 2. Each double convolution block is made
up of two 3 × 3 convolutional kernels followed by a ReLu activation func-
tion. This sequence is repeated four times, and after each downsampling
filters in the convolutional layers are doubled. The expansive path applies
the same blocks but with up-convolution and up-sampling layers. Similar
to the encoder, the succession of up-sampling and two convolutional opera-
tions is repeated four times but halving the number of filters at each stage.
Finally, a 1 × 1 convolution operation is performed for providing the final
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segmentation map. The main innovation behind U-Net is however the in-
troduction of shortcut connections. In all the four levels, the output of the
convolutional layer prior to the pooling operation of the encoder, is trans-
ferred to the decoder and concatenated with the output of the upsampling
operation for then propagating the concatenated feature maps to the suc-
cessive layers. In such a way the network is able to combine deep, semantic,
feature maps from the decoder sub-network with shallow, low-level feature
maps from the encoder one, resulting to be very effective in recovering fine-
grained details of the objects and to generate segmentation masks with fine
details even on complex background. A similar approach was used by [60]
for 3D data. Milletari et al. [61] proposed an extension to the U-Net layout
that incorporates ResNet-Iike residual blocks and a dice loss layer, rather
than the conventional cross-entropy, that directly minimizes this commonly
used segmentation error measure.
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Chapter 3

Computer aided detection of
individual microcalcifications

Although in the last years many advances have been made in the area of
CAD for digital mammograms, the main challenge of accurately identify-
ing individual calcifications still remains and it can be attributed to two
main issues. Firstly the appearance of MCs themselves, that appears on
mammograms as small bright spots, varying in shape and size, within an
inhomogeneous background. Secondly, along with the low prevalence of
abnormalities, MCs detection is a severely unbalanced classification prob-
lem that depends upon the fact that the positive class is about four or-
ders of magnitude smaller than the negative class, i.e. other breast tissues.
This is because the non-MC class includes a large variety of benign calcifi-
cations (popcorn-like, rod-like, vascular etc.), different background tissues
(fat, dense, connective, etc.) and artifacts (biomarkers, metal clips, dust,
etc.). This class skew is a huge problem for most classification strategies
that, when trained on highly unbalanced data sets, tend to be overwhelmed
by the majority class and have poor performance on the minority class.
Several approaches presented for MC detection in the last decades address
the class imbalance problem by random undersampling the negative class to
obtain approximately the same size for the two classes [62, 63, 64, 65, 66].
Nonetheless, it remains uncertain whether the selected subset is fully rep-
resentative of the negative class. A different solution was proposed in [67],
where a Support Vector Machine (SVM) is repeatedly trained on succes-
sively more difficult examples randomly sampled from the negative class.
However, the resulting SVM classifier is characterized by a very large num-
ber of support vectors, thus making the detection phase computationally
intense. Recently, a method specifically designed to effectively learn from
heavily unbalanced data was presented in [68]. It consists of a cascade of
boosting classifiers (in the following referred to as Cascade) with increasing
complexity and specificity like in the face detector proposed in [69]. An
extension of this approach was presented in [70], where a Cascade with a
higher number of classifiers (in the following referred to as Deep Cascade)
achieved state-of-the-art MC detection performance, outperforming widely
used high-end CAD commercial systems. This system was used as starting
point in this thesis to develop a novel method, presented in [71], that com-
bines the benefits of deep cascade and convolutional neural networks in a
novel two-stage classification system, with the aims of reducing the number
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(a) (b) 

(c) 

Figure 3.1: The Haar-like feature groups used by the cascade of classifiers.
(a) Some examples of the first group. (b) An example of the second group.
(c) Some examples of the third group.

of FPs and achieving at the same time a high sensitivity value which can
be comparable to human level performance.

3.1 The Cascade approach

3.1.1 Ranking based cascade and feature set

The Cascade approach proposed by [68] relies on a two-class ranking-based
cascade classifier which classifies each pixel of the mammogram as positive
or negative using a subwindow of size M×M centered on it, in the following
referred to as sample and denoted by x. Three groups of Haar-like feature
are used. For the first group the value of each feature is calculated as
the difference between the sum of pixels belonging to adjacent rectangular
regions, aimed at capturing edge and elongated patterns (see Fig. 3.1a). For
the second group, the value is calculated in a similar way, but the support
regions are two concentric rectangles, so being more suitable for the granule-
like shape of MCs (see Fig. 3.1b). The third group is constituted by the
45-rotated version of the feature of the first two groups (see Fig. 3.1c) . All
features are scaled and translated separately across all possible combinations
on the subwindow, obtaining tens of thousands of features. We denote with
F the set containing such feature. The task of selecting the best feature
from F to be used in the detection phase is part of the learning phase in
each node classifier.

3.1.2 Detection phase

The underlying idea behind cascade is to employ a sequence of node clas-
sifiers with different discriminative power {Hi(x)}i=1,...,n. A given patch
sample x passes to the next classifier only if the current one classifies it as
MC according to a specific threshold Θi, that is determined during training
so as to achieve a high sensitivity si (usually, si ≥ 99%). In this way, the
most likely-MC samples go through the entire cascade, whereas the easily
detectable background patches are discarded by the early stages. As a re-
sult, the detection rate D and false positive rate F of a cascade composed
by n nodes is given by

D =
n∏
i=1

di F =
n∏
i=1

fi (3.1)
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In this way, the first nodes of the cascade have to face a simpler task (reject-
ing the most distinguishable background tissue regions), while the last ones
are specialized to discriminate between actual MCs and the background tis-
sue configurations most resembling a MC. This should reduce the number of
false positive produced by the detector and concentrate the computational
complexity of the system on the last classifier of the cascade.

3.1.3 Learning procedure

Internally, each strong classifier Hi(x) is a linear combination of Ti ‘weak’
classifiers hi,j(x) ∈ {0, 1} (0 for background tissue, 1 for MC) weighted by
αi,j ∈ R:

Hi(x) =

Ti∑
j=1

αi,jhi,j(x). (3.2)

with Ti determined during training to keep the false positive rate fi below
an acceptable level (usually, fi ≤ 30%). The weak classifiers are added in
subsequent rounds and are selected during the training time in order to
maximize the area under the ROC curve. Such an objective function that
is equivalent to the probability of correct pairwise ranking, is insensitive to
the class skew, and thus it is a good choice when learning from unbalanced
datasets. Moreover, in order to give more value to crucial pairs that are
misclassified in the previous rounds a weight distribution is maintained.
Each training round the weak classifier that minimizes the weighted sum
of misranked crucial pairs on the training set is selected. The number of
training rounds for the i th node is determined by whether the node learning
goals d (detection rate) and f (false positive rate) have been met. In fact,
the decision threshold Θi of the ith node classifier Hi(x) is always chosen
at each round so as to meet d, hence the number of rounds is governed
only by whether the condition fi,t ≤ f is satisfied, being fi,t the actual
false positive rate of the ith node achieved at round t. However, when
the classification task is getting more and more complex throughout the
cascade, it could be too difficult to satisfy such a condition, thus causing
several unnecessary feature to be added without substantially reducing fi,t.
To solve this problem, new features are added until a significant reduction
of fi,t is achieved. Specifically, let ψi(∆) = {fi,τ}τ=t−∆,t−∆+1,...,t be the
latest ∆ achieved false positive rates of the ith node we can evaluate the
variance σ2

ψ = V ar (ψi(∆)) and define an early stopping mechanism cstop if

such variance is lower than a small quantity ε, i.e., σ2
ψ ≤ ε. New features

are therefore added to the node classifier of the Cascade detector until the
condition fi,t > f ∧ cstop = σ2

ψ > ε holds.

3.1.4 Deep Cascade

Deep cascade [70] is a cascade where the learning algorithm of each binary
pixel classifier has been redesigned in the early stopping mechanism used
to avoid overfitting. In this way,it is possible to obtain a large increase of
the number of pixel classifiers, and, at the same time, keep unchanged the
computational benefit of the cascade and maintain a very low processing
time per image. The new system is named deep cascade, where the term
deep indicates the high number of classifiers employed in each stage of the
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Figure 3.2: Overview of the proposed MC detection scheme. On the left,
Deep Cascade reduces the class imbalance ratio in the input data by about
three orders of magnitude. This is achieved thanks to a sequence of five high-
sensitivity classifiers that linearly combine a large number of decision stumps
constrained to use single Haar-like features (top row in each classifier’s box).
The remaining samples are then classified by a VGGNet inspired CNN and
assigned a probability score using the output from the last fully connected
layer.

cascade. In the training phase of the deep cascade detector, the authors
redesigned the early stopping mechanism as follows. They removed cstop
and instead established a maximum number of iterations T to be executed.
In summary, new features are added to the node classifier of the deep cascade
detector until the condition fi,t > f or t <= T . If the condition t = T is
reached, i.e., the learning goals are not met after T iterations, it reverts to
the training round t for which fi,t is minimum.

3.2 Combining Deep Cascade and Convolu-

tional Neural Networks

Recently, both deep cascade classifiers and convolutional neural networks
have achieved powerful microcalcification detection performance in digital
mammography [72, 73]. In this work, we introduce a two-stage classification
scheme that combines the benefits of both systems. On one hand, deep cas-
cade showed to be successfull in effectively learn from heavily unbalanced
data as in the case of MCs (∼ 1 MC every 10, 000 non-MC samples). On the
other hand, CNNs are powerful models that achieve impressive results for
image classification thanks to the ability to automatically extract general-
purpose features from the data, but require balanced classes. To overcome
these limitations a nowel-two-stage classification scheme (see Fig. 3.2) is
proposed, in which Deep Cascade is used to discard most of the negative
samples and then train a CNN on almost balanced dataset. Firstly, deep
cascades are trained by requiring a very high sensitivity (99.5%) throughout
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the sequence of classifiers. As a result, while the number of MC samples
remains practically unchanged, the number of non-MC samples is greatly
reduced, reducing the class imbalance ratio by about three orders of mag-
nitude (from ∼ 1 : 104 to ∼ 1 : 10). The remaining samples are then used
to train a CNN that specializes to distinguish between MCs and the most
confusing background tissue patches. The same two-stage classification is
also adopted for testing, and is compared to current state-of-the-art MC
detection approaches.

