1,488 research outputs found

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    A Production Planning Model for Make-to-Order Foundry Flow Shop with Capacity Constraint

    Get PDF
    The mode of production in the modern manufacturing enterprise mainly prefers to MTO (Make-to-Order); how to reasonably arrange the production plan has become a very common and urgent problem for enterprises’ managers to improve inner production reformation in the competitive market environment. In this paper, a mathematical model of production planning is proposed to maximize the profit with capacity constraint. Four kinds of cost factors (material cost, process cost, delay cost, and facility occupy cost) are considered in the proposed model. Different factors not only result in different profit but also result in different satisfaction degrees of customers. Particularly, the delay cost and facility occupy cost cannot reach the minimum at the same time; the two objectives are interactional. This paper presents a mathematical model based on the actual production process of a foundry flow shop. An improved genetic algorithm (IGA) is proposed to solve the biobjective problem of the model. Also, the gene encoding and decoding, the definition of fitness function, and genetic operators have been illustrated. In addition, the proposed algorithm is used to solve the production planning problem of a foundry flow shop in a casting enterprise. And comparisons with other recently published algorithms show the efficiency and effectiveness of the proposed algorithm

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Modifying Regeneration Mutation and Hybridising Clonal Selection for Evolutionary Algorithms Based Timetabling Tool

    Get PDF
    This paper outlines the development of a new evolutionary algorithms based timetabling (EAT) tool for solving course scheduling problems that include a genetic algorithm (GA) and a memetic algorithm (MA). Reproduction processes may generate infeasible solutions. Previous research has used repair processes that have been applied after a population of chromosomes has been generated. This research developed a new approach which (i) modified the genetic operators to prevent the creation of infeasible solutions before chromosomes were added to the population; (ii) included the clonal selection algorithm (CSA); and the elitist strategy (ES) to improve the quality of the solutions produced. This approach was adopted by both the GA and MA within the EAT. The MA was further modified to include hill climbing local search. The EAT program was tested using 14 benchmark timetabling problems from the literature using a sequential experimental design, which included a fractional factorial screening experiment. Experiments were conducted to (i) test the performance of the proposed modified algorithms; (ii) identify which factors and interactions were statistically significant; (iii) identify appropriate parameters for the GA and MA; and (iv) compare the performance of the various hybrid algorithms. The genetic algorithm with modified genetic operators produced an average improvement of over 50%

    Evolutionary Computation Strategies applied to the UA-FLP

    Get PDF
    En la presente tesis doctoral se desarrollan dos aproximaciones distintas al problema de distribución en planta de áreas desiguales (UA-FLP). En primer lugar, se trata de incorporar el conocimiento del diseñador experto a los algoritmos clásicos de optimización, de forma que, además de buscar buenas soluciones desde el punto de vista cuantitativo, por ejemplo minimizando el flujo de materiales, se introduzca la posibilidad de que el diseñador aporte su experiencia y preferencias personales. Para facilitar la intervención humana en el proceso de búsqueda de soluciones, se ha utilizado un procedimiento de clustering, el cual permite clasificar las soluciones subyacentes en el conjunto de búsqueda, de forma que se presente al diseñador un número suficientemente representativo y, a la vez, evitándole una fatiga innecesaria. Además, en esta primera propuesta se han implementado dos técnicas de niching, denominadas Deterministic Crowding y Restricted Tournament Selection. Estas técnicas tienen la capacidad de mantener ciertas propiedades dentro de la población de soluciones, preservar múltiples nichos con soluciones cercanas a los óptimos locales, y reducir la probabilidad de quedar atrapado en ellos. De esta manera el algoritmo se enfoca simultáneamente en más de una región (nicho) en el espacio de búsqueda, lo cual es esencial para descubrir varios óptimos en una sola ejecución. Por otro lado, en la segunda aproximación al problema, se ha implementado una estrategia evolutiva paralela, muy útil para los problemas de alta complejidad en los que el tiempo de ejecución con un enfoque evolutivo secuencial es prohibitivo. La propuesta desarrollada, denominada IMGA, está basada en un algoritmo genético paralelo de grano grueso con múltiples poblaciones o islas. Este enfoque se caracteriza por evolucionar varias subpoblaciones independientemente, entre las que se intercambian individuos, haciendo posible explorar diferentes regiones del espacio de búsqueda, al mismo tiempo que se mantiene la diversidad de la población, permitiendo la obtención de buenas y diversas soluciones. Con ambas propuestas se han realizado experimentos que han arrojado resultados muy satisfactorios, encontrando buenas soluciones para un conjunto de problemas bien conocidos en la bibliografía. Estos buenos resultados han permitido la publicación de dos artículos indexados en el primer decil del ranking JCR (Journal Citation Reports).The present doctoral thesis develops two different approaches to the Unequal Area Facility Layout Problem (UA-FLP). The first approach encompasses the designer’s knowledge on classic optimization of algorithms in pursuance of good quantitative solutions (e.g. minimizing the materials flow) and also opens the possibility to include the contribution of the designer by means of his expertise and personal preferences. A clustering procedure has been used to facilitate human intervention in the process of finding solutions. This allows the underlying solutions to be classified in the search in order to present the designer with sufficiently representative solutions and, at the same time, avoiding unnecessary fatigue. In addition, two niching techniques have been implemented, called Deterministic Crowding and Restricted Tournament Selection. These techniques have the ability to maintain certain properties within the solutions space, preserve multiple niches with solutions close by local optimums, and reduce the probability of being trapped in them. In this way, the algorithm focuses simultaneously on more than one region (niche) in the search space, which is essential to discover several optimums in a single execution. The second approach to the problem comprises the implementation of a parallel evolutionary strategy. This method is useful for problems of high complexity in which the execution time using a sequential evolutionary approach is prohibitive. The proposal developed, called IMGA (Island Model Genetic Algorithm), is based on a parallel genetic algorithm of multiple-population coarse-grained. This is characterized by evolving several subpopulations independently among which individuals are exchanged. Different regions of the search space can be explored while the diversity of the population is maintained. Satisfactory and diverse solutions have been obtained as a result of this method. Experiments with both proposals have been carried out with satisfactory results, providing good solutions for a set of problems well known in the literature. These results were already published in two papers indexed in the first decile of the JCR (Journal Citation Reports) ranking
    • …
    corecore