
Review

The Apple Watch for Monitoring Mental Health–Related
Physiological Symptoms: Literature Review

Gough Yumu Lui1, BEng, PhD; Dervla Loughnane2, BSc, MSc; Caitlin Polley3, BEng; Titus Jayarathna1, BSc, PhD;

Paul P Breen1,4, BEng, PhD
1The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, NSW, Australia
2Virtual Psychologist, Southport Park, QLD, Australia
3Electrical and Electronic Engineering, School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, Australia
4Translational Health Research Institute, Western Sydney University, Penrith, NSW, Australia

Corresponding Author:
Gough Yumu Lui, BEng, PhD
The MARCS Institute for Brain, Behaviour and Development
Western Sydney University
Locked Bag 1797
Penrith, NSW, 2751
Australia
Phone: 61 298525222
Email: G.Lui@westernsydney.edu.au

Abstract

Background: An anticipated surge in mental health service demand related to COVID-19 has motivated the use of novel methods
of care to meet demand, given workforce limitations. Digital health technologies in the form of self-tracking technology have
been identified as a potential avenue, provided sufficient evidence exists to support their effectiveness in mental health contexts.

Objective: This literature review aims to identify current and potential physiological or physiologically related monitoring
capabilities of the Apple Watch relevant to mental health monitoring and examine the accuracy and validation status of these
measures and their implications for mental health treatment.

Methods: A literature review was conducted from June 2021 to July 2021 of both published and gray literature pertaining to
the Apple Watch, mental health, and physiology. The literature review identified studies validating the sensor capabilities of the
Apple Watch.

Results: A total of 5583 paper titles were identified, with 115 (2.06%) reviewed in full. Of these 115 papers, 19 (16.5%) were
related to Apple Watch validation or comparison studies. Most studies showed that the Apple Watch could measure heart rate
acceptably with increased errors in case of movement. Accurate energy expenditure measurements are difficult for most wearables,
with the Apple Watch generally providing the best results compared with peers, despite overestimation. Heart rate variability
measurements were found to have gaps in data but were able to detect mild mental stress. Activity monitoring with step counting
showed good agreement, although wheelchair use was found to be prone to overestimation and poor performance on overground
tasks. Atrial fibrillation detection showed mixed results, in part because of a high inconclusive result rate, but may be useful for
ongoing monitoring. No studies recorded validation of the Sleep app feature; however, accelerometer-based sleep monitoring
showed high accuracy and sensitivity in detecting sleep.

Conclusions: The results are encouraging regarding the application of the Apple Watch in mental health, particularly as heart
rate variability is a key indicator of changes in both physical and emotional states. Particular benefits may be derived through
avoidance of recall bias and collection of supporting ecological context data. However, a lack of methodologically robust and
replicated evidence of user benefit, a supportive health economic analysis, and concerns about personal health information remain
key factors that must be addressed to enable broader uptake.

(JMIR Ment Health 2022;9(9):e37354) doi: 10.2196/37354
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Introduction

Background
The COVID-19 pandemic has caused disruptions to the way
people go about their daily lives. From the changing nature of
work and employment, economic factors, the isolation brought
about by stay-at-home orders, and the uncertainty of
ever-changing health advice and medical directives, it is
anticipated that these stresses will lead to an increase in mental
health service demand beyond the current capacity [1]. The
adoption of digital health technologies can potentially alleviate
this burden.

Wearable devices are electronic sensors that are designed to be
placed onto, or near to, the skin to measure signals from the
body. Such devices can include wrist-worn devices similar to
a watch or wristband, which can pair wirelessly with a mobile
phone. Such devices have become a popular behavioral
intervention for monitoring physiological activity to promote
a healthy lifestyle [2]. Early forms of health monitoring include
pedometers that would track daily steps and derive basic energy
expenditure (EE) [3]. The potential of wearable devices for the
monitoring of health has become particularly attractive to health
care innovators seeking to enable new models of telehealth.
However, these devices monitor physiological signals or
physiologically related proxies (such as physical activity) of
the user rather than mental health. Such devices may take the
form of fitness trackers, which are typically simpler, lower-cost,
and fixed-function devices with limited capabilities. Such
devices often cannot support third-party apps, have limited user
interactivity, and focus on fitness monitoring as their primary
goal. By contrast, smartwatches are usually higher-end devices
with a richer mix of sensors and user interfaces and a flexible,
extensible software architecture permitting third-party software
access and extended features such as voice calling, media
control, and messaging. As the market matures, there are some
products that may blur the lines; however, it is the richer suite
of sensors, user interfaces, and support for third-party apps and
data access, which makes these devices attractive for mental
health research and monitoring purposes.

Mental health can be defined as “a state of wellbeing in which
the individual realizes his or her own abilities, can cope with
the normal stresses of life, can work productively and fruitfully,
and is able to make a contribution to his or her community” [4].
This state is intimately connected with physical health and forms
an integral part of general or overall health [5]. A mediation
study examined the effects of physical health on mental health
and vice versa, finding significant direct and indirect effects
and cross-effects [6]. Studies have also indicated the
effectiveness of physical activity in improving anxiety and
depressive symptoms [7]. The measurement of signals from
wearable devices that allow for an understanding of physical
activity may also allow mental health status to be inferred.

Motivation
Apple Inc has emerged as an industry leader in health
technology and wellness tracking devices [8]. The Apple Watch,
first introduced in 2015, has retained the largest market share
since its introduction and has continually advanced the

capabilities of smartwatches [9]. These devices are primarily
intended as wellness tools, garnering additional personal health
monitoring for the wearer, typically for physiological activities
such as heart rate (HR), HR variability (HRV), respiration rate,
and physiologically related measures such as EE and fall
detection. Some capabilities of these devices, such as the
electrocardiogram (ECG) function, including a supporting app,
have received Food and Drug Administration (FDA) clearance
[10], whereas other aspects of their sensors and app capabilities
have not yet been independently validated or received regulatory
clearances. Monitoring of stress using these devices has been
less studied but appears to be a promising avenue for application,
particularly in the mental health sphere.

As digital health provides a novel model of care through the
use of intelligent data, computing, and telecommunications, it
holds promise for meeting the challenges of increased mental
health demands. It can also enable precision medicine, which
provides treatments bespoke to the patient’s needs [11]. There
is interest in digital health across a number of industry sectors,
including health care providers, insurers, and businesses [12-17],
that may desire access to information on personal health through
wearable devices such as the Apple Watch.

