140 research outputs found

    A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability

    Get PDF
    Background: Photoplethysmography (PPG) is a low-cost and easy-to-implement method to measure vital signs, including heart rate (HR) and pulse rate variability (PRV) which widely used as a substitute of heart rate variability (HRV). The method is used in various wearable devices. For example, Samsung smartwatches are PPG-based open-source wristbands used in remote well-being monitoring and fitness applications. However, PPG is highly susceptible to motion artifacts and environmental noise. A validation study is required to investigate the accuracy of PPG-based wearable devices in free-living conditions.Objective: We evaluate the accuracy of PPG signals-collected by the Samsung Gear Sport smartwatch in free-living conditions-in terms of HR and time-domain and frequency-domain HRV parameters against a medical-grade chest electrocardiogram (ECG) monitor.Methods: We conducted 24-hours monitoring using a Samsung Gear Sport smartwatch and a Shimmer3 ECG device. The monitoring included 28 participants (14 male and 14 female), where they engaged in their daily routines. We evaluated HR and HRV parameters during the sleep and awake time. The parameters extracted from the smartwatch were compared against the ECG reference. For the comparison, we employed the Pearson correlation coefficient, Bland-Altman plot, and linear regression methods.Results: We found a significantly high positive correlation between the smartwatch's and Shimmer ECG's HR, time-domain HRV, LF, and HF and a significant moderate positive correlation between the smartwatch's and shimmer ECG's LF/HF during sleep time. The mean biases of HR, time-domain HRV, and LF/HF were low, while the biases of LF and HF were moderate during sleep. The regression analysis showed low error variances of HR, AVNN, and pNN50, moderate error variances of SDNN, RMSSD, LF, and HF, and high error variances of LF/HF during sleep. During the awake time, there was a significantly high positive correlation of AVNN and a moderate positive correlation of HR, while the other parameters indicated significantly low positive correlations. RMSSD and SDNN showed low mean biases, and the other parameters had moderate mean biases. In addition, AVNN had moderate error variance while the other parameters indicated high error variances.Conclusion: The Samsung smartwatch provides acceptable HR, time-domain HRV, LF, and HF parameters during sleep time. In contrast, during the awake time, AVNN and HR show satisfactory accuracy, and the other HRV parameters have high errors.</p

    Sviluppo di un metodo innovativo per la misura del comfort termico attraverso il monitoraggio di parametri fisiologici e ambientali in ambienti indoor

