178 research outputs found

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    A Multi-objective Evolutionary Algorithm to solve Complex Optimization Problems

    Get PDF
    Multi-objective optimization problem formulations reflect pragmatic modeling of several real-life complex optimization problems. In many of them the considered objectives are competitive with each other; emphasizing only one of them during solution generation and evolution incurs high probability of producing a one-sided solution, which is unacceptable with respect to other objectives. An appropriate solution to the multi-objective optimization problem is to investigate a set of solutions that satisfy all of the competing objectives to an acceptable extent, where no solution in the solution set is dominated by others in terms of objective optimization. In this work, we investigate well known Non-dominated Sorting Genetic Algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA-II), to find Pareto optimal solutions for two real-life problems: Task-based Sailor Assignment Problem (TSAP) and Coverage and Lifetime Optimization Problem in Wireless Sensor Networks (CLOP). Both of these problems are multi-objective problems. TSAP constitutes five multi-directional objectives, whereas CLOP is composed of two competing objectives. To validate the special operators developed, these two test bed problems have been used. Finally, traditional NSGA-II and SPEA-II have been blended with these special operators to generate refined solutions of these multi-objective optimization problems

    Towards Efficient Sensor Placement for Industrial Wireless Sensor Network

    Get PDF
    Industrial Wireless Sensor Network (IWSN) is the recent emergence in wireless technologies that facilitate industrial applications. IWSN constructs a reliable and self-responding industrial system using interconnected intelligent sensors. These sensors continuously monitor and analyze the industrial process to evoke its best performance. Since the sensors are resource-constrained and communicate wirelessly, the excess sensor placement utilizes more energy and also affects the environment. Thus, sensors need to use efficiently to minimize their network traffic and energy utilization. In this paper, we proposed a vertex coloring based optimal sensor placement to determine the minimal sensor requirement for an efficient network

    Cost-efficient deployment of multi-hop wireless networks over disaster areas using multi-objective meta-heuristics

    Get PDF
    Nowadays there is a global concern with the growing frequency and magnitude of natural disasters, many of them associated with climate change at a global scale. When tackled during a stringent economic era, the allocation of resources to efficiently deal with such disaster situations (e.g., brigades, vehicles and other support equipment for fire events) undergoes severe budgetary limitations which, in several proven cases, have lead to personal casualties due to a reduced support equipment. As such, the lack of enough communication resources to cover the disaster area at hand may cause a risky radio isolation of the deployed teams and ultimately fatal implications, as occurred in different recent episodes in Spain and USA during the last decade. This issue becomes even more dramatic when understood jointly with the strong budget cuts lately imposed by national authorities. In this context, this article postulates cost-efficient multi-hop communications as a technological solution to provide extended radio coverage to the deployed teams over disaster areas. Specifically, a Harmony Search (HS) based scheme is proposed to determine the optimal number, position and model of a set of wireless relays that must be deployed over a large-scale disaster area. The approach presented in this paper operates under a Pareto-optimal strategy, so a number of different deployments is then produced by balancing between redundant coverage and economical cost of the deployment. This information can assist authorities in their resource provisioning and/or operation duties. The performance of different heuristic operators to enhance the proposed HS algorithm are assessed and discussed by means of extensive simulations over synthetically generated scenarios, as well as over a more realistic, orography-aware setup constructed with LIDAR (Laser Imaging Detection and Ranging) data captured in the city center of Bilbao (Spain)

    Data Collection Protocols in Wireless Sensor Networks

    Get PDF
    In recent years, wireless sensor networks have became the effective solutions for a wide range of IoT applications. The major task of this network is data collection, which is the process of sensing the environment, collecting relevant data, and sending them to the server or BS. In this chapter, classification of data collection protocols are presented with the help of different parameters such as network lifetime, energy, fault tolerance, and latency. To achieve these parameters, different techniques such as multi-hop, clustering, duty cycling, network coding, aggregation, sink mobility, directional antennas, and cross-layer solutions have been analyzed. The drawbacks of these techniques are discussed. Finally, the future work for routing protocols in wireless sensor networks is discussed