Wider adoption of devices for mental health monitoring is, in
part, hampered by a lack of clarity regarding the devices’
capabilities, the accuracy and validity of the data that are
collected, and their applicability to mental health monitoring
and diagnosis [18-20]. This research aimed to fill this knowledge
gap by examining the embedded sensor capabilities within the
Apple Watch range, the physiological and physiologically
related metrics recorded and made available for analysis, the
validation status of these metrics within the literature, the
connections (where they exist) between relevant health
conditions associated with each metric, and implications for
treatment. This analysis was performed both in a “top-down”
approach focusing on reviewing published literature regarding
the Apple Watch and a “bottom-up” approach focusing on the
hardware and software capabilities of the Apple Watch to
identify both currently available features and potential features
that could be operationalized through the creation of customized
apps using the Apple WatchKit, CareKit, and ResearchKit
frameworks.

Methods

The literature review was conducted from June 2021 to July
2021.

Types of Studies and Materials
Various types of published studies and editorials were included.
The types of studies were extended to some unpublished (gray)
literature that was evaluated and reviewed for its suitability to
close gaps in knowledge. Other gray literature sources included
developer documentation for the HealthKit application
programming interface for storing and managing data collected
on the devices. Several opinion pieces were reviewed
contextually to further provide a professionally informed
perspective or illustrate further points of consideration. This
literature review was structured to include the literature
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concerning the monitoring of physical conditions that may
present with psychological stressors and the implementation of
the Apple Watch for such monitoring.

Search Strategy
The electronic databases selected for this literature review were
PubMed, Scopus, and Google Scholar. A list of secondary
keywords (Textbox 1) was developed with an emphasis on

“Apple Watch” and truncated keywords combined using
Boolean operators. Publication dates were restricted to 2015
onward, coinciding with the announcement of the first Apple
Watch. Other recent literature that included wearable devices
and novel developments to monitor or detect depression, anxiety,
or stress was also included in the search process, in addition to
reviews and systematic reviews.

Textbox 1. Literature review secondary search terms.

Secondary search terms

• “anxiety”

• “atrial fibrillation”

• “collection”

• “data”

• “depression”

• “digital health”

• “heart rate*”

• “insomnia”

• “mHealth”

• “monitor*”

• “oximet*”

• “physiology*”

• “psychology*”

• “remote”

• “respiration rate”

• “sens*”

• “sleep”

• “sleep apn*”

• “stress”

• “telehealth”

• “validat*”

• “wearable”

Selection Process
Published literature was included based on its use of the Apple
Watch for either physiological data validation or psychology
or mental health studies. Areas of interest for applications in
monitoring physiological stress and mental health included HR
monitoring, sleep tracking, respiration monitoring, and EE.
Other inclusion criteria included studies performed on the
suitability of wearable devices for monitoring physiological
stress and their impacts on mental health. Only publications in
English were included in the review. Screening was performed
by a primary researcher and reviewed by other authors.
Duplicate studies were removed.

Data Collection Process
Data extraction was performed using a spreadsheet that
synthesized the findings and grouped the studies. Data

management was achieved using EndNote (Clarivate Analytics)
as the bibliographic management software. Where studies did
not specify the Apple Watch Series, it was inferred by
comparing the date of publication with the Apple Watch Series
release dates.

Results

Literature Review
The literature search strategy resulted in 5583 paper titles being
identified. Screening of titles and abstracts resulted in 2.06%
(115/5583) of papers being selected and reviewed in full. Of
these 115 papers, 19 (16.5%) were identified as related to Apple
Watch validation or comparison studies, which are summarized
in Table 1.
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Table 1. Summary of Apple Watch validation studies (N=19).

OutcomeStudy focusStudy

Resilience and workload moni-
toring

Binsch et al [21],
2016

• PPGa reliable in the at-rest condition; wide-ranging outcomes during movement
• Apple Watch showed the most variance in steps and distances compared with ground

truth measurements, followed by the comparison, Fitbit Surge and Microsoft Band
• Such variances are surmised to be because of differences in data resolution and access

and underlying algorithms using accelerometer and GPS data for step count estimation

HRb and EEcShcherbina et al [22],
2017

• Lowest error in HR and EE for cycling; highest error for walking
• Apple Watch achieved the lowest overall error in HR and EE of the tested devices

(Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear
S2)

HR and EEDooley et al [23],
2017

• Apple Watch HR mean absolute percentage error was between 1.14% and 6.70%, not
significantly different during baseline and vigorous-intensity treadmill exercise; lower
HR in light- or moderate-intensity treadmill exercise and recovery

• EE mean absolute percentage error was between 14.07% and 210.84%, measuring
higher EE in all states compared with the criterion measure (Parvo Medics TrueOne
2400), with greater errors for higher BMI and the male population

• HR and EE results were mostly better than other tested devices (Fitbit Charge HR and
Garmin Forerunner 225)

HRWang et al [24], 2017 • Apple Watch had 95% differences between −27 bpmd and +29 bpm; concordance cor-
relation coefficient was 0.91; accuracy diminished with exercise.

HRVeHernando et al [25],
2018

• Apple Watch RR interval data were found to contain gaps lasting 6.5 seconds per gap,
averaging 5 gaps per recording, not correlated with stress or relaxation case

• The cause is surmised to be because of failure to detect reliable pulses from PPG data
• Temporal HRV indices were not significantly affected, but frequency-based LFf and

HFg power showed a significant decrease
• Apple Watch was able to successfully detect mild mental stress

Moderate-intensity exerciseAbt et al [26], 2018 • Apple Watch threshold for moderate-intensity exercise was lower than the defined

criterion of 40% to 59% VO2Rh, leading to overestimation of moderate-intensity exercise
minutes

Maximal HRAbt et al [27], 2018 • Apple Watch had good to very good criterion validity for measuring maximal HR with
no substantial under- or overestimation

• Moderate and small errors were found for simultaneous recording from left versus right
watches

Sleep monitoringRoomkham et al [28],
2019

• Apple Watch raw acceleration data were used to compute ENMOi for classification
• Apple Watch had high accuracy (97.3%) and sensitivity (99.1%) in detecting sleep and

adequate specificity (75.8%) in detecting wakefulness

AFjPerez et al [29], 2019 • Apple Watch irregular rhythm notification was triggered on 0.52% of 419,297 partici-
pants

• Of those who returned an ECGk patch, 84% of subsequent notifications were confirmed
to be AF

