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This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP).
GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a
triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known
single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward
the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index
which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information
in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results
indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a
plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for
the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution
qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley &
Sons, Inc.

Keywords: gravitational search algorithm, triple-valued encoding, graph planarization

Received 12 July 2012; Revised 6 October 2012

1. Introduction

Graph planarization problem (GPP) is a widely researched
optimization problem. It has not only theoretical importance
related with topological problems but also practical applications
in numerous areas, such as circuit board layout, facility layout,
automatic graph drawing, and VLSI circuit routing [1]. A graph
is said to be planar or embeddable in a plane if it can be drawn
on the plane in such a way that no two of its edges intersect
except at a common endpoint. Given an m-vertex n-edge graph
G = (V , E ) with vertex set V and edge set E , the objective
of finding the maximum planar subgraph (MPS) is to find a
minimum cardinality subset of edges F ⊆ E such that the graph
G ′ = (V , E\F ) resulting from the removal of the edges F from
G is planar. As a graph’s linear embedding problem, the GPP
generally needs to fulfill two tasks: MPS acquisition and plane
embedding. MPS acquisition is to verify if the input graph is
planar, and further to extract the edges of its MPS if it is a
nonplanar graph. Plane embedding is to embed the MPS of the
input graph into a plane and perform the routing of the vertices
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and edges in the plane without any cross connections or cross
edges. The GPP is very difficult to solve, and it belongs to NP-hard
problems [2].

Several studies have been presented to propose algorithms for
the GPP using different techniques. Initial works focused on devel-
oping sophisticated heuristic algorithms based on planarity testing,
aiming to identify the edges of the MPS with low computational
complexity [3–7]. Nevertheless, these algorithms were devoted
only to the graph planarity test task (i.e. MPS acquisition). In other
words, they failed to fulfill the plane embedding task. The reason
was that there were no embedding mechanisms in these algorithms.
To solve the GPP with the MPS acquiring and embedding tasks
simultaneously, some meta-heuristics were proposed. In Ref. [8],
the first example illustration was provided, and the proposed neural
network was then further developed in Refs [9,10] with the pur-
pose of improving its searching performance. In addition to neural
networks, genetic algorithms [11,12] and artificial immune systems
[13] also exhibited super applicability on the GPP. Although these
meta-heuristics are capable of solving the GPP, their performance
is limited with the size of the input graphs; thus seeking other meta-
heuristics with better optimization abilities is still an open problem.

In this paper, a triple-valued gravitational search algorithm
(TGSA) is proposed to solve the GPP. TGSA is an extended
version of the gravitational search algorithm (GSA) [14,15]. The
main characteristic of TGSA is its triple-valued encoding scheme,
which makes the algorithm more suitable to manipulate the GPP.
To realize this, the representation of GPP adopts the single-row
routing method. The vertices of input graphs are first placed on a
straight line. Then the edges are divided into three subsets: the
upper edges over the line (U), the lower ones (L), and the
directly eliminated ones (E), which naturally form a triangular
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hypercube search space for the algorithm. Thereafter, the GPP is
transferred into an optimization problem, where the objective of
the implemented TGSA is to optimize the combinatorial problem
of the edges’ placement. It is important to highlight that TGSA
is able to produce several optimal planar subgraphs, comparable
to those obtained by other approaches. This is the crucial feature
of population-based algorithms in general, and of the algorithm,
TGSA, used in this research work in particular. Eventually, in order
to show the accuracy of the proposed TGSA, a fair comparison is
made with other six meta-heuristics. Experimental results verify
the effectiveness of the proposed algorithm.

This paper is structured as follows. The following section makes
a small literature review on the algorithms used when solving
the GPP. The review also indicates that gravitational-search-based
algorithms have never been used for such a study. Section 3 gives
a general description of the GSA. Section 4 illustrates the problem
representation, the designs, and the application of TGSA on the
GPP. Simulation results are summarized and discussed in Section
5. Finally, some general remarks are given to conclude this paper.

