
Research Article
Modifying Regeneration Mutation and Hybridising Clonal
Selection for Evolutionary Algorithms Based Timetabling Tool

Thatchai Thepphakorn,1,2 Pupong Pongcharoen,2 and Chris Hicks3

1Faculty of Industrial Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
2Industrial Engineering Department, Centre of Operations Research and Industrial Applications (CORIA),
Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
3Newcastle University Business School, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Correspondence should be addressed to Pupong Pongcharoen; pupongp@nu.ac.th

Received 19 September 2014; Accepted 16 December 2014

Academic Editor: Yudong Zhang

Copyright © 2015 Thatchai Thepphakorn et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper outlines the development of a new evolutionary algorithms based timetabling (EAT) tool for solving course scheduling
problems that include a genetic algorithm (GA) and a memetic algorithm (MA). Reproduction processes may generate infeasible
solutions. Previous research has used repair processes that have been applied after a population of chromosomes has been generated.
This research developed a new approach which (i) modified the genetic operators to prevent the creation of infeasible solutions
before chromosomes were added to the population; (ii) included the clonal selection algorithm (CSA); and the elitist strategy (ES)
to improve the quality of the solutions produced. This approach was adopted by both the GA and MA within the EAT. The MA
was further modified to include hill climbing local search. The EAT program was tested using 14 benchmark timetabling problems
from the literature using a sequential experimental design, which included a fractional factorial screening experiment. Experiments
were conducted to (i) test the performance of the proposed modified algorithms; (ii) identify which factors and interactions were
statistically significant; (iii) identify appropriate parameters for the GA and MA; and (iv) compare the performance of the various
hybrid algorithms. The genetic algorithm with modified genetic operators produced an average improvement of over 50%.

1. Introduction

Metaheuristics are a class of approximation methods that
solve complex optimisation problems that are beyond the
scope of classical heuristics and optimisation methods [1].
They have been widely used to solve nondeterministic poly-
nomial (NP) hard problems within acceptable computational
time [2]. However, metaheuristic methods are stochastic and
cannot guarantee an optimal solution [3]. Evolutionary algo-
rithms (EA) are particularly popular metaheuristics and have
been widely applied in the literature. There are three types of
EA: evolutionary programming, evolutionary strategies, and
genetic algorithms (GA) [4]. Evolutionary programming and
evolutionary strategies have been used to solve continuous
optimisation problems whilst GA have been mainly used for
solving discrete optimisation problems [5].

GA are population based, stochastic search approaches
that were inspired by biological evolution. GA include
crossover and mutation genetic operations, which are arti-
ficial processes for producing new chromosomes. Chro-
mosome selection mimics natural evolution to select a
new population for next generation based on individual
fitness [6]. GA have been widely applied to solve various
optimisation problems [7] including production scheduling
[8], course timetabling [9], examination timetabling [10],
container packing [11], travelling salesman [12], bankruptcy
prediction [13], andmachine layout [14]. However, the simple
GAmay not be effective for solving problemswith a very large
solution space and many constraints [5].

The term memetic algorithm (MA) is used to describe
evolutionary algorithms in which local search is used to a
large extent [15]. MAs have received considerable attention
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from researchers in many fields [5] including job shop
scheduling [16], vehicle routing [17], exam timetabling [18],
and nurse scheduling [19]. The MA has also been applied to
solve course timetabling problems [20–25].

Genetic operations frequently produce infeasible solu-
tions, which can be (i) discarded; (ii) penalised; or (iii)
repaired [6]. However, discarding infeasible solutions or
applying a high penalty is only an option when a large
proportion of the chromosomes are feasible [9]. Gen and
Cheng [6] recommended the repair option. In the algorithms
adopted by previous research, the mutation and crossover
processes produce a population that includes feasible and
infeasible chromosomes. The infeasible chromosomes are
then identified and repaired. However, for very large prob-
lems that are subject to numerous constraints, the repair
process is likely to be highly complex and difficult to design
[6]. A complex repair process may be very time consuming
[5]. The literature has not considered the development of
modified crossover andmutation operators that only produce
feasible chromosomes. Such a strategy would likely be more
computationally efficient, which would make it possible to
conduct more searches within a given execution time.

Theperformance of evolutionary algorithms is dependent
upon the parameters used (such as the population size,
number of generations, and the probabilities of crossover
and mutation). It is important to identify appropriate values
for the parameters in order to obtain the best solutions
[26]. There are four experimental strategies: (i) the best-
guess approach; (ii) the trial and error approach; (iii) the
one factor at a time experimental strategy; and (iv) the
factorial experiment [27]. Montgomery [27] suggested that
the factorial experiment is the best approach for dealing
with several factors. The strategy is to systematically vary
the factors together, instead of one at a time. Thus, it is best
to use a factorial experiment when investigating appropriate
parameter settings for metaheuristic methods. The approach
is more reliable, leads to better results, and is more efficient
than the alternatives [28].

Artificial immune systems (AIS) are metaheuristics that
were inspired by the immune system in biology [29]. There
are fourmain variants of theAIS: danger theory, immune net-
work algorithm (INA), negative selection algorithm (NSA),
and clonal selection algorithm (CSA) [30]. AIS have been
successfully applied in three application areas: (i) learning;
(ii) anomaly detection; and (iii) optimisation [31]. There is
only a limited literature on the use of AIS for timetabling. He
et al. [32] applied CSA to solve university course timetabling
problems in Singapore and benchmark problems. The CSA
produced better timetables than GA for all of the problems
considered. Malim et al. [33] applied the INA, NSA, and
CSA to solve course timetabling problems.The INAproduced
timetables with the best average fitness, whereas CSA was
best in terms of average execution time. Bhaduri [34] was
the only researcher to develop a hybrid AIS for timetabling,
calledGAIN,which included the INAandGA.TheGAINwas
able to produce optimal feasible timetables faster than GA.
However, other researchers have used AIS hybrids in other
domains. For example, Zhang et al. [35] combined AIS, the
chaos operator, and particle swarm optimisation (PSO), to

produce CIPSO, which was used for transportation planning.
The approach outperformed GA and PSO in respect of route
optimality and convergence time.