• A total of 34% of ECG patches returned identified AF in part because of the transient
nature, suggesting that Apple Watch may be useful for ongoing monitoring

EENuss et al [30], 2019 • Apple Watch overestimated EE in women and underestimated EE in men
• Pooled relative error was 24.3%, 18.6% for men, and 19.9% for women
• Neither device showed accurate results compared with EE measured with a MetCart

HRThomson et al [31],
2019

• ECG correlation was strongest for very light intensity with a >0.90 concordance corre-
lation coefficient

• Most relative error rates were <5% with a maximum of 5.73%
• Apple Watch was more accurate in recording HR than the Fitbit Charge HR 2
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OutcomeStudy focusStudy

• Apple Watch 3 was generally accurate across a 24-hour period compared with ECG;
the mean difference was −1.8 bpm, the mean absolute error was 5.86%, and the mean
agreement was 95%

• Apple Watch was more accurate than Fitbit Charge 2

HR and passive monitoringNelson and Allen
[32], 2019

• Apple Watch showed good correlation without systematic error comparing Apple Watch
PPG HR with ECG ground truth

• Apple Watch showed a systematic overestimation of EE compared with indirect
calorimetry

• Apple Watch HR accuracy was clinically acceptable

HR and EE in patients with
cardiovascular disease

Falter et al [33], 2019

• Apple Watch 4 showed the highest validity in measuring HR, followed by Polar Vantage
V, Garmin Fenix 5, and Fitbit Versa

• The coefficient of variation for HR was 0.9% to 4.3% and, for EE, it was 13.5% to
27.1%

HR and EEDüking et al [34],
2020

• The walking error was 2.6%; jogging error was 5.1%
• HR limit of agreement was −2.2 to 1.8 bpm for walking and −3.5 to 4.3 bpm for jogging
• Apple Watch displayed a high level of agreement and was highly accurate

Step counting and HREspinosa et al [35],
2020

• Patients with AF showed a correlation coefficient of 0.7 between Apple Watch 4 and
telemetry

• Apple Watch 4 HR was more accurate for patients in the AF condition than for those
not in the AF condition

• Caution suggested in Apple Watch HR monitoring in patients with arrhythmia

HR in patients with AFSeshadri et al [36],
2020

• Apple Watch 4 notification correctly identified AF in 34 of 90 instances (41% sensitiv-
ity), with no false positives and 31% inconclusive

• The agreement between Apple Watch 4 and telemetry was 61%
• Apple Watch–exported ECG PDF files showed AF in 84 of 90 instances (96% sensitiv-

ity), no false positives, and 2 failures to generate PDFs
• Agreement between Apple Watch 4 ECG PDFs and telemetry was 98.9%
• Further validation is required because of the high inconclusive result rate

AFSeshadri et al [37],
2020

• Apple Watch 1 only showed good agreement on higher-rate fixed-frequency tasks, with
significant overestimation at low frequency

• Arm ergometry showed good agreement across all cadences
• Overground tasks showed poor agreement, with significant differences found

Wheelchair useGlasheen et al [38],
2021

• Apple Watch 1 variability increased as the magnitude of the HR measurement increased
• The Lin concordance correlation coefficient was 0.88, suggesting acceptable agreement

between Apple Watch 1 and telemetry

HR in patients with obstructive
sleep apnea and AF

Huynh et al [39], 2021

aPPG: photoplethysmography.
bHR: heart rate.
cEE: energy expenditure.
dbpm: beats per minute.
eHRV: heart rate variability.
fLF: low-frequency.
gHF: high-frequency.
hVO2R: reserve oxygen consumption.
iENMO: Euclidean norm minus one.
jAF: atrial fibrillation.
kECG: electrocardiogram.

Several published reviews focusing on wearable devices,
smartwatches, and associated physiological measurements were
also identified as part of this search (Textbox 2). These reviews

provide a contextual background in a number of areas; however,
this review was focused on Apple Watch–specific research.
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Textbox 2. Wearable device reviews identified.

Authors and review focus

• Lu et al [40], 2016: health care applications

• Reeder and David [41], 2016: health and wellness

• Kim et al [42], 2018: stress and heart rate variability

• Jo et al [2], 2019: patient benefits from wearable devices

• Shin et al [43], 2019: accuracy, adoption, acceptance, and health impact

• Attig and Franke [44], 2020: reasons for abandonment of personal tracking

• Guillodo et al [45], 2020: clinical applications of wearable-based sleep monitoring

• O’Driscoll et al [46], 2020: accuracy of energy expenditure monitoring

• Hickey et al [47], 2021: detect and monitor mental health conditions and stress

HR and HRV

Overview
Across the Apple Watch Series, there are several mechanisms
for detecting and monitoring HR metrics. At a minimum, all
Apple Watch Series use photoplethysmography (PPG) optical
HR sensors to detect either low or high HR and irregular rhythm.
In the newer model Apple Watch, there is the option for
additional sensors to record ECG. Therefore, Apple Watch users
have access to 2 independent measurements of HR through
separate apps that can serve similar functions to medical devices
[48].

Traditionally, clinical HR and cardiac assessments are performed
with 12-lead ECG recordings; however, this is unsuitable for
continuous monitoring applications. Wearable devices generally
use PPG- and ECG-based sensors, which can be more easily
integrated but provide less information. Irregular HR
notifications check for events that show irregular rhythm that
“may be suggestive of AF” [49]. In Apple Watch Series 1
onward, notifications can be derived from PPG-based
tachograms captured opportunistically at irregular times during
the day and subsequently classified using an algorithm [50]. In
the event that irregular heart activity is detected within the ECG
version 2 app, the Apple Watch (Series 4 onward) classifies the
ECG recorded event as either atrial fibrillation (AF), sinus
rhythm, high or low HR, or inconclusive or declares a poor
reading.

The Apple Heart Study, conducted from November 2017 to
August 2018, assessed 419,093 enrolled participants via PPG
recordings to determine the presence of previously undiagnosed
AF [29,50,51]. If an AF event was detected with a duration of
>30 seconds, the patient was offered a telemedicine consultation
and ePatch ambulatory ECG patch for confirmatory monitoring
over a period of up to 7 days. The study noted that of the
participants who had been notified by the Apple Watch of the
presence of AF, only 34% had subsequent ECG recordings
conducted via mailed ECG patches [29]. However, 84% of the
app-detected AF notifications were concordant with subsequent
clinical AF diagnoses [29].