2. Related Works

For finding the MPS of a given graph, numerous heuristics have
been proposed. A widely used standard process is to start with a
spanning tree of the input graph G = (V , E ), and to iteratively
try to add the remaining edges one by one. In every step, a
planarity testing algorithm is called for the obtained graph. If the
addition of an edge would lead to a nonplanar graph, then the
edge is disregarded; otherwise, the edge is added permanently
to the planar graph obtained so far. Within this algorithmic
framework, Jayakumar et al. [4] proposed a near-maximal planarity
testing algorithm with computational complexity O(|E |2) based
on the PQ-tree technique [3]. Kant [5] presented a corrected
and more generalized version of Jayakumar’s algorithm. Cai
et al. [16] and Battista and Tamassia [17] proposed efficient
algorithms with the same complexity bound of O(|V | log |E |),
which were derived from the Hopcroft–Tarjan planarity testing
algorithm [18] and the incremental planarity testing algorithm [17],
respectively. Furthermore, linear-time O(|V | + |E |) algorithms
can be considered as in Refs [7],[19]. Obviously, the heuristics
were developed for the purpose of reducing computational times.
In addition, Poranen [20] proposed a hybrid simulated annealing
method based on the planarity test [21] for MPS, claiming that the
hybrid algorithm outperformed its earlier heuristics in terms of the
solution quality and computational times. However, its deficiency
was also distinct because it performed the planarity test numerous
times during its execution. If an implementation for the planarity
test was not available, the algorithm could not be used to solve
the problem.

In general, the algorithms proposed for MPS cannot be directly
adopted for the GPP since finding MPS is just one of its objectives,
but their basic functions can motivate (or be incorporated into) the
design of the GPP solving algorithms. In the literature, some meta-
heuristics were proposed to deal with the MPS finding task and
plane embedding task simultaneously. Among these algorithms,
neural network learning methods, two-phase graph planarization
algorithms (TGPAs), genetic algorithms, and artificial immune
algorithms exhibited promising performance.

Using the neural network techniques, Takefuji and Lee pre-
sented a parallel planarization algorithm (TLNN) for generating
a near-maximal planar subgraph within O(1) time [8],[22], and
claimed superior performance to previously published algorithms.
An improved Hopfield network learning algorithm (WNN) with
a gradient ascent technique for alleviating the inherent drawbacks
(typically the local optima problem) of Takefuji and Lee’s algo-
rithm was proposed by Wang et al. [9]. Zhang and Qin [10]

combined the Hopfield network with the simulated annealing strat-
egy (ZNN), aiming to facilitate the flexibility of the algorithm and
further to achieve a better performance.

In addition, Goldschmidt and Takvorian [23] presented a TGPA,
based on which Resende and Ribeiro [24] proposed a greedy
randomized adaptive search procedure (GRASP) by incorporating
more randomness into it. GRASP had two phases: solution
construction phase and solution improvement phase. GRASP
often mainly focused on the randomized generation of high-
quality starting solutions by very refined construction phases and
sophisticated management of the solutions, while the subsequent
solution improvement phase was usually performed by a rather
simple local search. The first phase in GRASP was an enhancement
version of the TGPA by randomly choosing one of the best
candidates in the restricted candidate list. The second phase in
GRASP aimed at minimizing the number of edges that needed
to be removed to eliminate all edge crossings with respect to the
first-phase sequence, which was realized by implementing a simple
local search within a slightly restricted neighborhood. Simulation
results indicated that GRASP could obtain better or competitive
results than TGPA and branch-and-cut algorithms [25,26] for
graphs having up to 300 vertices or 1500 edges.

Besides, the applicability of genetic algorithms to solving the
GPP had been verified by Comellas in Ref. [11]. An effective
genetic algorithm (EGA) performing crossover and mutation
operators conditionally instead of probability could be also referred
to as in Ref. [12]. Most recently, the authors [13] proposed a
multilayered artificial immune system (MAIS) for the GPP, which
took advantages of the technologies of search space minimization
and feature extraction, exhibiting excellent performance on all
tested benchmark problems. It is to be noted that this section does
not aim to provide a comprehensive literature review, but intends
to gives some insights into the ideas of the proposed algorithms,
and further verify that gravitational search-based algorithms have
never been studied for solving the GPP.

3. Gravitational Search Algorithms

Meta-heuristic algorithms mimic biological or physical pro-
cesses. One of the newest meta-heuristic algorithms that has been
inspired by the physical laws is the GSA. It was originally pre-
sented by Rashedi et al. [14] for optimizing continuous nonlinear
functions, and then widely applied to many engineering problems
[27–29]. The algorithm is based on the Newtonian gravity: every
particle in the universe attracts every other particle with a force
that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them.
Figure 1 depicts the conceptual graph of gravity law used in GSA.