In this work a Deep Cascade with n = 5, si = 0.995, and fi = 0.25 (see
Fig. 3.2) is employed. As a consequence, the overall sensitivity S and false
positive rate F of the classifier are:

S =
5∏
i=1

si F =
5∏
i=1

fi (3.3)

which yields S = 0.975 and F = 0.001. In other words, the number of MC
samples remains practically unchanged, while the number of background
samples is reduced by three orders of magnitude along with the imbalance
ratio which passes from ∼ 1 : 104 to ∼ 1 : 10.

The output patches filtered by the Deep Cascade are then fed in input
to a CNN. In this study, a CNN inspired by the VGGNet architecture [51] is
implemented. The CNN model consists of two stacks of two convolutional
layers followed by one max-pooling layer. ReLU is used as activation func-
tion for each convolutional layer. The final layers are three fully connected
layers. The parameters of each layer are shown in Table 3.1.

3.2.1 Materials

For this study, 1, 066 mammograms acquired with GE Senographe systems
(GE, Fairfield, Connecticut, United States) were collected. All available
medio-lateral oblique and cranial caudal views of the left and right breast
were included. The images were acquired with standard clinical settings
in Radboud University Medical Center (Nijmegen, The Netherlands) after
referral in screening. Only unprocessed raw FFDM images were used in this
study. In all mammograms, a total of 7,579 individual MCs were annotated
by experienced readers who marked the center of each MC based on the
diagnostic reports.

3.2.2 Experiments

For the sake of comparison, the MC detection performance of the proposed
two-stage approach (hereafter abbreviated as DC-CNN) is compared with
the one of a standalone Deep Cascade (hereafter abbreviated as DC) and of a
standalone CNN with the same architecture used in the proposed approach.

Training and test sets

All methods were trained and tested on patches of size 12 × 12 pixels ex-
tracted from the mammograms so that each MC was contained in one patch.
All mammograms were preprocessed to remove the noise dependency on
the intensity [74]. MC patches were extracted by centering the window on
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Table 3.1: Architecture of the VGGNet-based CNN

Layer Type Output size Kernel Size Stride Padding

0 Input 1× 12× 12

1 Convolutional 32× 12× 12 3× 3 1 1

2 ReLU 32× 12× 12

3 Convolutional 32× 12× 12 3× 3 1 1

4 ReLU 32× 12× 12

5 Max pooling 32× 6× 6 2× 2 2 1

6 Convolutional 32× 6× 6 3× 3 1 1

7 ReLU 32× 6× 6

8 Convolutional 32× 6× 6 3× 3 1 1

9 ReLU 32× 6× 6

10 Max pooling 32× 3× 3 2× 2 2 1

11 Fully connected 256 1× 1

12 Dropout 256

13 Fully connected 256 1× 1

14 Dropout 256

15 Fully connected 2 1× 1

the annotated MC centers, yielding 7,579 MC patches. Background tissue
patches were extracted from the remaining regions of the image with over-
lapping sliding windows, totalizing 27,017,503 non-MC patches. We applied
case-based 2-fold cross validation in all experiments. In each cross valida-
tion step, the MC detector was trained on the 50% of the cases, and tested
on the other 50%. When splitting the data into a training and test set, the
patches belonging to the same case were assigned to the same set.

Training parameters

DC detectors were trained using sensitivity si = 0.995 and false positive rate
fi = 0.25 for each strong classifier. In DC-CNN, the cascade was composed
by n = 5 strong classifiers so as to achieve an overall false positive rate
F = 10−3, whereas in DC, according to[70], more classifiers were added
to the cascade until all samples from the training set were used, yielding
n = 6.5 on average. The total number of decision stumps was on average
2, 530 and 4, 255 for DC-CNN and DC, respectively. The CNNs were trained
on perfectly balanced data sets. Augmentation of the positive class was
performed by randomly flipping the MC patches horizontally and vertically
and by randomly rotating the patches 90◦, 180◦, and 270◦. The learning
algorithm was backpropagation with Stochastic Gradient Descent (SGD)
and weight updates that proceeded in mini-batches of 32 patches. In each
mini-batch the number of positive and negative samples were balanced.
The learning rate was initially set to 10−3 and decreased by a factor of 10
every 6 epochs. In total, the learning rate was decreased 5 times, and the
learning was stopped after 30 epochs. Momentum and weight decay were
set respectively to 0.9 and 5× 10−4.
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3.3 Results

Table 3.2: Comparative results of mean MC detection
sensitivity S

Method S Compared to Difference p-value

DC 76.79 - - -

CNN 77.53 - - -

DC-CNN 79.98 DC +3.19 < 0.001

CNN +2.45 < 0.001

Table 3.3: Average per-mammogram processing time

Method Parallelization Time (s)

DC - 8.7

DC
CPU (4× Intel(R) Xeon(R) CPU E5-4610
v2)

2.5

CNN - 2420.9

CNN GPU (1× NVIDIA TitanX) 5.7

DC-CNN - 7.2

DC-CNN CPU/GPU 2.0

Performance Evaluation

MCs detectors were evaluated in terms of Receiver Operating Characteris-
tics (ROC) curve by plotting True Positive Rate (TPR) against False Posi-
tive Rate (FPR) for a series of thresholds on the detector output associated
to each sample. Furthermore, the mean sensitivity of the ROC curve in the
specificity range on a logarithmic scale was calculated and compared as in
1.1. The range [a, b] was set to [10−6, 10−1] corresponding to a wide range
of operating points that can be used for further analysis by the CAD sys-
tem. Statistical comparison was performed by means of bootstrapping [75].
On the test set, average ROC curves were calculated over 1,000 bootstraps.
Additionally, the mean sensitivity was calculated for each bootstrap and
p-values were computed for testing significance. The statistical significance
level was chosen as α = 0.05, but performance differences were considered
statistically significant if p < 0.025 due to the Bonferroni correction1 [76].

3.3 Results

The comparative results of mean MC detection sensitivity obtained from
the ROC analysis are shown in Table 3.2. The proposed DC-CNN approach
achieved a significantly higher mean sensitivity compared to both DC and
CNN, yielding an improvement of 3.19% and 2.45%, respectively. ROC
curves are shown in Fig. 4.6 and plotted on a logarithmic scale to show the
difference between the methods at high specificity. At a false positive rate of

1the significance level was obtained as α divided by the number of comparisons (2 in
our case).
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Figure 3.3: Average ROC curves obtained from 1, 000 bootstrap iterations.
Confidence bands indicate 95% confidence intervals along the TPR axis.

10−4 and 10−5, DC-CNN yielded substantial improvements in true positive
rate, by 5.75% and 9.49% over DC, and by 0.53% and 13.63% over CNN,
respectively. For completeness, in Table 3.3 the average per-mammogram
processing times are also reported. Remarkably, DC-CNN was significantly
faster than CNN (−3.7s) and slightly faster than DC (−0.5s). DC-CNN
was implemented in C++ using the OpenCV library [77] and the Caffe
framework [78].

3.4 Discussion

Computer-Aided Detection of MCs in digital mammography can be a valu-
able tool for radiologists when reading screening mammograms. Usually,
CAD systems are made up of two stages: (i) detection of MC candidates;
and (ii) classification of MC groups into benign and malignant [68]. In
this work, we focused on the detection of MC candidates and improved the
state-of-the-art performance by combining two of the latest cutting edge MC
detection techniques, namely Deep Cascade and CNNs. Remarkably, this
result was achieved without generating further computational workload. A
slightly shorter Deep Cascade is used to discard the majority of non-MC
samples, and a CNN to classify the few remaining samples. In this way, the
two systems combined were faster than the standalone versions.

It is reasonable to believe that the improvements in MC detection per-
formance obtained in this work could be easily transferred to a full CAD
scheme, similarly to what has been done in [70]. In addition, other variants
of the proposed DC-CNN scheme could be analysed, e.g. by reducing or
increasing the number of strong classifiers in the DC, and by employing
other CNN architectures.
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Chapter 4

Multi-context ensemble of
CNNs for improving the
automated detection of
individual microcalcifications

Deep learning models, and in particular CNNs, have recently acquired
great popularity thanks to their remarkable performance in computer vi-
sion [42, 79] and have proved to be powerful also in medical image analysis
[13, 15, 14, 80, 81, 82]. The reason behind this success is the capability
of learning hierarchical feature representations directly from data, instead
of using handcrafted features based on domain-specific knowledge. As de-
scribed in Chapter 2, the typical CNN architecture for image processing
consists of a series of layers of convolutional filters spaced with downsam-
pling layers. Convolutional filters are applied to small patches of the input
images (containing candidate lesion or background) and are able to build
features with increasing relevance, from texture to higher order features like
local and global shape. The output of the CNN is typically one or more
values that represent the probability that an image patch contains a lesion
or not.