A pilot validation study monitoring HR via PPG to detect the
presence of AF in patients with obstructive sleep apnea found

an agreement between the Apple Watch HR–declared events
and GE Healthcare CARESCAPE Monitor B650 telemetry [39].
The findings concluded that 95% of the HR readings made by
the Apple Watch Series 1 measured within 19 beats per minute
(bpm) of telemetry with a Lin concordance correlation
coefficient of 0.88 and a mean bias of 0.26 bpm. These values
were considered acceptable but relatively wide. Another study
used the Apple Watch Series 1 to detect clinical correlations
between HR during subacute periods in patients recovering
from acute myocardial infarction [52]. HR recordings were
taken 4 times per day during a 30-day postdischarge period.
Healthy patients showed a decline in average daily HR of 0.2
bpm per day compared with patients with prior coronary artery
bypass surgery showing an increasing HR trend of 0.1 bpm per
day and those with hypertension and type 2 diabetes mellitus
showing a slower HR decline.

A study by Shcherbina et al [22] compared the Apple Watch
(presumed to be Series 1) with other commercially available
wrist-worn devices. It found that the Apple Watch using the
Apple Health app was able to provide HR, EE, and step counts
sampled at 1-minute intervals or more frequently if
higher-intensity exercise was detected or declared by a workout
routine [22]. All other commercially available wrist-worn
devices in this study, including the Basis Peak, Fitbit Surge,
Microsoft Band, PulseOn, and Samsung Gear S2, only had
granularity down to 1 minute. Across all modes of activities,
the Apple Watch achieved the lowest error of all tested devices,
averaging a 2% error in HR. This was echoed in another 11%
(2/19) of studies comparing the accuracy of HR within Apple
Watch devices with other commercially available devices
relative to traditional ECG [23,33].

Derived from HR is HRV, another measurement of cardiac
performance indicating the variation in time between heartbeats
(NN or RR interval) in either the time or frequency domain. It
is a method for monitoring cardiac health, sleep quality, mental
stress, chronic pain, posttraumatic stress disorder, bipolar
disorder, and traumatic brain injury [53,54]. There are a number
of statistical methods to calculate HRV, including the SD of
NN intervals (SDNN), the HRV triangular index, the SD of the
average NN intervals, and the root mean square of successive
differences [55,56]. The Apple Watch provides HRV as the SD
of the beat-to-beat intervals (SDNN) [57]. Although HRV can
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be calculated from ECG, in the case of the Apple Watch, it is
calculated using the optical HR sensors and can be accessed
within HealthKit on a paired iPhone device.

Dalmeida et al [58] looked at HRV features in the time domain
and the high- and low-frequency domains to determine the most
ideal metric by implementing a machine learning algorithm.
They concluded that SDNN, as used by Apple Watch, was
acceptable among other methods for calculating HRV [58]. The
Apple Watch data used with the developed web application for
this study predicted stress states with 71% probability and
relaxation states with 79% probability. Another validation study
by Hernando et al [25] investigated the impacts of various HRV
statistical models on both the time and frequency domains in
both relaxed and stressed states and compared the various
statistical methods for their accuracy. Approximately 10% of
beats were missed, usually consecutively, with a greater number
of missing beats in the stressed state and at the beginning of
recordings. This is speculated to be because of poor skin contact
or sudden movement; however, no empirical evidence is
available because of the proprietary nature of the algorithms
within the Apple Watch. Computed time domain HRV metrics
were comparable with data from a Polar H7 chest belt, with
frequency domain metrics showing differences because of the
missed beats [25]. It was found that there was no significant
difference in the effectiveness of time domain HRV methods
and that SDNN was just as effective as other methods.

Applications in Mental Health
The potential of wearable devices for monitoring mental health
and related physiological stressors lies in the prospective ability
of users to interpret and understand their emotional awareness
and emotional regulation or of this information to be collected
and relayed to a caregiver or clinician for follow-up action.

Panic disorders commonly present with other mental health
issues, for which monitoring can prove to be valuable. Panic
attacks are specified as sudden or abrupt surges of involuntary
arousal, increasing HR rapidly and subsiding within minutes,
and are commonly preceded by cardiorespiratory instabilities
[59]. These involuntary movements are controlled by the
autonomic nervous system, which is part of the peripheral
nervous system. The autonomic system comprises sympathetic
and parasympathetic systems that have significant control over
HR, HRV, blood pressure, respiration rate, and temperature
[60]. In simple terms, sympathetic activity leads to arousal or
“fight or flight” responses, whereas parasympathetic activation
leads to more recovery activity. Research on the psychological
significance of the imbalance between these 2 systems suggests
that HRV could be used as a more ideal physiological
measurement of stress compared with HR. Reduced HRV is
seen in individuals with psychiatric disorders [61]. This is
because low-frequency components of HRV indicate increased
sympathetic activity, whereas high-frequency components are
generated within the parasympathetic system. An imbalanced
ratio between low- and high-frequency components suggests a
greater presence of stressing stimuli [42,58]. These findings
were also encouraged by a systematic review of wearable
devices, which determined that HRV was “the most useful
metric for detection of stress and anxiety” and that devices that

combined accelerometers, ECG, and subjective questionnaires
could assist in the diagnosis of depression [47].

Physiological data accuracy with regard to HR and HRV is
generally viewed as favorable compared with other devices,
especially in the at-rest condition, and is likely to provide
valuable data for the needs of mental health monitoring
applications.

EE Measurement

Overview
Another key tracking feature is step counting and the average
or total calories burned through EE. A key feature of EE and
movement tracking is the motivation provided by setting
personal activity goals. The Workout app used for the Apple
Watch assists in tracking progress updates and setting activity
goals. Motivation goal setting can assist in weight management
and overall health tracking and can be programmed within the
Apple Watch [62]. Apple provides several apps that can be used
with the Apple Watch to assist in health tracking and statistical
data collection with the Workout and Activity apps. The
Workout app includes a list of activities (Table 2), an automatic
workout detection feature, a record of workout sessions
(including start and end times), progress update tracking, and
reminders to start routines. The Activity app is used to monitor
general activity and movement throughout the day and is
intended to encourage users to move, stand up, and exercise.
Activity targets are displayed using dynamically closing rings,
illustrating a clear overall goal [63]. Passive data such as HR,
steps, distance, active minutes, and stand reminders are
collected. The total EE calculated from the Apple Watch
accelerometer was noted to improve with the inclusion of HR
in the calculation algorithm [46,64]. As such, the Apple Watch
continuously measures HR in the Workout app during exercise
and for 3 minutes afterward to calculate a “recovery rate,” which
is further used to enhance the estimate of how many calories
have been burned during the workout routine [48].