The objectives of this paper were to

(i) briefly review the literature on evolutionary algo-
rithms and course timetabling;

(ii) explain the development, process, and features of a
novel timetabling tool that incorporates genetic algo-
rithms, local search, the clonal selection algorithm,
roulette wheel selection, and the elitist strategy;

(iii) outline a newmodified regeneration mutation opera-
tor (MRMO) that is based on roulette wheel selection;

(iv) describe the development of a novel local search (LS)
algorithm that guarantees the feasibility of new chro-
mosomes generated with the MRMO. This hybrid is
called the modified memetic algorithm (MMA);

(v) explain experiments that demonstrated that perfor-
mance can be improved by the MRMO and MMA
using an elitist strategy (ES);

(vi) outline new hybrid algorithms that include the clonal
selection algorithm, MRMO+CSA, and MMA+CSA;

(vii) describe the testing of the tool using widely used
benchmark problems;

(viii) explain the experimental design and analysis used
to investigate the significance of GA parameters and
interactions and to identify appropriate parameter
settings;

(ix) provide a comparison of the performance of the
proposed hybridisations and the other hybridisations
of EA which were used to find the best timetables
using 14 benchmarking obtained from the literature.

The next section of this paper briefly reviews course
timetabling problems, which is followed by a detailed outline
of the development of the evolutionary algorithms based
timetabling tool and its features, the experimental pro-
gramme, results, analysis and conclusions.

2. Course Timetabling Problems

“Timetabling is the allocation, subject to constraints, of given
resources to objects being placed in space time, in such a way
as to satisfy as nearly as possible a set of desirable objectives”
[36, page 266]. There are many types of timetabling prob-
lems including employee timetabling, sports timetabling,
transportation timetabling, and educational timetabling [28].
Course timetabling arises every academic year in educational
institutions (such as high schools, colleges, or universities)
and is solved by academic or administrative staff with or
without an automated timetabling tool. Course timetabling
is known to be a NP-hard problem [37], in which the
computational time required to find a solution increases
exponentially with problem size [9].

Timetabling problems include hard constraints that must
be satisfied in order to produce a feasible timetable and
soft constraints, which are desirable but may be violated
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[9, page 903]. In the case of course timetabling, it is nec-
essary for a timetable to be feasible for students, lecturers,
and classrooms [23]. In a university, a degree programme
comprises a set of modules that must be completed by the
students registered on the programme. Di Gaspero et al. [38]
adopted the following constraints.

(i) Hard constraints.

(a) Lectures: all lectures within a module must be
assigned to regular periods. All lectures must be
scheduled (HC

1
).

(b) Room occupancy: only one lecture can take place
in a room at a given time (HC

2
).

(c) Conflicts: students and staff can only attend one
lecture at a time (HC

3
).

(d) Availabilities: lecturers must be available for a
lecture to be scheduled (HC

4
).

(ii) Soft constraints.

(a) Room capacity: the room must have sufficient
seats for the students on the module (SC

1
).

(b) Minimum working days between lectures: for a
particular module there should be a minimum
amount of time between lectures (SC

2
).

(c) Curriculum compactness: students on a degree
programme should have lectures that are con-
secutive with no gaps (SC

3
).

(d) Room stability: all lectures of a module should
be given in the same room (SC

4
).

Another issue is that events or coursesmay have differing pri-
orities; the generation of infeasible solutions can be avoided
by scheduling the highest priority activities first [39].

3. Evolutionary Algorithms Based Timetabling
(EAT) Tool

The aim of this research was to generate timetables for
lecturers, students, and classrooms that must satisfy all of the
hard constraints and minimise the number of violations of
the soft constraints proposed by Di Gaspero et al. [38].

The Evolutionary Algorithm based Timetabling (EAT)
program was coded using the Tool Command Language and
Toolkit (Tcl/Tk) [40]. It was developed in order to construct
effective course timetables by using a genetic algorithm (GA)
[41] and a memetic algorithm (MA) [42]. Both methods are
population based and perform multiple directional search,
which achieves a greater diversity than conventional optimi-
sation methods that conduct a single directional search [6].
The MA and GA chromosomes have different components.
For MAs, the chromosomes consist of a set of memes,
whereas with GAs the chromosomes comprise a set of genes
[43]. The key difference is that the memes used by the MA
can be self-adapting based upon local search and refinement,
whereas genes do not have this capability [6].

The artificial immune system (AIS) was initially proposed
in the mid 1980s by Farmer et al. [44]. The clonal selection

algorithm is a well-known variants of the AIS that is based
upon two immune system principles: clonal selection and
affinity maturation [45]. Each antibody (candidate solution)
would be cloned proportionally to its antigenic affinity
(fitness) value, in which the higher antigenic affinity would
have the higher number of cloned antibodies [46]. Affinity
maturation is related to hypermutation and receptor editing
[46]. The regulation of hypermutation is a rapid accumu-
lation of mutations that depend upon receptor affinity, in
which the cell receptor with the higher affinity is mutated by
using a mutation rate that is lower than for solutions with
lower fitness [46]. Receptor editing provides amechanism for
escaping from the local optima, which increases the diversity
of solutions [46]. The elimination percentage %𝐵 specifies
how many low affinity antibodies are eliminated from the
receptors.

