
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 159

Plagued by Work: Using Immunity to Manage the Largest Computational
Collectives

Lucas A. Wilson, Michael C. Scherger & John A. Lockman III

X

Plagued by Work: Using Immunity to Manage
the Largest Computational Collectives

Lucas A. Wilson1, Michael C. Scherger2 & John A. Lockman III1

1Texas Advanced Computing Center, The University of Texas at Austin
2Texas A&M University – Corpus Christi

United States

1. Introduction

Modern computational collectives, ranging from loosely-coupled Grids and Clouds to
tightly-coupled clusters, are progressively increasing in both capability and complexity.
This has created a need for more efficient methods to schedule tasks to hosts. Typically,
system resources in these environments are managed with a combination of simple
heuristics and bin-packing algorithms to perform common operations such as backfill.
However, as the size and scope of these computational collectives grows ever larger,
different approaches must be employed to cope with both the number of resources to
manage and the volume of jobs to schedule. One possible avenue is to distribute the task
of managing these massive-scale systems across the participants, giving each resource a
say in how the final scheduling solution will appear.
The introduction of multi-/many-core architectures has complicated the problem of
performing effective scheduling on large-scale systems. The number of allocatable
elements per system is now increasing at a staggering rate as hardware manufacturers
attempt to keep pace with Moore's Law (Moore 1965). In clusters, for example, the
number of "nodes" - standalone physical systems with a network connection - has
stabilized due to limitations in current switching technology and power/cooling capacity.
However, each node now has more allocatable cores, increasing the cores per node
"density" of the system overall. Scheduling algorithms will be required to cope with
scheduling quantities of elements increasing by orders of magnitude every few years,
while still providing timely decision information.
The Asynchronous Lymphocytic Agent-based Resource Manager (ALARM) was first
proposed as a novel method of distributing the task of managing a large set of resources
by mimicking the actions of the mammalian immune system (Wilson 2008). Previously
reported results demonstrated the viability of using the immune system as a metaphor for
distributed resource management and provided a comparison of ALARM to other, more
widely-recognized scheduling heuristics (Scherger 2009).
In this chapter we detail how the scheduling problem can be described in terms of the
mammalian immune system and provide a description of the ALARM method. We
provide comparative results against common scheduling heuristics on large-scale

9

www.intechopen.com

Parallel and Distributed Computing160

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 161

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

www.intechopen.com

Parallel and Distributed Computing162

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 163

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

www.intechopen.com

Parallel and Distributed Computing164

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 165

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

www.intechopen.com

Parallel and Distributed Computing166

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 167

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

www.intechopen.com

Parallel and Distributed Computing168

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 169

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

www.intechopen.com

Parallel and Distributed Computing170

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 171

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

www.intechopen.com

Parallel and Distributed Computing172

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 173

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

www.intechopen.com

Parallel and Distributed Computing174

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 175

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

www.intechopen.com

Parallel and Distributed Computing176

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

www.intechopen.com

Plagued by Work: Using Immunity to Manage the Largest Computational Collectives 177

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

www.intechopen.com

Parallel and Distributed Computing178

Wilson, L. A. (2008). Distributed, Heterogeneous Resource Management Using Artificial
Immune Systems. Proceedings of the International Parallel and Distributed Processing
Symposium, NIDISC, Apr. 2008.

www.intechopen.com

Parallel and Distributed Computing

Edited by Alberto Ros

ISBN 978-953-307-057-5

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware

design to application development. Particularly, the topics that are addressed are programmable and

reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,

cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale

network simulation, and parallel routines and algorithms. In this way, the articles included in this book

constitute an excellent reference for engineers and researchers who have particular interests in each of these

topics in parallel and distributed computing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lucas A. Wilson, Michael C. Scherger and John A. Lockman III (2010). Plagued by Work: Using Immunity to

Manage the Largest Computational Collectives, Parallel and Distributed Computing, Alberto Ros (Ed.), ISBN:

978-953-307-057-5, InTech, Available from: http://www.intechopen.com/books/parallel-and-distributed-

computing/plagued-by-work-using-immunity-to-manage-the-largest-computational-collectives

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