    Get PDF
    openLa misura del comfort termico in ambienti indoor è un argomento di interesse per la comunità scientifica, poiché il comfort termico incide profondamente sul benessere degli utenti ed inoltre, per garantire condizioni di comfort ottimali, gli edifici devono affrontare costi energetici elevati. Anche se esistono norme nel campo dell'ergonomia del comfort che forniscono linee guida per la valutazione del comfort termico, può succedere che in contesti reali sia molto difficile ottenere una misurazione accurata. Pertanto, per migliorare la misura del comfort termico negli edifici, la ricerca si sta concentrando sulla valutazione dei parametri personali e fisiologici legati al comfort termico, per creare ambienti su misura per l’utente. Questa tesi presenta diversi contributi riguardo questo argomento. Infatti, in questo lavoro di ricerca, sono stati implementati una serie di studi per sviluppare e testare procedure di misurazione in grado di valutare quantitativamente il comfort termico umano, tramite parametri ambientali e fisiologici, per catturare le peculiarità che esistono tra i diversi utenti. In primo luogo, è stato condotto uno studio in una camera climatica controllata, con un set di sensori invasivi utilizzati per la misurazione dei parametri fisiologici. L'esito di questa ricerca è stato utile per ottenere una prima accuratezza nella misurazione del comfort termico dell'82%, ottenuta mediante algoritmi di machine learning (ML) che forniscono la sensazione termica (TSV) utilizzando la variabilità della frequenza cardiaca (HRV) , parametro che la letteratura ha spesso riportato legato sia al comfort termico dell'utenza che alle grandezze ambientali. Questa ricerca ha dato origine a uno studio successivo in cui la valutazione del comfort termico è stata effettuata utilizzando uno smartwatch minimamente invasivo per la raccolta dell’HRV. Questo secondo studio consisteva nel variare le condizioni ambientali di una stanza semi-controllata, mentre i partecipanti potevano svolgere attività di ufficio ma in modo limitato, ovvero evitando il più possibile i movimenti della mano su cui era indossato lo smartwatch. Con questa configurazione, è stato possibile stabilire che l'uso di algoritmi di intelligenza artificiale (AI) e il set di dati eterogeneo creato aggregando parametri ambientali e fisiologici, può fornire una misura di TSV con un errore medio assoluto (MAE) di 1.2 e un errore percentuale medio assoluto (MAPE) del 20%. Inoltre, tramite il Metodo Monte Carlo (MCM) è stato possibile calcolare l'impatto delle grandezze in ingresso sul calcolo del TSV. L'incertezza più alta è stata raggiunta a causa dell'incertezza nella misura della temperatura dell'aria (U = 14%) e dell'umidità relativa (U = 10,5%). L'ultimo contributo rilevante ottenuto con questa ricerca riguarda la misura del comfort termico in ambiente reale, semi controllato, in cui il partecipante non è stato costretto a limitare i propri movimenti. La temperatura della pelle è stata inclusa nel set-up sperimentale, per migliorare la misurazione del TSV. I risultati hanno mostrato che l'inclusione della temperatura della pelle per la creazione di modelli personalizzati, realizzati utilizzando i dati provenienti dal singolo partecipante, porta a risultati soddisfacenti (MAE = 0,001±0,0003 e MAPE = 0,02%±0,09%). L'approccio più generalizzato, invece, che consiste nell'addestrare gli algoritmi sull'intero gruppo di partecipanti tranne uno, e utilizzare quello tralasciato per il test, fornisce prestazioni leggermente inferiori (MAE = 1±0.2 e MAPE = 25% ±6%). Questo risultato evidenzia come in condizioni semi-controllate, la previsione di TSV utilizzando la temperatura della pelle e l'HRV possa essere eseguita con un certo grado di incertezza.Measuring human thermal comfort in indoor environments is a topic of interest in the scientific community, since thermal comfort deeply affects the well-being of occupants and furthermore, to guarantee optimal comfort conditions, buildings must face high energy costs. Even if there are standards in the field of the ergonomics of the thermal environment that provide guidelines for thermal comfort assessment, it can happen that in real-world settings it is very difficult to obtain an accurate measurement. Therefore, to improve the measurement of thermal comfort of occupants in buildings, research is focusing on the assessment of personal and physiological parameters related to thermal comfort, to create environments carefully tailored to the occupant that lives in it. This thesis presents several contributions to this topic. In fact, in the following research work, a set of studies were implemented to develop and test measurement procedures capable of quantitatively assessing human thermal comfort, by means of environmental and physiological parameters, to capture peculiarities among different occupants. Firstly, it was conducted a study in a controlled climatic chamber with an invasive set of sensors used for measuring physiological parameters. The outcome of this research was helpful to achieve a first accuracy in the measurement of thermal comfort of 82%, obtained by training machine learning (ML) algorithms that provide the thermal sensation vote (TSV) by means of environmental quantities and heart rate variability (HRV), a parameter that literature has often reported being related to both users' thermal comfort. This research gives rise to a subsequent study in which thermal comfort assessment was made by using a minimally invasive smartwatch for collecting HRV. This second study consisted in varying the environmental conditions of a semi-controlled test-room, while participants could carry out light-office activities but in a limited way, i.e. avoiding the movements of the hand on which the smartwatch was worn as much as possible. With this experimental setup, it was possible to establish that the use of artificial intelligence (AI) algorithms (such as random forest or convolutional neural networks) and the heterogeneous dataset created by aggregating environmental and physiological parameters, can provide a measure of TSV with a mean absolute error (MAE) of 1.2 and a mean absolute percentage error (MAPE) of 20%. In addition, by using of Monte Carlo Method (MCM), it was possible to compute the impact of the uncertainty of the input quantities on the computation of the TSV. The highest uncertainty was reached due to the air temperature uncertainty (U = 14%) and relative humidity (U = 10.5%). The last relevant contribution obtained with this research work concerns the measurement of thermal comfort in a real-life setting, semi-controlled environment, in which the participant was not forced to limit its movements. Skin temperature was included in the experimental set-up, to improve the measurement of TSV. The results showed that the inclusion of skin temperature for the creation of personalized models, made by using data coming from the single participant brings satisfactory results (MAE = 0.001±0.0003 and MAPE = 0.02%±0.09%). On the other hand, the more generalized approach, which consists in training the algorithms on the whole bunch of participants except one, and using the one left out for the test, provides slightly lower performances (MAE = 1±0.2 and MAPE = 25%±6%). This result highlights how in semi-controlled conditions, the prediction of TSV using skin temperature and HRV can be performed with acceptable accuracy.INGEGNERIA INDUSTRIALEembargoed_20220321Morresi, Nicol