Wearable devices are typically able to determine the difference
between low- and high-intensity activity but require
improvement in resilience to changes in setting, particularly
with an increase in exercise intensity, if more accurate absolute
EE is to be extracted. Most validation studies that included the
Apple Watch indicated an overestimation of total EE at different
activity intensity levels [26,33,38,65]. However, 11% (2/19) of
the studies noted an underestimation of total EE in the study
group, and 5% (1/19) of the studies noted that the Apple Watch
overestimated EE in female participants but underestimated it
in male participants [30,64]. Despite the variation in the
accuracy of EE estimation, the device could successfully
distinguish activity intensity. This is summarized in a systematic
review of activity trackers and total EE proficiency by
O’Driscoll et al [46], which noted that devices exhibiting the
largest EE error relied exclusively on accelerometer data.

At present, a range of activity types and intensities can be
defined by the wearer (Table 2) [66]. This would enable the
Apple Watch to generate an improved EE estimate [52].
Additional data, such as altimeter data to indicate changes in
elevation, could further improve this estimate. Modifications
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to the accuracy of algorithms for activity tracking and calorie
counting can be improved with software updates and more
nuanced user input; for example, watchOS 8 (released in

September 2021) adds outdoor cycling detection, e-bike pairing
for improved calorie calculations, and Pilates and tai chi workout
types [66,67].

Table 2. Workout types for Apple Watch within the Workout app.

NotesSubtypeActivity type

Indoor or outdoorWalking • Apple Watch Series 1 requires iPhone to calibrate pace and distance
calculated from GPS (Apple Watch Series 2 onward)

• Elevation from altimeter (Apple Watch Series 3 onward)

Indoor or outdoorRunning • Option to use Bluetooth chest strap instead of integrated PPGa heart
sensor to reduce motion artifacts

Indoor or outdoor; e-bike or manual (watchOS 8)Cycling • Speed and distance (Apple Watch Series 2 onward) and map elevation
(Apple Watch Series 3 onward)

• Automatic detection for start and stop (from watchOS 8)

N/AbElliptical machineElliptical

N/ARower machineRower

N/AStepping machineStair stepper

Intense exercise followed by short periods of rest
(30-45 seconds)

HIITc • May affect HRd sensors
• Calories tracked with accelerometer

Tracks pace, distance, elevation gain, and calories
burned

Hiking • Requires altimeter (Apple Watch Series 3 onward) or paired the phone
with an altimeter

N/AAll types of yogaYoga

N/ADynamic strength training with dumbbells, resis-
tance bands, and medicine balls

Functional strength
training

N/AAll types of danceDance

N/AEasy moves and stretchesCooldown

N/AStrength-building of abdominals and backCore training

Pool or open swimSwimming • Set pool length; GPS is not used to conserve battery
• Open swim requires GPS; may affect HR sensors

Outdoor wheel-walk pace and outdoor wheel-run
pace

Wheelchair • Apple Watch Series 2 onward uses GPS or paired iPhone with GPS
for Apple Watch Series 1

• Measures time, pace, distance, calories, HR, and pushes

Add a workout typeOther • HR and motion sensors work together to provide an accurate reading
• Will display popular workouts from users

aPPG: photoplethysmography.
bN/A: not applicable.
cHIIT: high-intensity interval training.
dHR: heart rate.

Applications in Mental Health
Personal activity tracking and goal setting can lead to increased
exercise, with physical and mental health benefits. The key
components of mental health benefits can be seen in
individualized means of self-reflectivity and mindfulness [15].
Tracking changes in activity and movement can be used as an
indicator of health management, such as weight loss, but also
as a key indicator of changes in mood stages (eg, low activity
could indicate the presence of a depressive episode). A
cross-sectional study investigated the effects of wearable

trackers and how they make users feel and concluded that most
users felt positive about tracking technology and that negative
experiences were mostly confined to individuals with low
conscientiousness or openness to experience [68]. Further
investigation of wearable trackers and their psychological effects
in younger demographics is recommended, as well as an
examination of the effects in those who exhibit neuroticism and
obsessive-compulsive traits [68].

There is some ambiguity regarding the level of accuracy that is
acceptable for EE, as it depends on the context of the
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application. For wellness applications, the absolute accuracy of
EE may not be critical or align with the primary goal of the
intervention. In this case, small inaccuracies may not be
particularly significant for the user. Tracking of general
movement patterns in combination with measures of HRV and
respiratory rate variability may be sufficient for monitoring
work-related stress, detecting episodes of mania, anxiety or
depression, or sleep-related disorders (insomnia) [69,70].
Similarly, the detection of psychological distress through activity
metrics appears viable [71]. However, more research is required
to validate the capability of the Apple Watch to detect such
episodes.

Sleep Monitoring

Overview
The introduction of watchOS 7 in June 2020 brought about
integrated sleep monitoring to track the quality and duration of
wearers’ sleep for Apple Watch Series 3 and above. The
watchOS 8 release in September 2021 improved this by also
reporting sleeping respiratory rate [72]. As this is a relatively
recently introduced feature, which is primarily promoted as a
“wellness monitoring” feature, no literature was identified that
tested or validated it. Sleep tracking through third-party apps
is also available, some of which are more sophisticated and
integrate HR measurements from PPG [73].

Roomkham et al [28] performed a 27-night sleep study with the
Apple Watch Series 1 using raw data from its accelerometers
at 50 Hz through Apple’s Core Motion framework (independent
from the watchOS Sleep app, which did not exist at the time)
and compared the results with the Philips Actiwatch Spectrum
PRO [28]. The overall patterns between the 2 devices
demonstrated correlations of key movement events with 97.3%
accuracy and 99.1% sensitivity in detecting sleep and a
specificity of 75.8% for detecting wakefulness.