The main procedures within the evolutionary algorithms
based timetabling tool are shown in Figure 1. The first step is
to the represent events within the timetable as memes/genes.
The second step is to combine memes/genes to produce an
initial population that represents a set of possible timetables.
This part of the algorithm is designed to ensure that all of the
candidate solutions are feasible. This is followed sequentially
by genetic algorithms, local search, and a clonal selection
algorithm, which is repeated for the required number of
generations. The GA operators, LS, and CSA are designed
to ensure that all of the chromosomes produced are feasible.
There is an elitist strategy selection mechanism after the
local search processes that selects the chromosomes for the
CSA algorithm and also remembers the good solutions in
its memory. There is a subsequent roulette wheel selection
process after the CSA, which produces a population of
chromosomes. A further elitist replacement process substi-
tutes weaker solutions within the population with solutions
remembered by the elitist strategy if they are better. The
following subsections describe these processes inmore detail.

3.1. Meme/Gene Representation. This research used the same
data structures for genetic algorithms, memetic algorithms,
and the clonal selection algorithm. The terminology used to
describe the data structures varies according to the algorithm.
With a genetic algorithm a chromosome comprises a set of
genes. With a memetic algorithm a chromosome comprises
a set of Memes. The clonal selection algorithm described in
Section 3.7 uses an identical structure to represent antibodies.

A meme/gene can be encoded using either numeric
(binary, integer, or real) or alphanumeric characters [9]. In
this work, an integer encoded meme consists of three coded
numbers: classrooms (𝑟 = 1, 2, 3, . . . , 𝑅); days per week
(𝑑 = 1, 2, 3, . . . , 𝐷); and periods or timeslots per day (𝑡 =
1, 2, 3, . . . , 𝑇). Each meme/gene contains a reference to a
classroom, a day, and a timeslot; for example, {1, 2, 4} repre-
sents an event in the first classroom that takes place on the
second days in the fourth timeslot. A chromosome comprises
a set of memes/genes that represent a complete timetable.

3.2. Chromosome Initialisation. The chromosome initialisa-
tion process takes the following steps.
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Figure 1: Main procedures of evolutionary algorithms based timetabling tool.

(1) The length of the chromosome required is calcu-
lated taking into account the number of degree
programmes, modules, and their associated classes.

(2) An empty chromosome is generated with the appro-
priate length.

(3) Themodules are then sorted based upon their relative
importance.

(4) The highest priority module is scheduled first: this
entails generating memes/genes for all of the classes
and randomly assigning them to the chromosome.
Before a meme/gene is added a check is made to
ensure that the hard constraints are not violated. If
there is a violation the algorithm sequentially looks
for the next meme/gene that does not contravene
the constraints (taking into account the modules in
priority order); the process is then repeated in priority
order until all the modules have been scheduled.

3.3. Evolutionary Processes. The parent chromosomes are
randomly selected for the crossover and mutation genetic
operations according to the probabilities of crossover (𝑃

𝐶
)

and mutation (𝑃
𝑀
). The selection of these parameters deter-

mines the balance between exploration and exploitation.
The crossover operation (COP) produces offspring chromo-
somes from two parent chromosomes, whereas the muta-
tion operation produces random meme/gene changes in
one chromosome. The number of memes/genes within the
chromosome that are changed is determined by the mutation
rate𝑀

𝑅
. Thus, the selection of chromosomes is related to 𝑃

𝑀
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Figure 2: Regeneration mutation operator [9].

whereas the selectionwithin the chromosome is related to the
parameter𝑀

𝑅
.

The EAT includes three types of crossover operation: one-
point crossover (OP), two-point crossover (TP) [47], and
position based crossover (PB) [48], which were modified
to ensure that only feasible chromosomes can be produced.
The modified version of the regeneration mutation [9] was
developed to ensure feasible solutions.

Figure 2 illustrates the regeneration mutation operator.
It includes three steps. First, a chromosome is randomly
selected from the population. Secondly, a section (sub-
chromosome) is selected for regeneration. Finally, a new
subchromosome is generated randomly.The remaining genes
within the chromosome are inherited from the parent.

Their modified regeneration mutation operator made
four modifications to the operator: (i) some memes from
the parent chromosome are randomly regenerated so that
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Figure 3: The modified regeneration mutation operation.

beneficial memes are inherited by the offspring; (ii) new
feasible memes are assigned into the empty chromosome
positions by using roulette wheel selection; (iii) all of the
offspring are guaranteed to be feasible chromosomes because
of the hard constraint checking before memes which are
inserted into the empty positions of a new chromosome; and
(iv) the parameter𝑀

𝑅
specifies the percentage of memes to

be regenerated. A higher setting of𝑀
𝑅
increases the amount

of exploration, but this may result in beneficial memes from
the parent being lost. The modified regeneration mutation
procedure is illustrated in Figure 3.

3.4. Fitness Measurement. The total violation index (𝑍) for a
timetable may be calculated using (1) [49].

Minimise 𝑍 =
𝑆

∑

𝑖=1

𝑊
𝑖
SC
𝑖

(1)

Subject to: HC
𝑗
= 0, ∀𝑗, (2)

where 𝑖 is an index relating to the 𝑖th soft constraint (𝑖 =
1, 2, 3, . . . , 𝑆), where 𝑆 is the number of soft constraints; 𝑗 is
the index for the 𝑗th hard constraint (𝑗 = 1, 2, 3, . . . , 𝐻), where
𝐻 is the number of hard constraints. SC

𝑖
is a variable used

to count the number of violations of the 𝑖th soft constraint.
HC
𝑗
is the variable used to count the number of violations

of the 𝑗th hard constraint. For a timetable to be feasible HC
𝑗

must be zero for all the hard constraints.The user can specify
the relative importance of the soft constraints by adjusting
the weightings𝑊

𝑖
for each soft constraint. Higher weightings

indicate higher priority of the associated soft constraints. In
this work, the weights (𝑊

1
–𝑊
4
) were set at 1, 5, 2, and 1,

respectively, as recommend by Di Gaspero et al. [38].