In this context, patch dimensions play an important role, especially when
the lesion is particularly small and similar to the surrounding tissue. If the
patch is defined to strictly contain the lesion, it may be too small to produce
a set of sufficiently discriminating representations. On the other hand, a
larger patch would include much more background which can bias the de-
tection system to focus on uninteresting details contained in the background
part. As a consequence, the number of background patches erroneously de-
tected as lesions may be high and limit the benefits that the CADe system
can provide, even when deep learning techniques are applied [83, 84]

A simple yet effective way, commonly used in Machine Learning, for
boosting the performance of poor detection models is the so called “expert
combination”: multiple detectors are trained by using different weight set-
tings and/or different partitions of the same data and strategically combined
to solve a particular detection problem [85, 86, 87, 88, 89]. The rationale is
that differently trained networks can learn different representations of the
training data and, in this way, can agree on correct predictions and make
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their errors in different parts of the input space. When combined together,
such diversity enforces the correct predictions and reduces the errors, min-
imizing the risk due to poor model selection. This approach is also useful
in medical image analysis field, where ensembles of CNNs have been used
to solve many medical image analysis tasks [90, 91, 92].

In this thesis, an approach for the automated detection of MCs in digital
mammograms is presented, consisting of an ensemble of CNNs, each one
specifically designed to learn a different view of the same lesion. Patches of
different dimensions, centered at the same detection location, are extracted
to separately train different CNNs, whose network architectures are tailored
to the dimensions of the input samples. The idea is that, starting from
image patches small enough to entirely contain the lesion to be detected,
the size of the neighbourhood is progressively enlarged, and the depth of
the network is increased at the same time. In this way, shallower networks
become specialized in learning local image features, whereas deeper ones
are well suited to learn patterns of the contextual background tissues. Once
trained, the detectors are combined together to obtain a final ensemble that
can effectively detect abnormalities with a substantial reduction of false
positive regions (thanks to the diversity provided by the different spatial
context learned by each network). The proposed multi-context ensemble
was firstly introduced in [93] and further investigated in [94].

Recently, few other works have tried to add contextual information into
the training phase. In [95] a two-pathway CNN architecture for brain tu-
mour segmentation was proposed. Similarly, Kamnitsas et al. [96] employed
a dual pathway architecture that processes 3-D input images at multiple
scales simultaneously for accurate brain lesion segmentation. Wang et al.
[97] proposed a context-sensitive DNN for microcalcification detection by
merging, at training time, features coming from two different subnetworks.

The proposed approach stands out from these works since the networks
are separately trained and the probability scores are merged at inference
time, by allowing to focus on more different portions of the lesion back-
ground, without requiring a high computational burden and resulting in a
more discriminating power.

The rest of the chapter is organised as follows. Sect. 4.1 introduces the
underlying concepts of the proposed method along with a detailed charac-
terization of the proposed architecture. Sect. 4.2 reports the experimental
analysis, followed by results in Sect. 5.5. Finally, Sect. 4.4 ends the chapter
with discussion and conclusions.

4.1 Multi-context CNN ensemble

In this section, the proposed multi-context CNN ensemble for the detection
of individual MCs on digital mammograms is presented. Specifically, the
proposed ensemble consists of K different CNNs that are meant to focus on
different spatial context of the images and thus to specialize both on local
features and on contextual ones. To this end, each network of the ensemble is
trained by using image patches of different size, aiming to capture the spatial
context around the same detection location. Furthermore, according to the
image patch dimensions, the K network architectures are set to different
levels of depth, with the aim of using deeper, hence more discriminating,
networks to manage larger image windows.
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Figure 4.1: Overview of the proposed architecture

The size m of the smallest patches used in the ensemble is chosen to
entirely contain a single lesion, and then it is progressively enlarged to
include larger image portions, up to a dimension that is still representative
of the context around the lesion. Similarly, the network architecture is set
to a baseline configuration, and then its depth is increased as the image size
grows. The baseline configuration is inspired by the VGGNet [51], and it
is defined as two blocks of two convolutional layers, interlaced by a ReLU
activation function and followed by a max pooling layer. Each of these
blocks has been named incremental block ; the word incremental indicating
they are added to the stack of layers in order to define deeper architectures.
More details of the structure of an incremental block are given in Table 4.1.
Following the design approach defined by the VGGNet [51], small 3 × 3
kernels are used in each block, since they are faster to convolve with and
contain less weights. For the same purpose of decreasing the amount of
computations, data reduction layers need to be set to steadily decrease the
spatial resolution of the input feature maps. Let sin be the size of an image
patch in input to a convolutional layer or a max pooling layer, we know
that its output dimensions can be expressed as:

sout =
sin + 2 ∗ pad− kernel

stride
+ 1 (4.1)

where kernel indicates the size of the filter, pad specifies the padding
size, and stride the intervals at which the filter is applied. We set the
stride of convolutional layers equal to 1, by fixing instead the stride of
max pooling layers equal to 2 (see Table 4.1). As a result, the image
patches are halved after each passage through an incremental block. As
a consequence, we decided to progressively double the size of the input
patches every time we added an incremental block to the baseline network
architecture. To summarize, we can say that the proposed ensemble of
CNNs consists of K different networks, each one trained on image patches
of size s = {2i−1m× 2i−1m} and built with d = i + 1 incremental blocks,
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Table 4.1: Details of the incremental block

Layer Type Output size Kernel Size Stride Padding

1 Convolutional 32×m×m 3× 3 1 1

2 ReLU 32×m×m

3 Convolutional 32×m×m 3× 3 1 1

4 ReLU 32×m×m

5 Max pooling 32× m
2
× m

2
2× 2 2 1

Table 4.2: Details of the classification block

Layer Type Output size Kernel Size Rate

1 Fully connected 256 1× 1

2 Dropout 256 0.5

3 Fully connected 256 1× 1

4 Dropout 256 0.5

5 Fully connected 2 1× 1

∀i = 1, 2, . . . , K.
Each of the K networks ends with a classification block, i.e., with three

fully connected layers intertwined with two dropout layers. At the end, a
softmax function is applied to the two-output neurons to generate a two-
value probability vector associated to each prediction. More details on the
classification block are reported in Table 4.2. The K nets are individu-
ally trained and the output values Yi, ∀i = 1, . . . , K of the K CNNs are
merged together at inference time to aggregate the multi-level contextual
information for the final classification. In particular, the probability values
are averaged, resulting in a single probability vector Yen = {Yen,p, Yen,n}
associated to each patch, stating the final decision about that sample:

Yen = {Yen,p, Yen,n} =

{
K∑
i=1

Yi,p
K
,
K∑
i=1

Yi,n
K

}
(4.2)

4.2 Experimental analysis

4.2.1 Dataset

The publicly available INbreast database [98] was used for this study. The
InBreast database was acquired from the Breast Centre of the university
hospital of Porto, between April 2008 and July 2010 under permission of
both the Hospitals Ethics Committee and the National Committee of Data
Protection. The acquisition equipment was the Mammo Novation Siemens
FFDM, with a solid-state detector of amorphous selenium. The image ma-
trix was of 3328 × 4084 or 2560 × 3328 pixels, with a pixel-size of 70 µm
and a 14-bit contrast resolution, depending on the compression plate used
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Figure 4.2: Details of the proposed architecture

in the acquisition (according to the breast size of the patient). Images
were saved in the DICOM format 4.4 and all confidential medical informa-
tion was removed from the DICOM file. INbreast has FFDM images from
screening, diagnostic, and follow-up cases. Screening is made according to
national and regional standards. Diagnostic is made when screening shows
signs of anomaly. In follow-up images, cancer was previously detected and
treated. A total of 115 cases were collected, from which 90 have two images
(MLO and CC) of each breast and the remaining 25 cases are from women
who had a mastectomy and two views of only one breast were included.
This sums to a total of 410 images. Eight of the 91 cases with 2 images
per breast also have images acquired in different timings (follow-up). The
database includes examples of normal mammograms, mammograms with
masses, mammograms with calcifications, architectural distortions, asym-
metries, and images with multiple findings. The graphic in Fig. 4.3 shows
that there is a big prominence of calcifications in the database. This re-
flects the real population, where calcifications are the most common finding
in mammography. Among the 410 images, calcifications can be found in
301 images, and a total of 6, 880 individual calcifications have been identi-
fied. The main characteristic of the dataset is the carefully associated GT
annotation. The annotations were made by a specialist in the field, and
validated by a second specialist, between April 2010 and December 2010.
When there was a disagreement between the experts, the case was discussed
until a consensus was obtained. Each finding has a label that identifies the
type of lesion. For the calcification a detailed contour of the finding was
made. An ellipse enclosing the entire cluster was also adopted to annotate
the clusters of MCCs 4.5.

For our experiments, all the images were used and image patches were
extracted from the mammograms to train the CNNs. Each patch was la-
beled as positive or negative according to the information provided by the
ground-truth. MC patches were extracted by centering the windows on the
annotated MC centers, whereas background tissue patches were extracted
from the remaining regions of the images with overlapping sliding windows.
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Figure 4.3: Chart describing the findings in the INbreast database

According to the multi-patch criterion, different subwindows of different size
were extracted around the same center, by yielding 5, 628 positive samples
and 26, 887, 769 negative ones. The resulting patches were used to train and
test the proposed detection system.

4.2.2 Network architecture

The proposed model consists of a multiple pathway of K specialized CNNs,
each learning a different context extracted from an increasing area centered
on the lesion. The choice of the size m is made in order to guarantee that
input patches entirely contain at least the smallest lesions. Considering the
size of MCs and the image spatial resolution, we found that a patch size
of m = 12 pixels was sufficient to cover the extent of the smallest lesions
and to focus on their fine details. Then, the input size is enlarged for the
other CNNs to capture larger MCs as well as their background context, by
doubling the patch dimensions up to 96 pixels. Larger image portions were
not considered since they were not representative of the background context
of the lesions and to maintain a reasonable processing time (see Table 4.8).
In summary, the patch size ranges from 12 × 12 to 96 × 96, resulting in
a final ensemble made up of K = 4 networks, the first ones more focused
on learning details of the lesions and the others on learning background
patterns.