However, wrist-worn sleep monitors based on accelerometry
are not without criticism, and there is some skepticism about
the reliability of using wrist-worn devices for monitoring sleep
to identify the depth of sleep and wake periods. Approximately
5% (1/19) of the studies looked into 3 devices—the Mi Band
activity tracker, the MotionWatch 8, and the Sleep Cycle mobile
phone app—to monitor sleep [74]. All devices reported high
accuracy of time in bed but were incapable of accurately
detecting sleep and wake periods and sleep efficiency. This
study also found that each of the devices had unacceptable levels
of agreement with polysomnography. This view was echoed in
a systematic review of wearable devices for sleep monitoring,
which stated that wearables generally have “acceptable sleep
monitoring but with poor reliability” [45]. It is evident from
these studies that using wrist-worn accelerometers as the sole
sleep-monitoring sensor severely limits the ability to
contextualize sleep patterns and behavior. As such, they are not
capable of full-spectrum sleep monitoring but remain promising.

Applications in Mental Health
It is recognized that low quality of sleep may exacerbate
physical and mental health problems and that sleep tracking can

be used to improve user awareness of possible sleep problems
[75]. The prevalence of insomnia and chronic sleep issues such
as sleep apnea is increasing, with an estimate that 1 in 2 people
experience bouts of sleep disturbances during their life, with
negative impacts [39,45]. Sleep monitoring is also valuable for
mental health monitoring, as a lack of sleep can be the cause of
impaired performance, low energy levels, and problems with
mood.

The literature indicates that most wearable devices with
accelerometers have high sensitivity but low specificity for
sleep detection [45]. Specific information about the quality of
sleep would require other sensor data or could be inferred
through patient-practitioner communication. However, there
are practical concerns regarding battery use and when the device
can be charged, as many users may prefer to charge their Apple
Watch devices overnight [76]. Charging creates interruptions
in monitoring, which could pose a challenge in accurately
monitoring panic attacks, which usually occur unexpectedly
[28,59,77]. Improvements in charging times have occurred with
the announcement of Series 7, which includes the Apple Watch
Magnetic Fast Charging USB-C cable that can charge to 80%
battery capacity within 45 minutes, which may serve to
minimize such interruptions [78]. Limitations in the accuracy
and detail of sleep quality restrict clinical utility in cases of
mood disorders, mania, anxiety or panic attacks, and sleep-wake
disorders, which may require investigation in a specific sleep
cycle. The interpretation of sleep data can be complicated by
incorrect sleep detection (eg, while being still or watching
television) [75]. However, in combination with other tools and
strategies, general sleep monitoring and tracking can assist in
developing and implementing behavior change techniques.

Discussion

Apple Watch Sensors
The Apple Watch is a sensor-rich, well-constructed, and
connected device. It uses a large range of apps and has
significant potential for applications in mental health (Figure
1).

Apple Watch sensors typically include a 3-axis accelerometer,
a gyroscope and magnetometer, optical PPG-based HR sensors,
altimeters, ambient light sensors, temperature sensors, ECG,
and capacitive (touch) sensors [3]. Across each iteration of the
Apple Watch, sensor inclusions and capabilities have increased,
matched with software updates aimed at increasing the overall
accuracy of the collected data. Figure 2 presents a timeline of
the development of the Apple Watch, summarizing the changes
in sensor inclusions over time. The latest version of watchOS
(version 8.0.0) is supported by Series 3 to Series 7 models. The
models currently available for purchase include Series 3, SE,
and Series 7. The Apple Watch Series 3 does not include fall
detection as the 6-axis inertial measurement unit containing the
gyroscope and accelerometer was modified for later-generation
Apple Watches [49].
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Figure 1. Summary of Apple Watch sensors, apps, and potential mental health applications. ECG: electrocardiogram; GNSS: global navigation satellite
system; LTE: Long-Term Evolution; PPG: photoplethysmography.
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Figure 2. Evolution of Apple Watch Series features. Feature upgrades (↑) and new feature additions (+) are indicated. ECG: electrocardiogram; GNSS:
global navigation satellite system; LTE: Long-Term Evolution; NFC: near-field communication; OLED: organic light-emitting diode; UWB: ultrawide
band.

One of the primary sensors in all generations of the Apple Watch
is the optical HR sensor, which is used to collect HR data. The
scientific principle that these sensors rely on is PPG to detect
the amount of blood that is flowing through the wearer’s wrist
at any given moment. The reflection of green and infrared
light-emitting diode (LED) light is measured with photodiodes
that allow for the determination of HR as a periodic variation

in the signal. By flashing hundreds of times per second, the
optical HR sensor can measure HR across a range of 30 to 210
bpm [48]. Infrared light is used to measure HR in the
background and for HR notification systems as infrared light
can penetrate the skin better; however, this makes it more
susceptible to motion artifacts. Green LEDs are used for
workouts and to calculate HRV [48]. The Apple Watch will

JMIR Ment Health 2022 | vol. 9 | iss. 9 | e37354 | p. 11https://mental.jmir.org/2022/9/e37354
(page number not for citation purposes)

Lui et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


automatically detect when there is an increase or decrease in
motion from the inertial measurement unit and change the LED
light color accordingly. Variations have been made in the design
and layout of the LED and photodiode arrays with each iteration
of the Apple Watch to improve accuracy [79]. These optical
HR sensors are used by the Irregular Rhythm Notification
Feature (IRNF), which can assist in the detection of AF [80,81].
A red LED was added in Series 6, enabling blood oxygen
saturation calculation by comparing the ratio of infrared light
and red light. Reflectance oximetry is noted as being less
accurate than clinically used transmittance oximetry [79], and
we did not identify any literature validating the accuracy of the
Apple Watch blood oximetry.

In addition to the optical HR sensors, from Series 4 onward (not
including the SE model), an ECG electrode was integrated into
the back face of the watch and the digital crown. When engaged
by the user’s finger, a closed circuit is created to measure the
electrical potential across the heart, similar to a 1-lead ECG.
An ECG measurement takes 30 seconds. The ECG sensor is
exclusively used with the ECG classifier to categorize heart
events as AF, normal sinus rhythm, high or low HR, or
inconclusive [48,82]. Version 2 of the ECG app also includes
additional classifications of AF, high HR, and poor recording.
For the earlier Apple Watch Series, a third-party accessory
(Kardia Band) could be used to provide a 1-lead ECG that
achieved a sensitivity of 93% and a specificity of 84% when
compared with a standard tachograph [83].

A clinical study compared the ECG app developed by Apple
Inc with an FDA-cleared clinical ECG device (GE Healthcare
CardioSoft ECG device), with recordings verified by 3
independent board-certified American cardiologists in each of
the ECG app categories [50]. The app received clearance by the
FDA as a De Novo class II device as it was proven to perform
similarly to the comparator device [82]. The same approval was
also given to the optical HR sensor IRNF software in 2018 [80].
Some limitations exist in the use of both apps, which are not
intended to be used on persons aged <22 years. Depending on
the country in which the Apple Watch user resides, they may
not have access to the software and, as such, may not be able
to use these notification features. In Australia, both the ECG
app (version 2.0) and the IRNF software were approved by the
Therapeutic Goods Administration of the Australian
Government in early 2021 [84,85].