    ๊ฐœ๋ฏธ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋“œ๋ก ์˜ ์ œ์„ค ๊ฒฝ๋กœ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2022.2. ๊น€๋™๊ทœ.Drones can overcome the limitation of ground vehicles by replacing the congestion time and allowing rapid service. For sudden snowfall with climate change, a quickly deployed drone can be a flexible alternative considering the deadhead route and the labor costs. The goal of this study is to optimize a drone arc routing problem (D-ARP), servicing the required roads for snow removal. A D-ARP creates computational burden especially in large network. The D-ARP has a large search space due to its exponentially increased candidate route, arc direction decision, and continuous arc space. To reduce the search space, we developed the auxiliary transformation method in ACO algorithm and adopted the random walk method. The contribution of the work is introducing a new problem and optimization approach of D-ARP in snow removal operation and reduce its search space. The optimization results confirmed that the drone travels shorter distance compared to the truck with a reduction of 5% to 22%. Furthermore, even under the length constraint model, the drone shows 4% reduction compared to the truck. The result of the test sets demonstrated that the adopted heuristic algorithm performs well in the large size networks in reasonable time. Based on the results, introducing a drone in snow removal is expected to save the operation cost in practical terms.๋“œ๋ก ์€ ํ˜ผ์žก์‹œ๊ฐ„๋Œ€๋ฅผ ๋Œ€์ฒดํ•˜๊ณ  ๋น ๋ฅธ ์„œ๋น„์Šค๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ์œผ๋กœ์จ ์ง€์ƒ์ฐจ๋Ÿ‰์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ‘์ž‘์Šค๋Ÿฐ ๊ฐ•์„ค์˜ ๊ฒฝ์šฐ์—, ๋“œ๋ก ๊ณผ ๊ฐ™์ด ๋น ๋ฅด๊ฒŒ ํˆฌ์ž…ํ•  ์ˆ˜ ์žˆ๋Š” ์„œ๋น„์Šค๋Š” ์šดํ–‰ ๊ฒฝ๋กœ์™€ ๋…ธ๋™๋น„์šฉ์„ ๊ณ ๋ คํ–ˆ์„ ๋•Œ๋„ ์œ ์—ฐํ•œ ์šด์˜ ์˜ต์…˜์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๋“œ๋ก  ์•„ํฌ ๋ผ์šฐํŒ…(D-ARP)์„ ์ตœ์ ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ์ด๋Š” ์ œ์„ค์— ํ•„์š”ํ•œ ๋„๋กœ๋ฅผ ์„œ๋น„์Šคํ•˜๋Š” ๊ฒฝ๋กœ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋“œ๋ก  ์•„ํฌ ๋ผ์šฐํŒ…์€ ํŠนํžˆ ํฐ ๋„คํŠธ์›Œํฌ์—์„œ ์ปดํ“จํ„ฐ ๋ถ€ํ•˜๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๋‹ค์‹œ ๋งํ•ดD-ARP๋Š” ํฐ ๊ฒ€์ƒ‰๊ณต๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ํ›„๋ณด ๊ฒฝ๋กœ ๋ฐ ํ˜ธ์˜ ๋ฐฉํ–ฅ ๊ฒฐ์ • ๊ทธ๋ฆฌ๊ณ  ์—ฐ์†์ ์ธ ํ˜ธ์˜ ๊ณต๊ฐ„์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ๋‹ค. ๊ฒ€์ƒ‰๊ณต๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” ๊ฐœ๋ฏธ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋ณด์กฐ๋ณ€ํ™˜๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์„ ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ ๋˜ํ•œ ๋žœ๋ค์›Œํฌ ๊ธฐ๋ฒ•์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ธฐ์—ฌ๋Š” ์ œ์„ค ์šด์˜์— ์žˆ์–ด D-ARP๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ์ตœ์ ํ™” ์ ‘๊ทผ๋ฒ•์„ ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ ๊ฒ€์ƒ‰๊ณต๊ฐ„์„ ์ตœ์†Œํ™”ํ•œ ๊ฒƒ์ด๋‹ค. ์ตœ์ ํ™” ๊ฒฐ๊ณผ, ๋“œ๋ก ์€ ์ง€์ƒํŠธ๋Ÿญ์— ๋น„ํ•ด ์•ฝ 5% ~ 22%์˜ ๊ฒฝ๋กœ ๋น„์šฉ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค. ๋‚˜์•„๊ฐ€ ๊ธธ์ด ์ œ์•ฝ ๋ชจ๋ธ์—์„œ๋„ ๋“œ๋ก ์€ 4%์˜ ๋น„์šฉ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ์‹คํ—˜๊ฒฐ๊ณผ๋Š” ์ ์šฉํ•œ ํœด๋ฆฌ์Šคํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ํฐ ๋„คํŠธ์›Œํฌ์—์„œ๋„ ํ•ฉ๋ฆฌ์  ์‹œ๊ฐ„ ๋‚ด์— ์ตœ์ ํ•ด๋ฅผ ์ฐพ์Œ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋“œ๋ก ์„ ์ œ์„ค์— ๋„์ž…ํ•˜๋Š” ๊ฒƒ์€ ๋ฏธ๋ž˜์— ์ œ์„ค ์šด์˜ ๋น„์šฉ์„ ์‹ค์งˆ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 4 1.1. Study Background 4 1.2. Purpose of Research 6 Chapter 2. Literature Review 7 2.1. Drone Arc Routing problem 7 2.2. Snow Removal Routing Problem 8 2.3. The Classic ARPs and Algorithms 9 2.4. Large Search Space and Arc direction 11 Chapter 3. Method 13 3.1. Problem Statement 13 3.2. Formulation 16 Chapter 4. Algorithm 17 4.1. Overview 17 4.2. Auxilary Transformation Method 18 4.3. Ant Colony Optimization (ACO) 20 4.4. Post Process for Arc Direction Decision 23 4.5. Length Constraint and Random Walk 24 Chapter 5. Results 27 5.1. Application in Toy Network 27 5.2. Application in Real-world Networks 29 5.3. Application of the Refill Constraint in Seoul 31 Chapter 6. Conclusion 34 References 35 Acknowledgment 40์„

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Energy-aware evolutionary optimization for cyber-physical systems in Industry 4.0

    Get PDF
    • โ€ฆ
    corecore