The final architecture of the ensemble along with the dimension details
of each CNNs are illustrated in Fig. 4.2.
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(a) (b)

Figure 4.4: Some examples of images from (a-b) INbreast

4.2.3 Training parameters

According to the number of extracted patches, MCs detection is a heav-
ily unbalanced classification problems. To avoid the classifiers being over-
whelmed by the majority class and misclassify the samples of the minority
class, data augmentation was applied, by restoring the balance between
positive and negative samples. Thus, all the CNNs of the ensemble were
trained on a perfectly balanced dataset. Augmentation of the positive class
was performed by randomly flipping the patches horizontally and vertically
and by randomly rotating the patches 90◦, 180◦, and 270◦. Once generated,
image patches were standardized by mean subtraction and normalization to
unit variance [99].

As to weight initialization and training parameters, all the CNNs of the
ensemble were treated in the same way. For all weights in all the layers
Xavier initialization [47] was used, while each CNN was optimized to min-
imize the Softmax loss function by using backpropagation and Mini-Batch
Stochastic Gradient Descent. The mini-batch size was of 32 samples and in
each mini-batch positive and negative samples were balanced. The learning
rate was set to the initial value of 10−3 and decreased during training by
a factor of 10 every 6 epochs. The learning was stopped after 30 epochs.
Momentum and weight decay were set respectively to 0.9 and 5×10−4. The
number of feature maps was set to 32, whereas dropout was performed with
a probability of 0.5 indicating that, at each training stage, half of the units
coming from the previous layer were ignored in the training of the successive
layer. The proposed architecture was implemented with a modified version
of the Caffe framework [100], and the experiments were conducted on a
machine with 2 Intel Xeon e5-2609, 256 GB of RAM and 2 GPU NVIDIA
Titan Xp.
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Figure 4.5: InBreast annotation example

4.3 Results

To evaluate the performance of the proposed ensemble, an image-based 2-
fold cross validation was applied for all the experiments. In each cross
validation step, each detector was trained on the 50% of the images and
tested on the other 50%. When splitting the data into training and test
sets, the patches belonging to the same image were assigned to the same
set.

The detectors were evaluated in terms of Receiver Operating Charac-
teristics (ROC) curve and it is worth remarking that the ROC curves were
calculated using the image patches. The number of negative and positive
patches tested are the same of the original dataset as reported in Table 5.2
(the two leftmost columns). Furthermore, the mean sensitivity of the ROC
curve in the specificity range on a logarithmic scale was calculated and
compared The range [a, b] in eq. 1.1 was set to [10−6, 10−1] corresponding
to a wide range of operating points that are close to practical application
requirements of CADe systems for the problem under consideration [101].

For the experimental evaluation, the performances of the standalone
CNNs were firstly investigated , by varying the input patch size along with
the network depth. In Table 4.3, the performance of the individually trained
CNNs for growing values of patch size and network depth are reported. We
can see that using larger patches with a deeper network is initially beneficial
to improve detection performance. The mean sensitivity increases from
76.30% of CNN1 to 77.45% of CNN3. However, increasing the size of the
image window stops to be beneficial and performance decreases. The mean

48



4.3 Results

Table 4.3: Results of mean MC detection sensitivity S
for standalone CNNs

Method patch size d SMC

CNN1 12× 12 2 76.30

CNN2 24× 24 3 76.90

CNN3 48× 48 4 77.45

CNN4 96× 96 5 75.83

Table 4.4: Results of mean MC sensitivity S for
combined CNNs

Method patch size d SMC

CNN1+CNN2 12+24 2+3 79.51

CNN1+CNN2+CNN3 12+24+48 2+3+4 81.39

CNN1+CNN2+CNN3+CNN4 12+24+48+96 2+3+4+5 83.54

sensitivity reduced from 77.45% of CNN3 to 75.83% of CNN4.
Furthermore, to understand how joint predictions of the individual path-

ways affects the performance, in Table 4.4 the results obtained by combining
the single CNNs are also reported. We can see that detection performance
increases each time a new CNN is added to the ensemble, obtaining the
best performance measure when all the networks are used. The proposed
full architecture achieved a mean sensitivity of 83.54%. It is worth noting
that, even when a single CNN does not perform very well (as in the extreme
cases of patch size 12 and 96) they still give a contribution when added to
the ensemble.

For the sake of completeness, the effect on the proposed approach of
different combination methods in addition to the mean rule is also inves-
tigated. In particular,the probability values of the standalone CNNs were
combined with the following rules [85]: (i) trimmed mean; (ii) maximum;
(iii) minimum; and (iv) majority voting. Results are reported in Table 4.5
showing that the mean rule gave the best performance.

To evaluate the performance of the proposed approach with respect to
the literature, we compared our ensemble method with the deep network

Table 4.5: Results of MC sensitivity S for
combined CNNs according to different com-
bination rules

CNN1+CNN2+CNN3+CNN4 SMC

mean 83.54

trimmed mean 81.92

max 77.51

min 81.27

majority voting 81.25
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Figure 4.6: Average ROC curves obtained from 1, 000 bootstrap iterations
for INbreast dataset.Confidence bands indicate 95% confidence intervals
along the TPR axis.

proposed by [97], a context-sensitive deep learning approach for MCs de-
tection. To this end, the network architecture and the training settings
reported in [97] were faithfully reproduced and its performance were eval-
uated in terms of mean sensitivity. Specifically, the detector network pro-
posed by [97] is formed by two subnetworks, one for extracting the local
image features and one for learning the background . The two subnetworks
are jointly trained and the image features from the two branches are fed
together into the fully-connected layers for classifying whether the input
object is an MC or not. For the sake of completeness, we also compared
these two approaches with the best single CNN, that is CNN3 . Statisti-
cal comparisons were performed by means of bootstrapping [75]. On the
test set, average ROC curves were calculated over 1, 000 bootstraps and are
reported in Fig. 4.6. The ROC curves of the proposed context-sensitive en-
semble were notably higher in the FPR range of major interest with respect
to those obtained from the other approaches.
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Table 4.6: Comparative results of mean MC
detection sensitivity S

Method S Compared to Difference p-value

CNN3 77.45 - - -

[97] 80.84 - - -

Proposed approach 83.54 CNN3 +6.09 < 0.025

[97] +2.7 < 0.025
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Figure 4.7: FROC curves for (a) INbreast dataset

Additionally, the mean sensitivity was calculated for each bootstrap and
p-values were computed for testing significance. The statistical significance
level was chosen as α = 0.05, but performance differences were considered
statistically significant if p < 0.025 due to the Bonferroni correction1 [76].
Comparative results are reported in Table 4.6 . Results of the proposed

1the significance level was obtained as α divided by the number of comparisons
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Table 4.7: Comparative results of the FROC score and sensitivities at specific FPpI

Dataset Method Sensitivity against FPpI FROC score

1/8 1/4 1/2 1 2 4 8

INbreast CNN3 0.0699 0.1260 0.1684 0.2378 0.3531 0.5148 0.6746 0.3064

[97] 0.0515 0.0713 0.0990 0.1487 0.1886 0.2552 0.3611 0.1679

Proposed approach 0.0684 0.1186 0.1925 0.3025 0.4695 0.6433 0.7430 0.3625

Table 4.8: Results of MC per-
image processing time for the
trained networks

Method tMC

CNN1 7 s

CNN2 21 s

CNN3 78 s

CNN4 280 s

Wang et al.[97] 822 s

Proposed approach 386 s

architecture were statistically significantly better than the other considered
approaches. The improvements in mean sensitivity were large +2.70% with
respect to the context-sensitive approach of [97], and with respect to the best
standalone CNN, +6.09% , revealing to be significantly better in detecting
lesions.

To assess the performance on the whole image, the lesion-based FROC
curve was calculated. Being r the radius of a lesion in the ground truth,
a detected region is considered as a TP if its distance to the centre of a
true lesion is no larger than r; otherwise it is counted as an FP. To easily
compare the different methods, the detection performance was summarized
in a single score (FROC score) obtained by averaging the sensitivity values
corresponding to the FPpI rates values of 1/8, 1/4, 1/2, 1, 2, 4, and 8,
as described in [102]. Lesion-based FROC curves evaluated on the test set
are shown in Fig. 4.7 for MCs detection and the relative FROC scores
are reported in Table 4.7. The performance of the proposed ensemble is
notably higher than the others, proving the effectiveness of the proposed
method also when applied on the whole image.
Finally, per-image processing times are reported in Table 4.8. As expected,
the time needed for testing a single image increases with the input size,
being strictly related to the network depth. The testing time of the proposed
approach is evaluated as the sum of the processing time of the 4 standalone
CNNs, resulting to be lower than the time required by [97].

4.4 Discussion and Conclusions
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In this thesis, a novel and effective method for the detection of individual
MCs in digital mammograms is proposed, as a result of an analysis of the
limitations of the current methods proposed for similar applications.

First, I investigated the performance of CNNs when using larger image
windows during the training phase together with deeper architecture. The
obtained results indicate that using small patches, hence focusing only on
the local image characteristic of a lesion, is not sufficient to obtain high
detection performance. This is because, ignoring the context in which the
lesions are in, the detector response is susceptible to all the lesion-like image
patterns that lies in the background, affecting the overall performance of
the classifier. However, even too large image patches are not sufficient to
obtain high level performance, being the network not able to capture the
fine details of the lesions and to recognize them in their broad spectrum of
appearance. Moreover, deeper networks are more difficult to train, due to
the vanishing signals and the internal covariate phenomenon.