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    PPG-based Heart Rate Estimation with Efficient Sensor Sampling and Learning Models

    Full text link
    Recent studies showed that Photoplethysmography (PPG) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy. However, despite of prior research efforts, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling and the resource-intensive machine-learning models. In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices. More specifically, we seek to design techniques that could provide high-accuracy HR estimation with low-frequency PPG sampling, small model size, and fast inference time. First, we show that by combining signal processing and ML, it is possible to reduce the PPG sampling frequency from 125 Hz to only 25 Hz while providing higher HR estimation accuracy. This combination also helps to reduce the ML model feature size, leading to smaller models. Additionally, we present a comprehensive analysis on different ML models and feature sizes to compare their accuracy, model size, and inference time. The models explored include Decision Tree (DT), Random Forest (RF), K-nearest neighbor (KNN), Support vector machines (SVM), and Multi-layer perceptron (MLP). Experiments were conducted using both a widely-utilized dataset and our self-collected dataset. The experimental results show that our method by combining signal processing and ML had only 5% error for HR estimation using low-frequency PPG data. Moreover, our analysis showed that DT models with 10 to 20 input features usually have good accuracy, while are several magnitude smaller in model sizes and faster in inference time

    The Apple Watch for monitoring mental health–related physiological symptoms : literature review

    Get PDF
    Background: An anticipated surge in mental health service demand related to COVID-19 has motivated the use of novel methods of care to meet demand, given workforce limitations. Digital health technologies in the form of self-tracking technology have been identified as a potential avenue, provided sufficient evidence exists to support their effectiveness in mental health contexts. Objective: This literature review aims to identify current and potential physiological or physiologically related monitoring capabilities of the Apple Watch relevant to mental health monitoring and examine the accuracy and validation status of these measures and their implications for mental health treatment. Methods: A literature review was conducted from June 2021 to July 2021 of both published and gray literature pertaining to the Apple Watch, mental health, and physiology. The literature review identified studies validating the sensor capabilities of the Apple Watch. Results: A total of 5583 paper titles were identified, with 115 (2.06%) reviewed in full. Of these 115 papers, 19 (16.5%) were related to Apple Watch validation or comparison studies. Most studies showed that the Apple Watch could measure heart rate acceptably with increased errors in case of movement. Accurate energy expenditure measurements are difficult for most wearables, with the Apple Watch generally providing the best results compared with peers, despite overestimation. Heart rate variability measurements were found to have gaps in data but were able to detect mild mental stress. Activity monitoring with step counting showed good agreement, although wheelchair use was found to be prone to overestimation and poor performance on overground tasks. Atrial fibrillation detection showed mixed results, in part because of a high inconclusive result rate, but may be useful for ongoing monitoring. No studies recorded validation of the Sleep app feature; however, accelerometer-based sleep monitoring showed high accuracy and sensitivity in detecting sleep. Conclusions: The results are encouraging regarding the application of the Apple Watch in mental health, particularly as heart rate variability is a key indicator of changes in both physical and emotional states. Particular benefits may be derived through avoidance of recall bias and collection of supporting ecological context data. However, a lack of methodologically robust and replicated evidence of user benefit, a supportive health economic analysis, and concerns about personal health information remain key factors that must be addressed to enable broader uptake

    Evaluation of Wearable Electronics for Epilepsy: A Systematic Review

    Get PDF
    Epilepsy is a neurological disorder that affects 50 million people worldwide. It is characterised by seizures that can vary in presentation, from short absences to protracted convulsions. Wearable electronic devices that detect seizures have the potential to hail timely assistance for individuals, inform their treatment, and assist care and self-management. This systematic review encompasses the literature relevant to the evaluation of wearable electronics for epilepsy. Devices and performance metrics are identified, and the evaluations, both quantitative and qualitative, are presented. Twelve primary studies comprising quantitative evaluations from 510 patients and participants were collated according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Two studies (with 104 patients/participants) comprised both qualitative and quantitative evaluation components. Despite many works in the literature proposing and evaluating novel and incremental approaches to seizure detection, there is a lack of studies evaluating the devices available to consumers and researchers, and there is much scope for more complete evaluation data in quantitative studies. There is also scope for further qualitative evaluations amongst individuals, carers, and healthcare professionals regarding their use, experiences, and opinions of these devices

