8 research outputs found

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

    Get PDF
    Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimization technique based on the gravitational search algorithm (GSA). Finding flocking parameters using swarm behaviors is the main contributing of this paper to minimize the cost function. The cost function displays the average of Euclidean distance of the center of mass (COM) away from the moving target. One of the benefits of using GSA is its application in multiple targets tracking with satisfying results. Simulation results indicate that this scheme outperforms existing ones and demonstrate the ability of this approach in comparison with the previous methods

    Heuristic Optimization Algorithms in Robotics

    Get PDF

    Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm

    Get PDF
    This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP). GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems
    corecore