To include both local and larger contextual information, we decided
to combine at inference time the predictions coming from the individual
networks, resulting in the proposed multi-context CNN ensemble. The en-
semble combines the predictions of 4 different networks, each one with a
different level of depth and processing at training time input patches with
a different level of context-information. The devised approach achieved
statistically significantly more accurate results in detecting small lesions
when compared to standalone CNNs, and it additionally outperformed the
context-sensitive approach proposed by [97] for similar tasks.

The obtained results proved the effectiveness of using different pathways,
where each path specializes in capturing information at different context lev-
els so that the system is able to closely learn the global contextual features
as well as the local detailed features. The local appearance of the lesions
and their underlying characteristics were captured, with different specificity
levels, by the first two pathways, while higher level features, such as the na-
ture of the tissues of the lesions are inserted in, were learned by the deeper
paths. As a result, we obtained a set of specialized and complementary
detectors (based on different representations derived from the different con-
texts) whose combination led to a final system that is able to overcome
the limitations of single-pathway networks, with a clear improvement of
the discriminating power. Moreover, the reported results suggest that the
approach of training the networks separately and averaging the outputs at
inference time is effective to get over the optimization difficulties that might
occur in the case of joint training. We think that, when the multiple path-
ways are simultaneously trained as in [97], the detector might find it difficult
during the learning phase to come across the co-adaption between the local
and the global pathways. We believe that the improvements in detection
performance obtained in this work can be transferred to full CAD schemes,
including diagnosis modules which can determine the nature of the detected
lesions. These systems could be implemented in a routine clinical setting,
being very useful to the clinicians not only for detecting suspect cases, but
also for assisting in the diagnostic decision as a second reading.
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Chapter 5

Computer aided detection and
diagnosis of clustered
microcalcifications

Traditionally, detection and diagnosis of clustered MCs are separately per-
formed and in turn the detection process is performed into two steps. In
the first step, an MC detector is applied to locate the candidates of individ-
ual MCs in a mammogram: it is called candidate detector and its primary
goal is to greatly reduce the number of search locations while achieving a
sensitivity near 100%. In the second step, detected MCs are grouped into
clusters according to a set of clustering criteria [103]. The starting point
for classification methods are hence clustered MCs that are subsequently
classified into being malignant or not [104]. As previously said, while suc-
cessful in achieving high sensitivity, these methods are usually affected by
the frequent occurrence of false positives [105], limiting the benefit that the
CAD system can provide. Nevertheless the era of traditional CAD might
be coming to an end, due to the rise of the new type of systems based on
high-accuracy artificial intelligence that are rapidly closing the gap between
humans and computers for many applications [13, 14, 15]. As a consequence
a new generation of Computer-Aided Detection and Diagnosis systems has
started with new solutions and perspective for digital mammograms tools
[16, 17].

Recently, Wang et al. [105] developed a deep neural network to directly
detect the presence of clustered MCs in mammograms. Instead of first de-
tecting the MCs individually, they employed a convolutional neural network
(CNN) to determine directly whether an image region contained an MC
cluster or not. This detector was intended only for identifying suspicious
regions for later examination. Subsequently the same authors [97] extended
their work, incorporating local MC features so that to improve the accu-
racy in detecting individual MCs: they proposed a context-sensitive DNN
by merging, at training time, features coming from two different CNNs, one
operating on the local image features of MCs and the other on the surround-
ing image background. Hou et al.[106] proposed an unsupervised one-class
deep convolutional autoencoder by using only image from normal subjects,
to detect MC clusters. Cheng et al.[107] proposed a two-step CNN meth-
ods for detecting and classifying MC clusters. A first DCNN was trained to
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discriminate clusters on individual MCs candidate detection; afterwards a
second DCNN was used to provide cancer likelihood prediction. Lotter et
al.[17] proposed a two-stage curriculum learning-based approach for mam-
mograms classification, by exploiting informations coming from detected
cancer lesions (MCs). They first trained patch-level CNN classifiers at mul-
tiple scales for lesion detection, which were then used as feature extractors in
a sliding-window fashion to build an image-level model and render a decision
on the whole image. Although deep learning methods can be successfully
used for detection and classification separately, it has been shown that the
best gains are obtained when systems are trained end-to-end [108]. This
is achieved by training the network with a multi-task loss that uses shared
representation among the related tasks to enable the model to generalize
better on each original task [109, 110, 111]. Based on that, we decided to
investigate the feasibility of detecting and classifying MCs cluster simulta-
neously by using a single end-to-end trainable network. Recently, few other
works tried to combine multiple tasks in medical image analysis field: in
particular for digital mammograms, Al-Masni et al. [112] proposed to use a
ROI-based CNN, the so-called YOLO network, to detect and classify breast
masses.

In this thesis an end-to-end system is presented to combine both the
candidate detector and the classification step into one single model, and
additionally segment malignant lesions in digital mammograms. The pro-
posed architecture is a modified U-Net in which the typical encoder-decoder
pathway is used to segment single MCs and address the detection problem,
while a second additional branch in the bottleneck enables the network to
perform classification.

The rest of the chapter is organized as follows: in Section 5.1 multi-task
learning is introduced together with a detailed description of the proposed
approach in Section 5.2. In Section 5.3 experimental analysis is reported
along with experimental results in Section 5.5. In Section 5.6 conclusions
are drawn and future research directions are outlined.

5.1 Multi-task learning

In Multi-task learning, there are multiple learning tasks each of which can
be a general learning task such as supervised tasks (e.g., classification or
regression problems), unsupervised tasks (e.g., clustering problems), semi-
supervised tasks, reinforcement learning tasks, multiview learning tasks or
graphical models. Among these learning tasks, all of them or at least a
subset of them are assumed to be related to each other. In this case, it is
found that learning these tasks jointly can lead to performance improve-
ment. This observation leads to the birth of Multi-Task Learning (MTL)
that can be defined as a learning paradigm whose aim is to leverage useful
information contained in multiple related tasks to help improving the gener-
alization performance of all the tasks. MTL is inspired by human learning
activities where people often apply the knowledge learned from previous
tasks to help learn a new task. Similar to human learning, it is useful for
multiple learning tasks to be learned jointly since the knowledge contained
in a task can be leveraged by other tasks. In a machine learning perspective,
multi-task learning can be seen as a form of inductive transfer. Inductive
transfer can help improve a model by introducing an inductive bias, which
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5.1 Multi-task learning

Figure 5.1: Hard parameter sharing for multi-task learning in deep neural
networks

causes a model to prefer some hypotheses over others. For instance, a com-
mon form of inductive bias is l1 regularization, which leads to a preference
for sparse solutions. In the case of MTL, the inductive bias is provided by
the auxiliary tasks, which cause the model to prefer hypotheses that explain
more than one task. In the context of deep learning, multi-task learning is
typically done with either hard or soft parameter sharing of hidden layers.

5.1.1 Hard parameter sharing

Hard parameter sharing is the most commonly used approach to MTL in
neural networks and was firstly introduced in [113] . It is generally ap-
plied by sharing the hidden layers between all tasks, while keeping several
task-specific output layers (see Fig. 5.1). Hard parameter sharing greatly
reduces the risk of overfitting. In fact, in [114] Baxter et al. showed that
the risk of overfitting the shared parameters is an order N , where N is the
number of tasks, smaller than overfitting the task-specific parameters, i.e.
the output layers. This makes sense intuitively. The more tasks we are
learning simultaneously, the more our model has to find a representation
that captures all of the tasks and the less is our chance of overfitting on our
original task.

5.1.2 Soft parameter sharing

In soft parameter sharing on the other hand, each task has its own model
with its own parameters (see Fig. 5.2). The distance between the param-
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Figure 5.2: Soft parameter sharing for multi-task learning in deep neural
networks

eters of the model is then regularized in order to encourage the parameters
to be similar. For instance in [115] the norm is used for regularization, while
in [116] the trace norm is used.

5.1.3 Mechanism underlying MTL

Assuming to have two related tasks, A and B which rely on a common
hidden layer representation F, the mechanisms that underlie MTL can be
summarized as follows:

Implicit data augmentation

MTL effectively increases the sample size that we are using for training our
model. As all tasks are at least somewhat noisy, when training a model on
some task A, our aim is to learn a good representation for task A that ideally
ignores the data-dependent noise and generalizes well. As different tasks
have different noise patterns, a model that learns two tasks simultaneously
is able to learn a more general representation. Learning just task A bears
the risk of overfitting to task A, while jointly learning A and B enables
the model to obtain a better representation through averaging the noise
patterns.

Attention focusing

If a task is very noisy or data is limited and high-dimensional, it can be dif-
ficult for a model to differentiate between relevant and irrelevant features.
MTL can help the model to focus its attention on those features that actu-
ally matter as other tasks will provide additional evidence for the relevance
or irrelevance of those features.

Representation bias

MTL biases the model to prefer representations that other tasks also prefer.
This will also help the model to generalize to new tasks in the future, as
a hypothesis space that performs well for a sufficiently large number of
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Table 5.1: Details of the classification block

Layer Type Output size Kernel Size Stride

1 BatchNorm 1024×m×m

2 ReLU 1024×m×m

3 Convolutional 1024×m×m 3× 3 2

4 BatchNorm 1024×m×m

5 ReLU 1024×m×m

6 Convolutional 1024×m×m 3× 3 2

7 Convolutional 1024××1× 1 1× 1 1

training tasks will also perform well for learning novel tasks as long as they
are from the same environment.

Regularization

Finally, MTL acts as a regularizer by introducing an inductive bias. As such,
it reduces the risk of overfitting as well as the complexity of the model, i.e.
its ability to fit random noise.