TheGAandMAmeasure the quality of each chromosome
using the objective function from (1) to calculate the total
violation index (𝑍). As the objective is to minimise the
number of violations the fitness value, which is determined
by [23]

Fitness value = 1
1 + 𝑍
. (3)

3.5. Local Search (LS). The objective of the local search (LS)
within theMA is to (i) improve the quality of chromosome or
solution, through increased exploitation and (ii) increase the
opportunity to quickly discover the global best solution. In
this work, two hill-climbing LS heuristics, LS1 and LS2, were
adopted from previous work by Thepphakorn et al. [28], as
it had been demonstrated that they improved chromosome
quality and prevented the generation of infeasible chromo-
somes. The aim of LS1 is to reduce the number of violations
of the first and the forth soft constraints (SC

1
and SC

4
), whilst

the LS2 aims to reduce the number of violations of the second
and the third soft constraints (SC

2
and SC

3
). After the LS1 and

LS2 procedures, the total violation index (𝑍) and the fitness
values for the new chromosomes are measured again before
performing chromosome selection.

3.6. Elitist Strategy (ES). TheES aims tomaintain high quality
chromosomes from one generation to the next. The ES
helps GAs to reach convergence more quickly [13]. This ES
is divided into two subprocesses: elitist memory updating,
which records the best solutions (with no duplicates) and
elitist replacement, which substitutes the worst chromo-
somes with those remembered if they are better. The elitist
replacement process takes place after chromosome selection.
The proportion of chromosomes remembered by the ES is
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Table 1: Characteristics of course timetabling problems [38].

Problems
Characteristics of course timetabling problems

Number of
modules

Number of
events

Number of
classrooms

Number of
periods/week

Number of
Lecturers

Number degree
programmes

Unavailability
constraints

1 30 160 6 30 24 14 53
2 82 283 16 25 71 70 513
3 72 251 16 25 61 68 382
4 79 286 18 25 70 57 396
5 54 152 9 36 47 139 771
6 108 361 18 25 87 70 632
7 131 434 20 25 99 77 667
8 86 324 18 25 76 61 478
9 76 279 18 25 68 75 405
10 115 370 18 25 88 67 694
11 30 162 5 46 24 13 94
12 88 218 11 36 74 150 1368
13 82 308 19 25 77 66 468
14 85 275 17 25 68 60 486

determined by a user specified parameter %ES. Previous
research had indicated that themost appropriate value for this
parameter is 75% [50].

3.7. Clonal Selection Algorithms (CSA). In this research, the
memory of the ES is used to produce the hybridisations for
(i) the genetic algorithm combined with the CSA and (ii) the
memetic algorithm (which had been modified to include hill
climbing local search) which was combined with the CSA.
When chromosomes are assigned to the elitist memory, the
procedure attempts to further improve them through the
application of the CSA. The elitist memory is updated if the
resultant chromosome is better after the application of the
CSA.

All of the chromosomes (antibodies) in the elitist mem-
ory are sorted in accordance to their affinities (finesses); the
chromosome with the highest affinity is assigned the highest
rank 𝑘 = 1, (𝑘 = 1, 2, 3 . . . , 𝑛), whilst the chromosome with
the lowest affinity is ranked 𝑘 = 𝑛. The total number of
antibodies (𝑛) for cloning is equal to the number of chro-
mosomes in the ES memory. In the following step, each 𝑘
rank of antibodies contained in the elitist memory is cloned
according to [46]

𝑁
𝑐
=

𝑛

∑

𝑘=1

round(
𝛽 ⋅ 𝑃

𝑘
) , (4)

where𝑁
𝑐
is the total number of cloned antibodies, round (⋅)

is an operator for changing real values into integers, 𝛽 is the
multiplying factor, and 𝑃 is the population size. In the last
step, all of the cloned antibodies are generated using affinity
maturation. The regeneration mutation operator is used in
this process together with a variable mutation rate𝑀

𝑅V that
is an adaptive setting based upon an antibody’s ranking. The
initial setting for 𝑀

𝑅V is determined by the parameter 𝑀
𝑅
.

Antibodies with a lower affinity (ranking) require a value of
𝑀
𝑅V that is greater than those with higher ranking [46].

3.8. Chromosome Selection. The classical roulette wheel
approach [41] was used in this research. The general concept
of the roulette wheel selection is to randomly select which
chromosomes in the current population survive into the next
population in such a way that their probability of survival
depends upon their fitness. This process is terminated when
the desired population size has been generated.

4. Experimental Results and Analysis

The objective of the EAT is to construct course timetables
with the lowest number of soft constraint violations (𝑍). The
aims of the computational experiments were to (i) identify
which main factors and their interactions were statistically
significant for the GA; (ii) identify and verify the best
parameter settings; (iii) explore the performance of the GA
with modified regeneration mutation (called MRMO); and
(iv) explore the performance of the proposed hybridisations
including MRMO+CSA and MMA+CSA.

The research considered fourteen course timetabling
problems that were provided by the third track of ITC2007
[38]. These are summarized in Table 1. The experiments were
performed on a personal computer with Intel 2.67GHz Core
2 Duo CPU and 4GB of RAM.

4.1. Screening Experiment. Thescreening experiment had two
objectives to identify which factors and first level interactions
were statistically significant and to identify the best settings
for these factors. The experimental design, shown in Table 2,
was used together with data from timetabling problem 1 (a
small problem). The factors included (i) the combination of
population size and the number of generations (PG), which
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Table 2: Experimental factors and levels for the GA.

Factors Levels Factor values
Low (−1) Medium (0) High (+1)

PG 3 25 ∗ 100 50 ∗ 50 100 ∗ 25
𝑃
𝐶

3 0.6 0.75 0.9
𝑃
𝑀

3 0.1 0.2 0.3
COP 3 One-point (OP) Two-point (TP) Position-based (PB)
𝑀
𝑅

3 0.1 0.5 0.9

Table 3: One-third fraction 35–1 experimental design.