Further Considerations
Health data collected from the Apple Watch could complement
smartphone data collection and self-reported measures to provide
additional context and assist in determining and tracking a user’s
affective and emotional health. Advancements in the sensing
technologies available within wearable devices and enhanced
user interfaces have removed some of the previously limiting
factors of monitoring mental health using wearable technology.
However, the current general consensus for using wearable
device sensors is that they should be paired with traditional
screening and diagnostic tools and not be considered as a
replacement [33,83]. Wearable devices can assist in clinical
diagnosis and application of therapy if the findings are consistent
with the patient’s complaints or concerns or if the patient is

unsure of their physiological level of stress [86]. Indeed, a
systematic review of digital health interventions for depression
and anxiety in young people has shown that such interventions
may only be of clinical significance when their use is highly
supervised [87].

An article compared several wearable devices, including the
Apple Watch (series unspecified), and their applications for
“advancing resilience and mental health of employees that
experience high workload” [21]. The study noted that an
increase in psychological disabilities in the modern workplace
requires the development of new and emerging technologies to
measure and monitor physical or mental status. As such, these
tools are being implemented to assist in the diagnosis and
treatment of stress within professional workplaces and in a
performance review. A potential issue with workplace inclusion
for monitoring mental health and wellness is regulations and
access to technology.

The use of the Apple Watch as a source of data may address
problems with patient recall bias as most assessments are reliant
on patient self-reporting. This could reduce the reliance on
patient memory and continued questioning to ensure
consistency. In addition, it could be a relatively low-cost method
for better long-term tracking of symptoms and trends in the data
[69]. The use of these data permits the construction of an
ecological context that could empower a more cohesive
diagnosis and application of therapy or assist in refining
threshold values used in algorithms toward a validated measure.

Although there are potentially great benefits of wearable devices
in improving mental health, there are some potential drawbacks,
including concerns about abandonment rates. Approximately
11% (2/19) of individual studies commented on the long-term
use of electronic wearables, one noting that 20% of consumers
stop using their wearables after 3 months, and <50% continue
to use them after 1.5 years [83,88]. This is compounded by the
need to provide enough contextual information regarding the
data collected, which requires some level of active user
participation. For a clinical diagnosis of a mental disorder,
clinicians must make a decision based on weighing the mix of
potentially contradictory evidence according to their expert
judgment, which could require symptom tracking over a period
of months to come to a clear conclusion. Symptom tracking for
the validation of several mental health diagnoses against the
Diagnostic and Statistical Manual of Mental Disorders can
require the presence of symptoms over a period of weeks,
months, or even years for mood disorders, anxiety disorders,
and schizophrenia [59].

A validation study was completed on the effectiveness of using
the Apple Watch to collect passive sensor data with “ecological
momentary assessments” from a watch-based questionnaire app
recording patient feedback to assess and monitor substance
abuse in young adults [89]. The response from participants on
the perceived burden of engaging with the app was low;
however, it was noted that the relative ease of completing the
surveys was easier on an iPhone than on the Apple Watch.
Burdensome interactions within wearable devices could reduce
uptake and willingness to use technology for mental health
monitoring. However, the benefits of engaging users through
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health notifications and alerts can assist in seeking medical
assistance or outpatient care [29]. A longitudinal observational
study using cognitive assessment delivered through the Apple
Watch in patients with major depressive disorder noted excellent
adherence for both mood and cognitive tests (95% and 96%,
respectively) over the 6-week study period, and it was not
influenced by symptom severity or cognitive function at the
study onset and did not deteriorate over time, supporting the
feasibility of this approach [90].

Health and Sensor Data Access
The availability of sensor and health data collected from the
Apple Watch and patient input relies on the application
programming interface frameworks available from Apple for
iOS and watchOS. The main frameworks are HealthKit,
ResearchKit, CareKit, and SensorKit [91-93]. HealthKit is the
most comprehensive as it implements a central repository for
all collected health data related to the user. Developers can write
apps that request permission to access the HealthKit data store
to record, access, and share user health data. SensorKit is used
in the event that raw access to sensors is required. ResearchKit
may be used to build research study apps, whereas the CareKit
framework is suited to the development of ongoing care
capabilities. Together, these frameworks allow for the
implementation of apps that can collect raw data and store and
analyze collected data (including passively collected data) and
provide tracking feedback to the end user as well as the clinician.

Within the HealthKit framework, a range of rigid data classes
and methods can be used to collect, store, and retrieve data. In
this way, virtually all types of health-related data can be stored
as numerical data (eg, HR) and categorical data objects (eg,
blood type). It categorizes the data systematically, reducing
duplication and allowing for straightforward statistical data
analysis. HealthKit supports units of measurement within each
of these categories such as length, mass, volume, and energy.
Conversion between measurement systems is automatically
supported within the framework but can also be explicitly
defined. Developers cannot create custom data types or units
but can use the metadata fields to store additional data.

Most of the identified studies investigating wearable devices
collected the activity level (steps and caloric expenditure), HR,
and sleep data without indicating how the data were collected
from the device, the frequency of data recording, or which
measures were extracted from HealthKit. We believe this to be
important information to be provided by studies, especially
those that develop a custom app, to ensure a comprehensive
understanding of the data, allow for comparative analysis with
other studies, and inform future developments.

Data Analysis and Digital Phenotyping Approaches
Digital phenotyping approaches have been an active area of
development enabled by the popularity of smartphones [94].
By collecting data from sensors in a smartphone on a
moment-by-moment basis, it is hoped that information about
the user’s behaviors can be inferred to personalize patient care
[95]. Active and passive data collection techniques have been
explored, including data such as location, activity, app use,
phone use, Bluetooth signals, and voice samples [96]. Research

has focused on correlating such data with reported and diagnosed
conditions to determine the most valid signals for mental health
applications; however, this is still considered to be in its infancy.

Early studies suggest that data surrounding activity and
geolocation could serve as early signs of mania or depression
[97]. Furthermore, the monitoring of movement and light data
was able to detect and assess depression severity [98]. Research
into schizophrenia shows that digital phenotyping approaches
have merit in identifying relapse events [99], that collected
accelerometer and GPS data have a good correlation with future
patient survey scores [100], and that such an approach was
tolerated by outpatients [101].