5.2 Proposed approach

In this thesis, a novel MCs cluster detection and classification method is pre-
sented as based on a single fully convolutional neural network (FCN) that
performs detection and classification concurrently by using MTL. Cluster
detection is treated as a segmentation problem where individual calcifica-
tions are detected, by also providing information about the location and
shape of single regions. A classification branch is used to predict the pres-
ence of malignant clusters, by exploiting at the same time the information
coming from the encoding path and the segmentation map.

The rationale is that, segmenting individual MCs can provide fine de-
tails about the cluster configuration, resulting in a more accurate cluster
detection process. Moreover in a CADx perspective, accurately detecting
the individual MCs in the cluster is important for classifying the cluster as
being malignant or not. Many studies have shown that the accuracy of de-
tected individual MCs can impact on the CADx performance [117, 118, 119].
As a consequence, the classification branch will benefit from the segmen-
tation process in giving prediction about the malignancy of the clusters
that are potentially detected in the segmentation step. On the other hand,
the classification branch will positively affect the detection of MCs clusters,
since the information about the category of the image will help to reduce
the searching space of the MCs detection model, and hence will facilitate
the cluster localization process.

5.2.1 Network architecture details

As mentioned above, the idea behind the proposed method is to treat detec-
tion and classification of MCs cluster as related problems. To accomplish
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Figure 5.3: Overview of the proposed method

these two tasks simultaneously the proposed network consists of two differ-
ent paths each one for each of the two defined tasks (see Fig. 5.3).

The first path is defined for the scope of MCs cluster detection and is per-
formed by segmenting individual calcifications. For that reason we decided
to follow the architecture of a basic U-Net, the most popular and successful
deep learning model in the domain of medical image segmentation [59]. The
main reason behind the choice of the U-Net is in the presence of the shortcut
connections 2.9 that allow to combine deep, semantic, feature maps from the
decoder sub-network with shallow, low-level feature maps from the encoder
one, resulting to be very effective in recovering fine-grained details of the
objects and to generate segmentation masks with fine details even on com-
plex background, like breast tissue background. In addition, to reduce the
issue of internal covariate shift, speed up learning and improve performances
Batch Normalization layers were added before each block of the basic U-net
for feature map normalization [120]. Batch Normalization layers are in fact
used to independently normalize the feature values of each layer to zero
mean and unit standard deviation during each training batch. Given that
we want to perform the task of image classification together with detection
an auxiliary branch was added to the original encoder-decoder path and
placed at the end of the encoder so that to exploit the set of extracted fea-
tures for classification. Following the structure of the encoding path, this
classification branch consists of a double convolution block, ending with a
final 1× 1 output convolutional layer on top of which a sigmoid function is
applied for the purpose of final binary classification (see Table 5.1).

5.2.2 Multi-task loss

An important step in multi-task learning to address the multiple tasks si-
multaneously and make the model end-to end trainable is the use of multiple
losses. We design our multi-task loss as the sum of two different terms

Ltot = Lseg + λLclass (5.1)

where λ is a weighting factor that is meant for balancing the two losses
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in terms of magnitude and enable the learning of both tasks with equal
importance, without allowing one to dominate.

Segmentation loss

For the segmentation task we define Lseg as a pixel-wise weighted top-k
Cross-Entropy loss. The Cross Entropy loss is defined by the following
equation:

CEloss(t, s) = −
∑

i∈{P,N}

ti log si (5.2)

where s is the vector of pixel-wise class probabilities produced by the
networks and t the vector of relative groundtruth.

However, MCs segmentation is a severely unbalanced segmentation prob-
lem since the positive class, represents a very small percentage of the total
pixels distribution that is dominated by negative pixels belonging to the im-
age background. A common recent method to address class imbalance and
avoid the learning being overwhelmed by the majority class is to introduce
different weighting factor αi for the two classes. For this reason we use a
weighted Cross Entropy loss by giving higher weights to positive pixels.

WCEloss(t, s) = −
∑

i∈{P,N}

αiti log si (5.3)

However if the weights are used to balance the importance of positive
and negative pixels, they do not make any differentiation between easy/hard
examples. Since our segmentation problem is heavily skewed it is reasonable
to think that the majority of easy pixels belongs to the background, as
opposed to a small number of hard positive examples. Thus we propose to
use as final loss for segmentation a top-k pixel-wise weighted Cross Entropy
loss

Lseg = Ltop−k (WCEloss) (5.4)

The proposed loss consists in selecting the top k percentage of the most
difficult pixels, that is the pixels with the highest cross-entropy loss and
only add their contribution to the total loss. In this way it is possible to
focus training on positive pixels, discarding the majority of easily classified
negatives.

Classification loss

For the classification task Focal loss is applied, being a way to focus training
on hard patches, by suppressing easy ones.

Floss(t, s) = −
∑

i∈{P,N}

(1− si)γti log si (5.5)

As shown in equation 5.5 Focal loss adds a modulating factor (1− si)γ
to the Binary Cross Entropy loss, that is meant to leave the loss value
unaffected when samples are misclassified and to down-weight it when they
are correctly classified. In addition the parameter γ is designed to tune the
modulating factor and adjusts the down-weight rate.
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Table 5.2: Distribution of the digital mammography
(DM) exams included in this study.

DM studies DM images samples

normal 584 1745 27, 929

malignant 236 450 7, 200

5.2.3 Online Hard Example Mining

The final goal of the proposed method is to detect and classify MCs clusters
that is again a heavily unbalanced problem since the number of normal
images is higher than those containing MCs. Thus, beyond addressing the
class skew between positive and negative pixels with the multi-task loss, we
also need to feed the network with a sufficient number of malignant clusters.
To this end, we applied Online Hard Mining (OHAM) by performing hard
example selection epoch-wise. Given a set of samples of sizeM we performed
regular forward propagation and assign each sample a weight wi whose
magnitude is inversely related to the ability of the network to segment and
classify that particular sample, according to the values of the performance
measures. The hard mining rule can be defined by the following expression:

WM = (βPWMP
, βNWMN

) (5.6)

where WMP
and WMN

are the weight vectors for all the positive and
negative samples respectively. The k-th element of these vectors are given
by:

WMi,k =
wk∑Mi

k=1wk
∀k = 1, ..Mi and i ∈ {P,N} (5.7)

At the end of n epochs a resampling is done so that samples with higher
weights are fed more often to the network during the subsequent epochs.
The OHAM is separately done for positive and negative samples with the
weights βP and βN that sum up to 1 and are designed to guarantee that
a certain percentage of samples belonging to positive/negative classes is
selected for the next epochs.

5.3 Materials

5.3.1 Dataset

This study was conducted with anonymized data, retrospectively collected
from DIAG institutional archive. The study was approved by the regional
ethics board after summary review, with waiver of a full review and informed
consent. All cases with biopsy-proven malignant lesions were collected,
while normal exams were selected if they had at least two years of negative
follow-up. This yielded a total of 820 exams, from which 236 exams contain
biopsy-verified malignant MCs clusters. Most exams were bilateral and
included two views (CC and MLO), resulting in a total of 2195 images. The
exact distribution of the images is summarized in Table 5.2. The images
were acquired by using two digital mammography (DM) machines from
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Figure 5.4: DIAG dataset annotation example

General Electric (Senographe 2000D and Senographe DS) with an image
resolution of 94µm. MCs cluster together with single MCs in each image
were manually identified by a group of experts, by providing coordinates of
cluster bounding boxes and the position of the individual MCs (see Fig.5.4),
that we both used as ground truth in this study.

The collection of positive mammogram images was partitioned into three
subsets, one with 155 cases (300 images) for training, one with 30 cases (50
images) for validation, and one with 51 cases (100 images) for testing. To
avoid any potential bias, the different views from one case were assigned
together to either the training, validation, or testing subset exclusively.

5.3.2 Groundtruth image generation

Since the detection problem was addressed by segmenting individual calcifi-
cations, we also needed binary masks as reference standard for the segmen-
tation step. Therefore a first segmentation process was applied on mammo-
grams in order to obtain segmentation masks to use as references. The seg-
mentation process was performed by exploiting informations coming from
the annotation files and by using image analysis techniques like thresholding
techniques and mathematical morphology.

Image binaritazion and Otsu thresholding algorithm

Binarization plays an important role in digital image processing, mainly in
computer vision applications. Thresholding is an efficient technique in bi-
narization. The choice of thresholding technique is crucial in binarization.
Several thresholding algorithms have been investigated and proposed to de-
fine the optimal threshold value. The thresholding algorithms can be cat-
egorized into six classes: histogram shape-based methods, clustering-based
methods, entropy-based methods, object attribute-based methods, the spa-
tial methods and local methods based on the local characteristics of each
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pixel. Otsu’s thresholding technique is a classification-based method which
searches for the threshold that minimizes the intra-class variance, defined
as a weighted sum of variances of the two classes. Given this definition,
the Otsu’s method segments the image into two light and dark regions T0
and T1, where region T0 is a set of intensity level from 0 to t or in set
notation T0 = {0, 1, ....t} and region T1 = {t, t+ 1, ....l − 1, l} where t is
the threshold value and l is the image maximum gray level. T0 and T1 can
be assigned to object and background or vice versa. Otsu’s thresholding
method scans all the possible thresholding values and calculates the mini-
mum value for the pixel levels each side of the threshold. The goal is to find
the threshold value with the minimum entropy for the sum of foreground
and background. Otsu’s method determines the threshold value based on
the statistical information of the image where for a chosen threshold value t
the variance of clusters T0 and T1 can be computed. The optimal threshold
value is calculated by minimizing the sum of the weighted group variances,
where the weights are the probability of the respective groups.