Runs PG 𝑃
𝐶

𝑃
𝑀

COP 𝑀
𝑅

1 −1 −1 −1 −1 −1

2 −1 −1 −1 0 0

3 −1 −1 −1 1 1

4 −1 −1 0 −1 0

5 −1 −1 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

79 1 1 1 −1 −1

80 1 1 1 0 0

81 1 1 1 1 1

determines the total number of chromosomes generated,
which determines the amount of search and influences the
execution time. In the computational experiments the value
was fixed at 2,500 to limit the time taken for computational
search; (ii) the probability of crossover (𝑃

𝐶
); (iii) the proba-

bility of mutation (𝑃
𝑀
); (iv) the crossover operation (COP);

and (v) the mutation rate (𝑀
𝑅
).

The total number of runs required for a full factorial
experiment based on the design in Table 2 would consider
all the combinations of the factors in each replication. The
total number of runs would therefore be the number of
factors times the number of levels times the number of
replications, which would be 35 = 243 runs per replication.
When resources are limited it is common for researchers to
use fractional factorial designs, which use a carefully chosen
subset (fraction) of the experimental runs required for a full
factorial design. This approach is based upon the sparsity of
effects principle that states that a system is usually dominated
by main effects and low order interactions [27].

In this experiment, the one-third fraction 35−1 experi-
mental design shown in Table 3 was adopted for the screening
experiment, which decreased the number of computational
runs by 66.67% per replication compared to the full factorial
approach. The first instant problem (see Table 1) was selected
and replicated five times using different random seeds. The
computational results obtained from the 405 (35−1 ∗ 5) runs
were analysed using a general linearmodel form of analysis of
variance (ANOVA). Table 4 shows the ANOVA table, which
shows the source of variation (Source), degrees of freedom
(DF), sum of square (SS), mean square (MS), 𝐹 value, and 𝑃
value. ANOVA was used to test the null hypothesis that there
was no effect (𝐻

0
) and the alternative hypothesis (𝐻

1
) that
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Figure 4: Main effect plots of PG, COP, and𝑀
𝑅
factors.

there is an effect for each factor and interaction [27]. If a 95%
confidence interval is used𝐻

1
is accepted if 𝑃 ≤ 0.05, but𝐻

0

cannot be rejected if 𝑃 > 0.05.
Table 4 shows the GA parameters in terms of the main

effect and first level interactions. PG, COP,𝑀
𝑅
, PG∗𝑃

𝐶
, PG∗

COP, PG∗𝑀
𝑅
, and𝑃

𝑀
∗𝑀
𝑅
were statistically significant with

a 95% confidence interval. The random seed number (seeds)
did not statistically affect the GA performance. However,
it is best not to discard parameters having a 𝑃 value more
than 0.05 but less than 0.2 in a screening experiment [26].
Moreover, the most influential factor in this experiment was
𝑀
𝑅
because it had the highest 𝐹 value followed by the COP

factor.

4.2. Multiple Comparison Analysis. The experimental design
considered three different levels for each factor. The alter-
native hypothesis (𝐻

1
) obtained from the ANOVA only

identifies that at least one level of a factor has a statistically
different mean, but it is not known whether the other
levels are significant [27]. Thus, in some cases it is not
possible to select the appropriate parameter settings from
the ANOVA because it is not known which pairs of results
are significantly different. After the screening experiment,
appropriate parameter settings for the GA were determined
by using the lowest mean obtained from main effect and
interaction plots. These are shown in Figures 4 and 5 for the
statistically significant GA factors. Figure 4 indicates that the
best settings are PG = 25 ∗ 100, COP = PB, and𝑀

𝑅
= 0.1.

Figure 5 shows the best combinations for the interactions,
which are PG = 25 ∗ 100 and 𝑀

𝑅
= 0.1; PG = 50 ∗ 50
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Table 4: ANOVA analysis of GA parameters.

Source DF SS MS 𝐹 value 𝑃 value
PG 2 18,274 9,137 7.65 0.001
𝑃
𝐶

2 4,362 2,181 1.83 0.163
𝑃
𝑀

2 4,589 2,295 1.92 0.148
COP 2 280,473 140,236 117.36 0.000
𝑀
𝑅

2 712,893 356,446 298.29 0.000
Seeds 4 7,413 1,853 1.55 0.187
PG ∗ 𝑃

𝐶
4 12,304 3,076 2.57 0.038

PG ∗ 𝑃
𝑀

4 4,341 1,085 0.91 0.459
PG ∗ COP 4 15,613 3,903 3.27 0.012
PG ∗𝑀

𝑅
4 44,420 11,105 9.29 0.000

𝑃
𝐶
∗ 𝑃
𝑀

4 3,419 855 0.72 0.582
𝑃
𝐶
∗ COP 4 4,544 1,136 0.95 0.435
𝑃
𝐶
∗𝑀
𝑅

4 3,259 815 0.68 0.605
𝑃
𝑀
∗ COP 4 3,971 993 0.83 0.506
𝑃
𝑀
∗𝑀
𝑅

4 14,475 3,619 3.03 0.018
COP ∗𝑀

𝑅
4 8,257 2,064 1.73 0.143

Error 350 418,238 1,195
Total 404 1,560,845

Table 5: Pairwise comparisons using Tukey’s method for the significant main effects.

Factors (𝑗) (𝑖) Mean difference (𝑖 − 𝑗) 𝑍 𝑇 value 𝑃 value

PG
25 ∗ 100 50 ∗ 50 0.21 0.05 0.999
25 ∗ 100 100 ∗ 25 14.36 3.41 0.002
50 ∗ 50 100 ∗ 25 14.14 3.36 0.002

COP
OP TP 47.30 11.24 0.000
OP PB −14.28 −3.39 0.002
TP PB −61.58 −14.64 0.000

𝑀
𝑅

0.1 0.5 77.33 18.38 0.000
0.1 0.9 97.28 23.12 0.000
0.5 0.9 19.95 4.74 0.000

with COP = PB; PG = 50 ∗ 50 with 𝑃
𝐶
= 0.75; and𝑀

𝑅
= 0.1

with 𝑃
𝑀
= 0.2.