    Assessing the quality of heart rate variability estimated from wrist and finger PPG: A novel approach based on cross-mapping method

    Get PDF
    The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p &lt; 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics

    Motion-resilient Heart Rate Monitoring with In-ear Microphones

    Full text link
    With the soaring adoption of in-ear wearables, the research community has started investigating suitable in-ear heart rate (HR) detection systems. HR is a key physiological marker of cardiovascular health and physical fitness. Continuous and reliable HR monitoring with wearable devices has therefore gained increasing attention in recent years. Existing HR detection systems in wearables mainly rely on photoplethysmography (PPG) sensors, however, these are notorious for poor performance in the presence of human motion. In this work, leveraging the occlusion effect that can enhance low-frequency bone-conducted sounds in the ear canal, we investigate for the first time \textit{in-ear audio-based motion-resilient} HR monitoring. We first collected the HR-induced sound in the ear canal leveraging an in-ear microphone under stationary and three different activities (i.e., walking, running, and speaking). Then, we devise a novel deep learning based motion artefact (MA) mitigation framework to denoise the in-ear audio signals, followed by an HR estimation algorithm to extract HR. With data collected from 20 subjects over four activities, we demonstrate that hEARt, our end-to-end approach, achieves a mean absolute error (MAE) of 5.46±\pm6.50BPM, 12.34±\pm9.24BPM, 14.22±\pm10.69BPM and 15.44±\pm11.43BPM for stationary, walking, running and speaking, respectively, opening the door to a new non-invasive and affordable HR monitoring with usable performance for daily activities. Not only does the performance hEARt outperform that of previous in-ear HR monitoring work, but is comparable (and even better whenever full-body motion is concerned) to that reported by in-ear PPG works

    Continuous monitoring of health and mobility indicators in patients with cardiovascular disease: a review of recent technologies

    Get PDF
    Cardiovascular diseases kill 18 million people each year. Currently, a patient’s health is assessed only during clinical visits, which are often infrequent and provide little information on the person’s health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices. The ability to obtain such longitudinal, clinically relevant measurements could enhance the prevention, detection and treatment of cardiovascular diseases. This review discusses the advantages and disadvantages of various methods for monitoring patients with cardiovascular disease during daily life using wearable devices. We specifically discuss three distinct monitoring domains: physical activity monitoring, indoor home monitoring and physiological parameter monitoring

    Accuracy and Usability of a Novel Algorithm for Detection of Irregular Pulse Using a Smartwatch Among Older Adults: Observational Study

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is often paroxysmal and minimally symptomatic, hindering its diagnosis. Smartwatches may enhance AF care by facilitating long-term, noninvasive monitoring. OBJECTIVE: This study aimed to examine the accuracy and usability of arrhythmia discrimination using a smartwatch. METHODS: A total of 40 adults presenting to a cardiology clinic wore a smartwatch and Holter monitor and performed scripted movements to simulate activities of daily living (ADLs). Participants\u27 clinical and sociodemographic characteristics were abstracted from medical records. Participants completed a questionnaire assessing different domains of the device\u27s usability. Pulse recordings were analyzed blindly using a real-time realizable algorithm and compared with gold-standard Holter monitoring. RESULTS: The average age of participants was 71 (SD 8) years; most participants had AF risk factors and 23% (9/39) were in AF. About half of the participants owned smartphones, but none owned smartwatches. Participants wore the smartwatch for 42 (SD 14) min while generating motion noise to simulate ADLs. The algorithm determined 53 of the 314 30-second noise-free pulse segments as consistent with AF. Compared with the gold standard, the algorithm demonstrated excellent sensitivity (98.2%), specificity (98.1%), and accuracy (98.1%) for identifying irregular pulse. Two-thirds of participants considered the smartwatch highly usable. Younger age and prior cardioversion were associated with greater overall comfort and comfort with data privacy with using a smartwatch for rhythm monitoring, respectively. CONCLUSIONS: A real-time realizable algorithm analyzing smartwatch pulse recordings demonstrated high accuracy for identifying pulse irregularities among older participants. Despite advanced age, lack of smartwatch familiarity, and high burden of comorbidities, participants found the smartwatch to be highly acceptable
    • …
    corecore