Mathematical morphology

Mathematical morphology is a framework for image processing based on lat-
tice theory and random geometry and it is a tool for investigating geomet-
ric structures in binary and greyscale images. The theory of mathematical
morphology is built on two basic image processing operators: the dilation
and the erosion. Dilation allows objects to expand, thus potentially filling
in small holes and connecting disjoint objects. Erosion shrinks objects by
etching away (eroding) their boundaries. A feature of these operators is the
fact that they preserve the objects’ shapes for the most part. Morphology
is thus a theory where size and shape of objects play an important role.
An important parameter of the morphological operators is the structuring
element. This is a small set, mostly much smaller than the image set, that
scans the image. The pixels covered by this structuring element determine
the output value of the currently covered pixel. The dilation of a set A by
structuring element B is defined by:

A⊕B =
⋃
bεB

Ab (5.8)

The erosion of a set A by structuring element B is defined by:

AΘB =
{
zεE2 : (B)z ⊆ A

}
(5.9)

Using these basic operators, much more complex operators can be con-
structed i.e opening, closing, filling that can be used in different applications.

Groundtruth generation algorithm

For the process of groundtruth generation, starting from single point anno-
tations, p × p patches were generated around each single point so that to
focus on region of interests and provide more accurate segmentation. The
segmentation process was therefore applied on single patches and can be
summarized as follows: (i) the individual calcifications were re-centered,
since not all the annotated points exactly matched centers of the relative
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Table5.3:Hyperparametertuningandoptimization

Hyperparameters Tuningrange Stepsize Optimalvalue

Learningdecay step-cosine cosine

Initlearningrate 10 5−10 2 10 10 2

ηmin forcosinedecay 10 7−10 5 10 10 5

αP for WCE 0.1−0.9 0.1 0.9

Top-kforLseg 1%−50% 10-5-1 1%

βP forWMP 0.1−0.9 0.1 0.5

λfor MTL 10 5−10 2 10 10 2

MCs;(ii)aOtsuthresholdingalgorithm[121]wasappliedinordertoob-
tainfirstroughbinarymasks;(iii)afirstrefinementstepwasperformed
bymeansofmorphologicalclosingandfillingtorespectivelyclosecontours
andfilltheholes;(iv)arefinementofsegmentedregionborderswasdone
byevaluatingtheEuclideandistancebetweeneachborderpixelandthe
nearestzeropixelofthebinarymaskandsuppressingallborderpixelswith
distanceequaltozero;(v)segmentationwasvalidatedaccordingtotheval-
uesofsegmentationareaandeccentricityofthesegmentedMCs;and(vi)in
caseofbadsegmentationaGaussiandistributionwiththesameaxeslength
andorientationoftheMCsresultingfromthefirstsegmentationstepwas
generatedandusedasstartingpointtorepeatthesteps(ii)-(v)

5.3.3 Datasamplesextraction

Intheexperiments,imagepatcheswereextractedfromallthemammograms
totraintheproposednetwork. Thesizeoftheimagepatcheswaschosen
soastoentirelycontain MCsclustersinoutputimages. Giventhatthe
estimated95%percentileofMCsclustersizeinourimageis≈4.2cmwith
animageresolutionof94µm,anoutputimagepatchsizeof470×470pixels
wasused.Sincetheimagesizeisdecreasedduringtheflowthroughthe
network,aninputpatchsizeof652pixelswaschosen.Foreachmammogram
inthetrainingset,positivesampleswereextractedfromtheannotatedMCs
clustersintheimage.StartingfromeachmarkedMCclusterlocation,16
imagewindowswererandomlycroppedwithintheannotationboundingbox
inordertoforminputsamplestothenetwork,byyielding7,200positive
patches.Negativesamplesinsteadwereextractedbyrandomlycroppingthe
samenumberofimagepatcheswithinthebreasttissueofnormalimages
andtotalizinganumberof27,929negativepatches(seeTable5.2)

5.4 Experiments

5.4.1 Performanceevaluation

TheabilityofthemodelindetectingMCsclusterwasevaluatedbyperform-
ingFROCanalisysonaimageandacasebasis. TheFROCcurveswere
generatedstartingfromthesegmentationoutputs. Givenamammogram,
thenetworkproducesaprobabilitymapinwhicheachpixelrepresentsthe
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Figure 5.5: Comparison image-based FROC curves of a basic U-Net for
detection and of the proposed modified U-Net for detection and classification

probability that pixel belongs to a suspicious lesion. Starting from these pre-
diction maps, we applied binarization by thresholding at 0.5 value (which
is the value which gave good performance on the validation and training
sets), obtaining final segmentation maps. Once segmentation maps were
generated we computed all connected components in order to have a list of
all individual detected MCs. The probability values associated to individual
MCs were then used to calculate a probability score, we called p−score, for
each candidate detected clusters, reflecting the likelihood of the detected
“object” to be a cluster or not. In the detector output, a detected object
was treated as a TP when at least 40% of its area overlapped with that of
a true cluster and its p-value value was greater than the threshold (where
thresholds were chosen as all the p-scores associated to each candidate clus-
ter.

The performance of the model in classifying MCs cluster into malignant
or not was evaluated by means of image-based ROC curve, for a series of
thresholds on the classifier output associated to each sample. The Area
Under the ROC curve is also reported, being a performance measure that
is insensitive to the class skew. Joint predictions between detector and
classification branches were also evaluated, being a measure of the ability
of the system to find and locate malignant clusters. Joint FROCs were
obtained by combining detector and classification outputs.
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Figure 5.6: Comparison case-based FROC curves of a basic U-Net for de-
tection and of the proposed modified U-Net for detection and classification

5.4.2 Model parameters

For model training, back-propagation and mini-batch stochastic gradient
descent were used. The network was trained to optimize the joint loss given
by Eq. 5.1. Augmentation of the two classes was performed by randomly
flipping the patches horizontally and vertically and by generating new ran-
dom shifting of the cropping bounding box. Since patch-based OHAM was
applied, the random shifting was done by moving patches at most 20% of
the patch size to guarantee that the same patches did not differ a lot trough
the epochs and made OHAM effective. Different experiments with different
combinations of parameters were done in order to find the model maximiz-
ing the results on both tasks. Dice similarity coefficient and classification
AUC were used as primary evaluation metrics to estimate the efficiency of
the network. DSC is a spatial overlap index and its value ranges from 0, in-
dicating no spatial overlap between two sets of binary segmentation results,
to 1, indicating complete overlap.

DSC =
2|X

⋂
Y |

|X
⋃
Y |

(5.10)

After the network was trained the best model was chosen as the one
that optimized the sum of dice score and classification AUC that were both
estimated on the validation set. A complete overview of hyperparameter
tuning and optimization is given in Table 5.3. The best model was finally
obtained by training the network by means of a cosine annealing schedule
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Figure 5.7: Comparison image-based ROC curves of a U-Net for classifica-
tion and of the proposed modified U-Net for detection and classification
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with an initial learning rate lr = 10−3 and a minimum learning rate ηmin =
10−5, momentum = 0.9 and a mini-batch size = 2.

5.5 Results

5.5.1 Cluster detection

From the experimental point of view, we first trained a stand-alone U-Net
for the only task of image segmentation. The network architecture was set
to a basic U-Net and hyper parameters were tuned in order to optimize
individual MCs segmentation first. The major drawback in training was
due to the high class imbalance between background and foreground pixels
that made it difficult to stabilize learning . We investigated different values
of K (see Eq. 5.4) , corresponding to the percentage of pixels (the ones
with the highest cross entropy loss) that were used for back-propagating
the gradient. We found the optimal value to be K = 1, that we later found
to be equivalent to the percentage distribution of positive pixels in the
training images. This means that the learning was carried out by only 1%
of the total amount of image pixels, that we suppose being mostly positive
pixels, being the majority of negative samples easily classified. As for the
weights αi of WCE, we found αpos = 0.9 and αneg = 0.1 to be the right
compromise between gradient convergence in terms of training time and
performance measures. In Figures 5.5 and 5.6 image-based and case-based
FROC curves for the basic U-Net are reported. In the reported figures, the
y-axis represents the fraction of true MCs cluster detected (i.e., sensitivity)
by the detector, whereas the x-axis represents the number of FPs detected
per unit mammogram or or unit case for Fig 5.5 and 5.6 respectively.
Results show that this baseline model was able to achieve 60% sensitivity
at 0.1 FPpI and 70% sensitivity at 0.1 FPpC.

5.5.2 Cluster detection and classification

After the basic U-Net was trained, the next step in the process was to add
the classification branch (on top of the encoder path) and train the two task
jointly. In this case, optimization was needed for finding the right value of
λ Eq. 5.1 that properly balanced segmentation and classification tasks. The
final value was chosen λ = 10−3 as lower values made the classification
learning too slow, whereas higher ones caused total loss being dominate by
classification contribution.

Weights βp, βn for OHAM in 5.6 were also tuned, by varying the per-
centages of positives and negatives samples that were fed into the networks
through the epochs. We found that the best configuration was the one that
ensured a precise balancing between positive and negative samples. Image-
based and case-based FROC curves for the proposed approach are reported
together with the resulting FROCs from the basic U-Net in Fig 5.5 and
5.6 respectively. As it can be seen, in both cases the FROC curve of the
modified U-Net is notably higher, hence better detection performance were
obtained. In particular, in the image-based FROC with FP rate at 1 FPpI,
the proposed approach achieved a sensitivity of 85%, compared to 60% for
the basic U-Net. Significant improvement is proved also by the case-based
FROC, in which with 1 FPpC we achieved 87% sensitivity versus 68% for
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the basic U-Net. These results indicate that multi-task learning is beneficial
for improving the detection accuracy of MC clusters. For the classification
task we evaluated the image-based ROC curve and reported the achieved
AUC in Fig. 5.7.