Tukey’s method [27] is a statistical analysis tool that may
be used formultiple or pairwise comparisons.The hypothesis
testing used by Tukey’s method can be defined as follows:𝐻

0

cannot be rejected if the means of pair 𝑖 − 𝑗 are equal; that is,
the mean difference between the pair 𝑖 − 𝑗 is zero (𝑃 value >
0.05); otherwise,𝐻

1
will be accepted for pair 𝑖−𝑗with𝑃 value

≤ 0.05 [27]. Many statisticians prefer to use this approach
because the overall error rate is controlled [27]. Tukey’s
methodwas therefore applied to detect significant differences
in pairs of means in terms of the main and interaction effects.
The results obtained with Tukey’s comparison are shown in
Tables 5 and 6, each of which consists of the significant
factors, the pairs of factor levels between 𝑖 and 𝑗 considered,
the mean difference between 𝑖 and 𝑗 (Mean dif. 𝑖 − 𝑗), and the
𝑇 value and the 𝑃 value.

The comparative results obtained from using Tukey’s
method for the significant main effects shown in Table 5
indicated that the mean (mean difference 𝑖 − 𝑗) difference

in penalty 𝑍 for the factor PG between 25 ∗ 100 and 50 ∗
50 was not statistically different (𝐻

0
cannot be rejected)

whilst the means of other pairs were different (𝐻
1
will be

accepted). Moreover, the means obtained from the pairs of
the COP and𝑀

𝑅
factors were statistically different from each

other pair. As there were many pairs of interactions, only
the pairs that had the lowest mean in the interaction plots
shown in Figure 5 were selected for pairwise comparisons.
The analysis of the results obtained with Tukey’s method for
the selected significant interactions is shown in Table 6. The
mean obtained with the𝑀

𝑅
factor at 0.1 was not statistically

different when the PG factor was set at either 25 ∗ 100 or
50∗50. This indicates that all three levels of the PG factor are
appropriate for use with the PB crossover. The 𝑃

𝐶
parameter

settings were practicable at all levels when the PG factor was
set at either 25 ∗ 100 or 50 ∗ 50. The means obtained for all
of the levels of the 𝑃

𝑀
factor were usable when the𝑀

𝑅
factor

was set at 0.1.Therefore, the appropriate parameter setting for
the GA factors PG, COP,𝑀

𝑅
, 𝑃
𝐶
, and 𝑃

𝑀
were established as

25 ∗ 100 or 50 ∗ 50, PB, 0.1, 0.6–0.9, and 0.1–0.3, respectively.



Mathematical Problems in Engineering 9

0.90.50.1

400

375

350

325

300

275

250

M
ea

n 
of

 to
ta

l v
io

la
tio

n 
in

de
x 

(Z
)

PG
25 ∗ 100

50 ∗ 50

100 ∗ 25

MR

(a)

PBTPOP

390

380

370

360

350

340

330

320

310

300

COP

M
ea

n 
of

 to
ta

l v
io

la
tio

n 
in

de
x 

(Z
)

PG
25 ∗ 100

50 ∗ 50

100 ∗ 25

(b)

0.900.750.60

350

345

340

335

330

325

320

M
ea

n 
of

 to
ta

l v
io

la
tio

n 
in

de
x 

(Z
)

PC

PG
25 ∗ 100

50 ∗ 50

100 ∗ 25

(c)

0.90.50.1

380

360

340

320

300

280

260

M
ea

n 
of

 to
ta

l v
io

la
tio

n 
in

de
x 

(Z
)

0.1
0.2
0.3

MR

PM

(d)
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𝐶
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𝑅
.

4.3. Verifying Appropriate Parameter Settings. The significant
factors, interactions, and important differences in the means
were investigated by the screening experiment and pairwise
comparison. Montgomery [27] suggested that the region
for significant factors leading to the best possible response
should be explored by conducting a second optimisation
experiment after the screening experiment. The COP factor
was a discrete GA parameter. The previous experiment
identified PB as the best setting. PG settings between 25∗100
and 50 ∗ 50 showed little difference after using the pairwise
analysis (see in Table 5), except for the𝑀

𝑅
factor. Therefore,

the region of 𝑀
𝑅
around 0.1 should be verified by using an

experimental design before carrying out a comparative study.

Five levels of 𝑀
𝑅
were therefore considered 0.02, 0.06,

0.1, 0.14, and 0.18. The appropriate settings identified by the
previous experiments were used for the other parameters.
The first instant problem from the ITC2007 was selected and
repeated ten times using different random seed numbers.The
results obtained from the computational runs for the best so
far solution were statistically analysed in terms of minimum
(Min), maximum (Max), and average (Avg) penalty value 𝑍
as well as the standard deviation (SD) and the execution time
(Time) (hour unit).

The experimental results are shown in Table 7. The 𝑀
𝑅

setting of 0.1 produced the best performance with the lowest
average, minimum, and maximum values. The higher values
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Table 6: Pairwise comparisons using Tukey’s method for the selected significant interaction.

Factors (𝑗) (𝑖) Mean difference (𝑖 − 𝑗) 𝑍 𝑇 value 𝑃 value

PG ∗ 𝑃
𝐶

25 ∗ 100 0.75 50 ∗ 50 0.75 −8.42 −1.16 0.965
25 ∗ 100 0.6 25 ∗ 100 0.75 3.73 0.51 0.999
25 ∗ 100 0.75 25 ∗ 100 0.9 −1.31 −0.18 1.000
50 ∗ 50 0.6 50 ∗ 50 0.75 −13.24 −1.82 0.671
50 ∗ 50 0.75 50 ∗ 50 0.9 7.62 1.05 0.981

PG ∗ COP
25 ∗ 100 PB 50 ∗ 50 PB −3.27 −0.45 1.000
25 ∗ 100 PB 100 ∗ 25 PB 5.67 0.78 0.998
50 ∗ 50 PB 100 ∗ 25 PB 8.93 1.23 0.951

PG ∗𝑀
𝑅

25 ∗ 100 0.1 50 ∗ 50 0.1 21.67 2.97 0.073
25 ∗ 100 0.1 100 ∗ 25 0.1 46.51 6.38 0.000
50 ∗ 50 0.1 100 ∗ 25 0.1 24.84 3.41 0.019

𝑃
𝑀
∗𝑀
𝑅

0.1 0.1 0.2 0.1 −9.42 −1.29 0.933
0.1 0.1 0.3 0.1 −6.73 −0.92 0.992
0.2 0.1 0.3 0.1 2.69 0.37 1.000

Table 7: Verifying the optimal setting for𝑀
𝑅
.

