82 research outputs found

    ADM : A Density And Priority Levels Aware Protocol For Broadcasting In Vehicular Ad-Hoc Networks

    No full text
    The broadcasting communication mode is widely used in Vehicular Ad~hoc Networks (VANETs). It is used for sending emergency messages, road-traffic information or to help routing protocols to determine routes. This communication mode is known to be hard to achieve efficiently since it depends on the network density. Indeed, broadcasting methods may cause network congestion if they are not well designed. This paper introduces a novel Autonomic Dissemination Method (ADM) which delivers messages in accordance with given message classes and network density levels. The proposed approach is based on two steps: an offline optimization process and an online adaptation to the network characteristics. ADM allows each node to dynamically adapt its broadcasting strategy not only with respect to the network density, but also according to the class of the message to send: emergency (high-priority), road-traffic (medium-priority) or either comfort message (low-priority). The ultimate goal of ADM is to make effective use of radio resources when there are many messages to send simultaneously. This approach increases the efficiency of the broadcast process in terms of message delivery ratio, latency and interferences reduction. The autonomic computing paradigm improves the robustness of protocols

    Timely and reliable packets delivery over Internet of Vehicles (IoVs) for road accidents prevention: a cross-layer approach

    Get PDF
    With the envisioned era of Internet of Things (IoTs), all aspects of Intelligent Transportation Systems (ITS) will be connected to improve transport safety, relieve traffic congestion, reduce air pollution, enhance the comfort of transportation and significantly reduce road accidents. In IoVs, regular exchange of current position, direction, velocity, etc., enables mobile vehicles to predict an upcoming accident and alert the human drivers in time or proactively take precautionary actions to avoid the accident. The actualization of this concept requires the use of channel access protocols that can guarantee reliable and timely broadcast of safety messages. This paper investigates the application of network coding concept to increase content of every transmission and achieve improved broadcast reliability with less number of retransmission. In particular, we proposed Code Aided Retransmission-based Error Recovery (CARER) scheme, introduced an RTB/CTB handshake to overcome hidden node problem and reduce packets collision rate. In order to avoid broadcast storm problem associated with the use of RTB/CTB packet in a broadcast transmission, we developed a rebroadcasting metric used to successfully select a vehicle to rebroadcast the encoded message. The performance of CARER protocol is clearly shown with detailed theoretical analysis and further validated with simulation experiments

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Natural computing for vehicular networks

    Get PDF
    La presente tesis aborda el diseño inteligente de soluciones para el despliegue de redes vehiculares ad-hoc (vehicular ad hoc networks, VANETs). Estas son redes de comunicación inalámbrica formada principalmente por vehículos y elementos de infraestructura vial. Las VANETs ofrecen la oportunidad para desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y eficiencia vial. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el diseño de la infraestructura de estaciones base necesaria y el encaminamiento (routing) y difusión (broadcasting) de paquetes de datos, que todavía no han podido resolverse empleando estrategias clásicas. Es por tanto necesario crear y estudiar nuevas técnicas que permitan de forma eficiente, eficaz, robusta y flexible resolver dichos problemas. Este trabajo de tesis doctoral propone el uso de computación inspirada en la naturaleza o Computación Natural (CN) para tratar algunos de los problemas más importantes en el ámbito de las VANETs, porque representan una serie de algoritmos versátiles, flexibles y eficientes para resolver problemas complejos. Además de resolver los problemas VANET en los que nos enfocamos, se han realizado avances en el uso de estas técnicas para que traten estos problemas de forma más eficiente y eficaz. Por último, se han llevado a cabo pruebas reales de concepto empleando vehículos y dispositivos de comunicación reales en la ciudad de Málaga (España). La tesis se ha estructurado en cuatro grandes fases. En la primera fase, se han estudiado los principales fundamentos en los que se basa esta tesis. Para ello se hizo un estudio exhaustivo sobre las tecnologías que emplean las redes vehiculares, para así, identificar sus principales debilidades. A su vez, se ha profundizado en el análisis de la CN como herramienta eficiente para resolver problemas de optimización complejos, y de cómo utilizarla en la resolución de los problemas en VANETs. En la segunda fase, se han abordado cuatro problemas de optimización en redes vehiculares: la transferencia de archivos, el encaminamiento (routing) de paquetes, la difusión (broadcasting) de mensajes y el diseño de la infraestructura de estaciones base necesaria para desplegar redes vehiculares. Para la resolución de dichos problemas se han propuesto diferentes algoritmos CN que se clasifican en algoritmos evolutivos (evolutionary algorithms, EAs), métodos de inteligencia de enjambre (swarm intelligence, SI) y enfriamiento simulado (simulated annealing, SA). Los resultados obtenidos han proporcionado protocolos de han mejorado de forma significativa las comunicaciones en VANETs. En la tercera y última fase, se han realizado experimentos empleando vehículos reales circulando por las carreteras de Málaga y que se comunicaban entre sí. El principal objetivo de estas pruebas ha sido el validar las mejoras que presentan los protocolos que se han optimizado empleando CN. Los resultados obtenidos de las fases segunda y tercera confirman la hipótesis de trabajo, que la CN es una herramienta eficiente para tratar el diseño inteligente en redes vehiculares

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Models and Protocols for Resource Optimization in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are built on a mix of fixed and mobile nodes interconnected via wireless links to form a multihop ad hoc network. An emerging application area for wireless mesh networks is their evolution into a converged infrastructure used to share and extend, to mobile users, the wireless Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned broadband links to subscriber owned low-speed connections. In this thesis we address different key research issues for this networking scenario. First, we propose an analytical predictive tool, developing a queuing network model capable of predicting the network capacity and we use it in a load aware routing protocol in order to provide, to the end users, a quality of service based on the throughput. We then extend the queuing network model and introduce a multi-class queuing network model to predict analytically the average end-to-end packet delay of the traffic flows among the mobile end users and the Internet. The analytical models are validated against simulation. Second, we propose an address auto-configuration solution to extend the coverage of a wireless mesh network by interconnecting it to a mobile ad hoc network in a transparent way for the infrastructure network (i.e., the legacy Internet interconnected to the wireless mesh network). Third, we implement two real testbed prototypes of the proposed solutions as a proof-of-concept, both for the load aware routing protocol and the auto-configuration protocol. Finally we discuss the issues related to the adoption of ad hoc networking technologies to address the fragility of our communication infrastructure and to build the next generation of dependable, secure and rapidly deployable communications infrastructures
    corecore