Issues surrounding noise, privacy preservation, missing data,
and data quality have been acknowledged and pose challenges
in data analysis as the sensors may not be able to provide a
complete context [102]. However, such approaches still require
considerations of clinical relevance, social equity, development
of common data standards, and multidisciplinary collaboration
[103,104]. This may include the need to improve digital health
literacy through training programs tailored to the needs of the
target population [105].

Although it may be theoretically possible to combine smartwatch
data with those collected from a smartphone to improve data
quality for digital phenotyping approaches, as a smartwatch is
more likely to be worn on the body than to be left behind, such
an approach may be incompatible with smartwatches, which
are much more resource constrained in terms of computational
power, storage, connectivity, and (most importantly) battery
power. The continuous collection of sensor data on smartphones
has been shown to have a significant impact on battery life,
which is a factor against user acceptance [103]. The impact on
smartwatches, which typically have smaller batteries and rely
extensively on sleep power-saving techniques to achieve all-day
battery life, is anticipated to be significant.

As a result, it seems most prudent to identify the relevant
physiological and physiologically related signals that relate to
mental health and build algorithms focusing on data from those
metrics alone rather than taking a dragnet correlation approach
as is traditionally used in digital phenotyping. Such an approach
will also serve to address some of the concerns regarding privacy
and user perceptions that such a system is fated to diagnose
users with conditions simply based on overcollection of data
and misunderstanding of cause and effect [106].

Personal Health Information
The issue of personal health information regulation is important
for maintaining user trust and privacy. Regulations have usually
lagged behind rapid technology development, with concerns
about data ownership. As such, there is some suggestion that
wearable technology be considered differently from consumer
technology because of inherent personal health information
concerns.

Consumer wellness devices are not considered medical devices
and, thus, may not be as accurate or reliable for remote health
monitoring. Establishing their accuracy would require
independent verification or undergoing regulatory approval
processes. Constraints surrounding medical device regulation
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are a source of concern as the long process can stifle innovation
and the development of new technologies [107]. However, some
features may be able to individually receive clearance from
regulators (eg, the ECG app with the Apple Watch) [108]. The
ECG app and IRNF are both classified as De Novo within the
FDA regulations, which is a marketing pathway for novel
devices of low to moderate risk where a predicate device does
not exist. In this manner, the FDA creates a classification for
the device, which can be used for future premarket approvals
of equivalent devices to ensure that new and emerging novel
technologies are not held back during classification.

In addition, most device manufacturers provide their own
independent platforms, very similar to HealthKit for the Apple
Watch, for users’ data storage. These platforms may be limited
in terms of data access and sharing, forming a vendor lock-in
that prevents users from being able to migrate their personal
health information to other platforms and reducing the research
value of the devices. There are concerns over the control larger
companies may have over the health data of users; this can
conflict with informed consent, which is integral to medical
practice [69]. Passive data collection is less intrusive and time
consuming for the wearer; however, it can capture a large
amount of personal data that can be stored unknown to the user,
even if they have authorized the data to be recorded. Typically,
the average person is more relaxed with security implementation
when using personal devices and may be unaware of the level
of security that third-party apps provide [13]. Similar concerns
surround wearable devices and their use in workplace wellness
programs and health insurance provisions if there is ambiguity
regarding how the data will be used and the potential for
surveillance [13,14]. The ethos behind the Apple HealthKit
framework’s rigid type structures and fine-grained authorization
process is designed to ensure that only necessary data are
collected or accessed [109,110].

The use of wearable technology for health care service provision
is still in its infancy, and evidence to support its implementation
is still being developed. Known concerns exist regarding passive
data collection, data ownership, data use, user trust, and user
attitudes toward wearable technologies, leading to potentially
high abandonment rates [44,103].

Current Applications
Perhaps the best model for how the Apple Watch can be applied
to mental health can be found in the insurance sector, where
some insurance providers have embraced wearable technologies
to promote healthier lifestyles. Incentive programs involving
wearable devices have been used by numerous US health
insurance providers, including United Health Care, Anthem,
Humana, Health Care Service Corporation, Centene, CVS

Health (Aetna), WellCare, Kaiser Permanente, GuideWell, and
Molina [17]. AIA Insurance Australia has a specific program
using the Apple Watch called the Vitality Apple Watch Benefit,
which reduces the monthly loan repayment of the device through
the achievement of weekly activity targets [16]. Loss-framed
incentivized policies using the Apple Watch achieve a 34%
increase in tracked activity days over 1 month in comparison
with a standard gain-framed policy [12]. This offers a potential
solution to individuals who may not have the financial flexibility
to pay the full upfront cost of the Apple Watch device but can
still have access to the benefits of the device as a wellness
monitor for personal health. Another study investigated the
“incentivize and persuade” health-tracking approach from both
insurers and employers for enhancing business chain value. It
was concluded that persuaded self-tracking, whereby service
firms or employers encourage consumers and employees to
collect and share data via self-tracking, is heavily influenced
by service firm and individual determinants. Understanding
consumer perceptions and consumer reactions within a
conceptual framework should reflect values in use, privacy and
security, and perceived fairness or justice as the technology
itself may perpetuate inequalities [15]. Both studies noted the
effects of physical activity on physical wellness, as well as
mental health, but did not specifically note the impact on policy
holders with severe mental illnesses. Investigation into mental
health monitoring for insurance purposes could potentially create
contention and the consensus that balancing privacy and
confidentiality is critical for engendering trust with users and
policy holders through transparency [111].

Conclusions
The Apple Watch has presented itself as a capable wearable
device that is able to monitor several physiological parameters
and track overall health and wellness. Its use within the mental
health sphere is encouraging, particularly as more research
emerges correlating changes in the emotional and physiological
states of the body. Measures of HRV are key indicators of
changes in both physical and emotional states. In combination
with other sensors to monitor general activity, sleep, and more,
health data can be aggregated with user-provided information
to assist in the monitoring and even diagnosis of mental health
disorders. Particular benefits may be derived through the
avoidance of recall bias by providing a more objective,
data-driven record of events in a passive manner. The lack of
methodologically robust and replicated evidence of user benefits
and a supportive health economic analysis, as well as concerns
about storage, access, and security of personal health
information, remain key factors that must be addressed to enable
broader uptake for mental health applications.
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