Factor levels Significant factor Best so far solution
𝑀
𝑅

Min 𝑍 Max 𝑍 Avg 𝑍 SD Time (hrs)
Lowest (−2) 0.02 228 312 260.60 24.29 0.11
Low (−1) 0.06 216 286 255.20 21.18 0.12
Medium (0) 0.10 163 254 222.30 25.77 0.12
High (1) 0.14 193 328 260.40 37.33 0.13
Highest (2) 0.18 224 314 256.70 25.32 0.14

of 𝑀
𝑅
required more computational time than the lower

parameter settings. This analysis verified that the optimal
setting of𝑀

𝑅
for the GA is 0.1.

4.4. Performances of GA with/without the Modified Regen-
eration Mutation. The objective of this experiment was to
explore and compare the performance of GA with/without
the modified regeneration mutation operator (MRMO) in
terms of the speed of convergence and the quality of the
solutions. The appropriate parameter settings for the GA
with the MRMO for PG, COP,𝑀

𝑅
, 𝑃
𝐶
, and 𝑃

𝑀
were found

to be 25 ∗ 100, PB, 0.1, 0.75, and 0.2, respectively. The
benchmark problems adopted from the third track of the
ITC2007 (14 instances) [38]were used to test and compare the
performance of the proposed algorithms to find the course
timetable with the lowest penalty 𝑍. The computational run
for each instance was repeated ten times by using different
random seeds. The computational results were analysed in
terms of Avg, SD, time (hour unit), and the percentage
improvement achieved by the GA with MRMO (%Imp). A
𝑡-test was used to compare the means.

Table 8 shows that the performance differences achieved
by the GA with/without the MRMO were all statistically
significantwith a 95%confidence interval using 𝑡-test analysis
(𝑃 value ≤ 0.05) for all of the problems. It means that the
GA with the MRMO outperformed the GA without the
MRMO for all instances, each of which also had the lower
Avg and SD values. Moreover, the %Imp value for each
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Figure 6: A comparison of convergence achieved by the GA with/
without MRMO for problem number 7.

problemwas distributed between 35.55% and 87.56% but with
longer execution time. The average of improvement was up
to 51.88%. A comparison of the convergence speed for the
proposed methods to investigate the best so far solution is
shown in Figures 6 and 7 by using problems number 7 and
number 14 from the ITC2007 datasets.

The GA with MRMO converged more quickly for prob-
lems number 7 and number 14 than the GA without the
MRMO (see Figures 6 and 7). Therefore, it can be concluded
that the new regeneration mutation based upon roulette
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Table 8: Comparative study between GA with/without MRMO.

Problems GA GA with MRMO 𝑡-test analysis %Imp
Avg 𝑍 SD Time (hrs) Avg 𝑍 SD Time (hrs) 𝑇 value 𝑃 value

1 222.30 25.77 0.12 90.60 16.59 0.12 13.59 0.000 59.24
2 710.30 37.97 1.51 416.90 26.74 1.52 19.98 0.000 41.31
3 683.50 28.20 0.67 370.20 26.77 0.68 25.48 0.000 45.84
4 724.70 24.98 0.62 318.70 19.99 0.62 40.13 0.000 56.02
5 1549.60 154.74 0.57 998.70 113.07 0.58 9.09 0.000 35.55
6 1087.70 26.90 0.82 555.70 25.85 0.82 45.09 0.000 48.91
7 1244.50 46.14 1.23 670.50 25.43 1.23 34.45 0.000 46.12
8 689.90 19.17 0.73 300.70 14.48 0.71 51.22 0.000 56.41
9 717.90 24.19 0.87 373.10 21.48 0.85 33.70 0.000 48.03
10 839.20 38.41 0.92 408.70 19.92 0.90 31.47 0.000 51.30
11 403.40 78.19 0.19 50.20 16.43 0.19 13.98 0.000 87.56
12 1397.00 52.02 0.63 854.40 49.25 0.63 23.95 0.000 38.84
13 806.60 37.29 0.71 362.00 23.32 0.71 31.97 0.000 55.12
14 705.90 27.59 0.58 310.30 17.48 0.58 38.30 0.000 56.04

Avg %Imp 51.88

Generations
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Figure 7: A comparison of convergence achieved by the GA with/
without MRMO for problem number 14.

wheel selection was able to improve the GA’s performance in
terms of solution quality and speed.

4.5. Analysing the Performance Evolutionary AlgorithmHybri-
disations. The objective of this experiment was to explore
the performance of (i) the MRMO with/without local search
(the modified memetic algorithm (MMA)); (ii) the addition
of the elitist strategy (MRMO+ES and MMA+ES); and (iii)
the use of the clonal selection algorithm (MRMO+CSA
and MMA+CSA) both in terms of convergence speed and
solution quality. The appropriate parameter settings for the
MRMO and the MMA were adopted from the previous
experiments. The benchmark problems adopted from the
third track of the ITC2007 [38] were again used to test
and compare the performance of the proposed algorithms
to find the course timetable with the lowest penalty 𝑍. The
computational run for each instance was repeated ten times
by using different random seed numbers. The computational

results obtained were analysed statistically in terms of Avg,
SD, and time (hour unit), as shown in Table 9.The percentage
improvement (%Imp) achieved by the MRMO with/without
hybrid heuristics was calculated, whilst the 𝑇 value obtained
by using the 𝑡-test method and the 𝑃 value are also shown in
Table 10.