For the sake of completeness we also trained a U-Net with the only
classification branch, in order to compare the performance of a single-task
network for classification with the proposed end-to-end model. In Fig. 5.7
comparison ROC curves are reported. Results show that the proposed ap-
proach obtained a notably higher AUC (0.9361) with respect to (0.8776)
obtained by the classification U-Net, proving that multi-task learning was
beneficial also in giving prediction about the malignancy of detected clus-
ters. In Figs. 5.9 and 5.10 detection results from the proposed system
are reported, showing its ability in detecting, locating and classifying ma-
lignant MCs clusters. For each image the system provides a bounding box
of the detected cluster, together with segmentation of individual MCs and
a malignancy score, indicating the confidence degree about the malignancy.
In Figs. 5.9 and 5.10 the green box represents the annotation bounding
box while detection bounding box is outlined in red together with single
detected MCs. In these results, the operating point was set such that the
FPpI rate was equal to 0.1. In 5.9 a TP detection is reported: the cluster
is accurately located and single MCs precisely identified. The correspond-
ing malignancy score is 1, showing the certainty of the network in having
identified a malignant cluster. In 5.10 a FP detection is shown. As it can
be seen, even if a false positive cluster has been detected the associated
malignancy score is very low, indicating the classifier is almost sure there
is not a malignant cluster. Starting from this observation, we decided to
investigate joint predictions and see if the combination of segmentation and
classification outputs would have contributed in reducing the number of
FPs and hence positively affect performances. Joint FROCs were obtained
by combining detector and classification outputs: the p-values associated to
each sample and obtained from segmentation masks were summed up with
the classifier prediction for the same sample, and then use these joint pre-
dictions as confidence degree for the decision rule. In 5.8 the FROC curve
obtained from joint predictions is reported together with the one obtained
from segmentation output alone. As it can be seen, the joint curve shows
a significant reduction of FPs, yielding a 95% sensitivity at 0.1 FPpI. This
proves that the combination of outputs from the two tasks, enforces the
correct predictions and reduces the errors, minimizing the number of FP
predictions and resulting in significantly improved detection performance.

5.6 Conclusions

In this thesis, a novel and effective method for the detection and classifica-
tion of MCs cluster in digital mammograms is presented. While recent deep
learning CAD systems only addressed the detection and diagnosis tasks sep-
arately, the proposed U-Net based CAD system can handle both detection
and classification at the same time using whole breast image. The method
is able to locate clustered MCs in the image by segmenting individual MCs,
and to provide a classification score that predicts the cluster malignancy.
This is accomplished by using a multi-task loss that exploits shared rep-
resentation among the related tasks enabling the model to better handle
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both detection and classification. The multi-task loss is made up ot two
different losses, specifically designed to face each single task. The problem
of heavy class skew between MCs and non-MCs pixels in the segmentation
task was addressed by defining a novel top-k ranking loss. As for the cluster
classification, focal loss was applied for the same reason of addressing the
high class imbalance between cluster and not cluster samples. Online hard
mining was also used to focus learning on hard samples by discarding the
majority of easily classified data. The performance of the proposed method
was evaluated both on detection and classification of clustered MCs. The
performance of the proposed model in detecting microcalcification clusters
were compared with the one of a basic U-Net, and in the same way the effec-
tiveness of the proposed method in classifying detected clusters was proved
by comparing results with the one of a U-Net with the only classification
branch. Obtained results show that in both cases multi-task learning is
beneficial with significantly improved performances with respect to single-
task systems. On one hand, the classification branch positively affects the
detection of MCs clusters, and equivalently the classification branch takes
advantages from segmentation of individual calcifications in giving predic-
tions about the malignancy of the cluster.

Finally the joint action of detector and classifier was analysed and showed
that combining predictions from the detection and the classification paths
can significantly reduce the number of false positive, improving overall per-
formance. Such a system, when applied to a clinical setting, would help
the radiologists to reduce the number of unnecessarily recalled women with
microcalcification clusters, thus improving the effectiveness of screening and
diagnosis processes.
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Figure 5.9: Example of a True Positive detected cluster
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Figure 5.10: Example of a False Positive detected cluster
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Chapter 6

Summary and Conclusions

Breast cancer is the most common cause of cancer death in women world-
wide. Early detection with correct diagnosis is extremely important to
increase the survival rate. In most western countries, screening programs
are organized in order to detect breast cancers at an early stage. The large
number of acquired screening mammograms are interpreted by radiologists,
who look for mammographic indicators of cancer like clusters of microcal-
cifications and masses. However, interpreting screening mammograms is a
big challenge even for an expert radiologist since the low prevalence makes
finding abnormalities difficult and because of the low visibility and variabil-
ity in the appearance of the lesions. Over the past decades several strategies
have been adopted to improve breast cancer detection and among them is
the development of Computer Aided Detection or Diagnosis systems, that
are meant to assist radiologists in finding and locating abnormalities on the
images and supporting their diagnosis response and a lot of solutions and
methodologies have been proposed in the last decades. Even though tradi-
tional CAD systems show a sensitivity similar to radiologists, there are still
a few hundred, false positives for every true positive in a screening setting,
limiting the benefit that the CAD system can provide. However the success
of novel machine learning algorithms based on deep learning convolutional
neural network has enabled a new era for CAD system. The aim of this the-
sis was to develop a full computer aided detection and diagnosis system for
clustered microcalcifications that overcomed the limitations of traditional
CAD system, able to reduce the gap between CAD systems and radiologists
in terms of false positives while maintaining an high sensitivity standard.
This has been done after an in-depth analysis of the limitations of the exist-
ing methodologies and by exploiting the advantages of novel deep learning
algorithms.

In chapter 3 the problem of detecting individual microcalcifications was
addressed. The problem was treated as a classification problem in which
individual pixels of the mammogram are classified as belonging to a micro-
calcification (i.e., to the positive class) or not (i.e., to the negative class).
Like in other medical image analysis applications dealing with computerized
detection of lesions, the vast majority of image locations do not contain the
searched objects, and this results into an imbalance between the positive
and the negative classes. As a consequence, learning an effective classifier
is very difficult. To address this the thesis a two stage classification scheme
was proposed, that combines the benefits of two powerful methods detecting
microcalcifications, Deep Cascade and Deep Convolutional Neural Network.
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Experiments were done on a database of 1, 066 mammograms acquired with
GE Senographe systems from the Radboud University Medical Center (Ni-
jmegen, The Netherlands) after referral in screening. Results showed the
effectiveness of the method, whose performance were statistically signifi-
cantly higher than Deep Cascade and CNN alone, and yielded an average
improvement in mean sensitivity of 3.19% and 2.45% respectively.

Chapter 4 still faced the problem of detecting individual calcifications
by focusing on the importance of image context for the task of accurately
detecting small lesions. To this aim a multi-context ensemble of Convolu-
tional Neural Networks was proposed, aiming at learning different levels of
image spatial context. The main innovation behind the proposed method
is the use of multiple depth CNNs, individually trained on image patches of
different dimensions and then combined together. In this way the final en-
semble was able to find and locate MCs on the image by exploiting both the
local features and the surrounding context of the lesion. Experiments were
done on the publicly available datasets, INbreast. Statistically significantly
better detection performance were obtained by the proposed ensemble with
respect to other approaches in the literature, demonstrating its effectiveness
in the detection of MCs.

Chapter 5 brings the gap between the detection of individual microcal-
cification and the detection and diagnosis of microcalcification clusters. For
this purpose a novel multi-task learning system was presented, that is able
to simultaneously detect and classify MCs cluster by means of a modified
Unet. Individual MCs are accurately segmented by the encoder-decoder
path while a classification branch in the bottleneck is meant to predict the
malignancy of the potentially detected cluster. The network was trained by
using a multi-task loss that uses shared representation among the related
tasks enabling the model to better handle both detection and classification.
The system was tested on a database of digital mammogram exams col-
lected from DIAG institutional archive. The performance of the proposed
model in detecting microcalcification clusters was compared with the one of
a basic Unet, and in the same way its effectiveness in classifying detected
clusters was proved by comparing results with the one of a Unet with the
only classification branch. Obtained results show that in both cases multi-
task learning is beneficial with significantly improved performances with
respect to single-task systems. On an image level, a sensitivity of ' 0.85 at
0.1 false positives (FP) per image was achieved togheter with a classification
AUC = 0.9346, proving the ability of the method in effectively detect and
classify MCs clusters by reducing the number of FPs, that was the main goal
of this thesis. Such a system, if applied to a routine clinical environment,
would be of significant help to the radiologists in significantly reduce the
number of unnecessarily recalled women, thus improving the effectiveness
of screening and diagnosis processes.

For future work, there are different directions that can be taken. Firstly,
other network architectures can be employed for facing the multi-task learn-
ing problem e.g. Faster R-CNN [122] and Mask R-CNN [123]. Faster R-
CNN is meant to face classification and bounding box regression problems
where Mask R-CNN adds a branch in parallel to the existing branches in
[122] to also predict segmentation masks in a pixel-to-pixel manner. Sec-
ondly, a next step could be the inclusion of the cancer classification into
stages so as to provide the severity of malignancy associated to a lesion,
which could further help the radiologists in the diagnostic decision. More-
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over, the majority of the methods proposed in this work, even though de-
signed for the microcalcification detection task, could be more generally
applicable to other small lesion detection and classification problems in
medical image analysis such as the automated detection of retinal microa-
neurysms in digital color fundus images. This would further contribute to
the growth that deep learning has brought in the application of machine
learning techniques for solving medical problems.
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