Table 10 shows that almost all of the comparisons between
the results obtained from the MRMO and the other hybridi-
sation approaches were statistically significant with a 95%
confidence interval (𝑃 value ≤ 0.05). For all of the problems
the results obtained from the MMA+ES, MRMO+CSA,
and MMA+CSA were statistically significant with a 95%
confidence interval. Moreover, the MMA+CSA achieved the
highest𝑇 value, %Imp, and Avg%Imp, which indicates that it
was the best configuration. However, the negative or positive
𝑇 value in Table 10 indicated that the results obtained from
some hybrid approaches did not outperform the MRMO for
some problems.

According to Tables 9 and 10, the MMA+CSA out-
performed the other methods for all instances because it
achieved the maximum Avg %Imp of 49.85% and minimum
Avg values. However, it also had the longest execution time.
Although the Avg %Imp between the MRMO+CSA and
the MMA+ES was nearly equal at 42%, the MRMO+CSA
required less computational time than both the MMA+CSA
and the MMA+ES; it was up to 6.3 times quicker for some
instances. Moreover, the Avg %Imp obtained by the MRMO
using CSA was better than that using LS (MMA) and ES by
approximately 23–26%. The MRMO’s execution times using
CSA were also up to 5.7 times faster than those using LS
but slower than those using ES by up to 3.2 times for some
instances. Although theAvg%Impobtained from theMRMO
usingES andLSwas less than those using the proposed hybrid
methods, the performances of theMRMO+ES and theMMA
were better than the MRMO without hybridisations (see in
Table 10). The average improvement for almost all problems
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Figure 8: A comparison of convergence amongst EA hybridisations
for problem number 7.
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Figure 9: A comparison of convergence for EA hybridisations for
problem number 14.

was around 16–19%. A comparison of the results in terms of
average convergence speeds of the proposed hybrid methods
to find the best so far solution is shown in Figures 8 and 9.
These were based upon problem numbers 7 and 14 from the
ITC2007 which represent medium and large problem sizes.

The MMA+CSA’s converged more quickly than the other
algorithms for problems 7 and 14. The next best conver-
gence was achieved by MMA+ES (Figures 8 and 9). The
MRMO+CSA had low performance in early generations.
However, the average of best so far solutions found in the last
generation was close to the average of best so far solutions
obtained by the MMA+CSA. Moreover, the LS strategy
hybridisation in the MRMO including the MMA+CSA, the
MMA+ES, and the MMA was able to find a better average
of best so far solutions in early generations than the other
methods without LS. Therefore, it can be concluded that the
LS, ES, and CSA strategies were able to improve the MRMO’s
performance in terms of the solution quality and speed.

5. Conclusions

The evolutionary algorithms based timetabling (EAT) tool
was developed to use genetic algorithms (GA) and memetic

algorithms (MA) to solve university course timetabling
problems. The work made a number of significant research
contributions. A common problemwith genetic algorithms is
that many chromosomes within a population may represent
infeasible solutions. This work developed new one-point,
two-point, and position-based crossover operators and a
modified regeneration mutation operators that guaranteed
that all of the chromosomes generated represented feasible
solutions. Likewise the chromosome initialisation process
was designed to produce feasible chromosomes.The research
also developed novel hybrids that included genetic algo-
rithms, local search, and a clonal selection algorithm together
with roulette wheel and elitist selection. The tool was tested
using 14 datasets obtained from the third track of ITC2007
[38], which have been widely used by previous researchers.

The experimental work adopted a sequential experi-
mental design. The screening experiment used a one-third
fraction of the 3𝑘−1 experimental design [27] with five factors,
each of which had three levels. The factors PG, COP, 𝑀

𝑅
,

PG∗𝑃
𝐶
, PG∗COP, PG∗𝑀

𝑅
, and 𝑃

𝑀
∗𝑀
𝑅
were statistically

significant with a 95% confidence interval. Main effect plot
analysis found the best settings to be PG = 25∗100, COP =
PB, and𝑀

𝑅
= 0.1.The best combinations for the interactions

were PG = 25 ∗ 100 and 𝑀
𝑅
= 0.1; PG = 50 ∗ 50 with

COP = PB; PG = 50 ∗ 50 with 𝑃
𝐶
= 0.75; and𝑀

𝑅
= 0.1 with

𝑃
𝑀
= 0.2.
A further analysis using pairwise comparison found the

appropriate parameter setting for PG, COP, 𝑀
𝑅
, 𝑃
𝐶
, and

𝑃
𝑀

to be 25 ∗ 100 or 50 ∗ 50, PB, 0.1, 0.6–0.9, and 0.1–
0.3, respectively. A further experiment verified that the best
setting for𝑀

𝑅
was 0.1, as it produced the best performance

with the lowest average, minimum and maximum penalty
values.

The comparative results indicated that the MRMO out-
performed the GA for all problems, with an average improve-
ment of up to 51.88%. The MRMO converged more quickly
than GA. In terms of hybrid comparisons, the MMA+CSA
outperformed all the other methods; there was an average
improvement of 49.85% compared to theMRMO.The second
best hybrid was the MRMO+CSA. The MMA+CSA also
converged more quickly and the best so far solutions were
better than for all the other hybrid methods for all genera-
tions. Although the performance of theMRMO+CSAwas the
second rank in terms of an average of %Imp, it required up to
6.3 times less computational time less than the MMA+CSA.
TheES, LS, andCSA embeddedwithin the EAT tool were able
to improve the EA’s performances in terms of solution quality
and its convergence but at the expense of longer execution
time.

Thus, the development of novel hybrids has been shown
to be an effective approach to solve a wide range of
timetabling problems. The proposed approaches have been
shown to provide good solutions quickly.
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