In GSA, agents are considered as solutions and their perfor-
mance is measured by their masses. Each object in GSA has two

M i

Mj

M k

M p F i

Fig. 1. Gravity law used in GSA: every agent accelerates toward
the resulting force that acts on it from other agents
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specifications: position and mass. The position of the agent cor-
responds to a solution of the problem on hand, and its mass is
determined using a fitness function. To describe the continuous
GSA [14] in formulations, consider a system with S agents in
which the position of the i th agent is defined as follows:

Xi = (x1
i , . . . , xd

i , . . . , xn
i ), i = 1, 2, . . . , S

where xd
i is the position of the i th agent in the d th dimension and

n is the dimension of the search space.
The mass of each agent is calculated after computing the current

population’s fitness as follows:

qi (t) = fiti (t) − worst(t)

best(t) − worst(t)
(1)

Mi (t) = qi (t)∑s
j=1 qj (t)

(2)

where Mi (t) and fiti (t) represent the mass and the fitness value
of the agent i at the iteration t , respectively. Without loss of
generality, best(t) and worst(t) are defined for a minimization
problem as follows:

best(t) = min
j∈{1,...,S }

fit j (t) (3)

worst(t) = max
j∈{1,...,S }

fit j (t) (4)

To compute the acceleration of an agent, total forces from a
set of heavier agents that apply on an agent should be considered
based on the gravity law (5), which is followed by the calculation
of agent acceleration using the law of motion (6). Afterward, the
velocity and position of an agent are updated according to (7) and
(8):

F d
i (t) =

∑
j∈K best ,j �=i

rj G(t)
Mj (t)Mi (t)

Rij (t) + ε
(xd

j (t) − xd
i (t)) (5)

ad
i (t) = F d

i (t)

Mi (t)
(6)

vd
i (t + 1) = ri × vd

i (t) + ad
i (t) (7)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (8)

where ri and rj are two uniformly distributed random numbers
in the interval [0, 1], ε is a small value, Rij (t) is the Euclidean
distance between two agents i and j , defined as ||Xi (t), Xj (t)||2,
and Kbest is the set of first K agents with the best fitness value
and biggest mass, which is a function of time as shown in (9),
initialized to K0 at the beginning and decreasing with time. The

gravitational constant G will take an initial value G0, and it will
be reduced with time (10) [14]:

K = �(β + (1 − t

Tmax
)(1 − β))K0� (9)

G(t) = G(G0, t) = αG(t − 1) (10)

The main components of binary GSA (BGSA) [15] are the same
as those of continuous GSA (CGSA). Compared to CGSA, the
main novelty of BGSA is its position updating rule, where only
the switching between 0s and 1s takes place, and thus makes the
search space form into a binary hypercube. Correspondingly, (7)
and (8) are changed into the following equations, respectively:

vd
i (t + 1) = w(t)vd

i (t) + 2r1(x
p
i − xd

i (t))
+ 2r2(xg − xd

i (t))
(11)

xd
i (t + 1) =

{
1 − xd

i (t) if r < 1

1+e
−vd

i (t+1)

xd
i (t) otherwise

(12)

where r1, r2, and r are three uniform random variables in the range
[0, 1], w is the inertia weight, and xp

i and xg represent the best
previous position of the i th agent and the best previous position
among all the agents in the population, respectively.

To sum up, GSA (either continuous or binary variant) is
a memory-less algorithm and the agent direction is calculated
based on the overall force obtained by other agents, which is
different from other population-based algorithms, such as PSO,
ACO[vnsn1], GA, etc. In GSA, the force is directly proportional
to the fitness value while inversely proportional to the distance
between solutions, so that heavy masses have large effective
attraction radii and hence great intensities of attraction, revealing
that the agents tend to move toward the best agent, which is the
main characteristic of the algorithm. Previous works [14,15,29]
on solving many optimization problems have demonstrated the
superiority of the algorithm. However, these mentioned GSAs
cannot be directly applied on the GPP, which motivates us to
propose a novel encoding scheme into GSA, and further evaluate
its performance on solving the GPP.

4. TGSA to Solve the GPP

4.1. Problem definition The way of representing the
GPP is described. In this paper, we use the single-row rout-
ing representation that was originally proposed in Takefuji and
Lee’s algorithm [8] and widely adopted by many other studies
[12],[13],[23],[24]. According to this representation method, an
arbitrary sequence of all the vertices in the given graph is placed
along a line, first. Then all the edges are determined to belong
to any of the two sets of edges that may be represented with-
out crossings above and below that line, respectively. Consider a
simple undirected graph composed of four vertices and six edges
as shown in Fig. 2(a). The graph is planar as long as two edges,

v1 v2

v3v4

(a)

v1 v2

v3v4

(b)

vi vp vj vq

(d)

vp vi vq vj

v1 v2 v3 v4

(c)

e1

e2

e3

e4

e5

e6

e1

e2 e3 e4

e5

e6
e1

e2

e3

e4

e5

e6

Fig. 2. Single-row routing representation used in GPP. (a) A graph with four vertices and six edges. (b) A planar graph. (c) A possible
planar graph. (d) Violation conditions
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e5 = (v1, v3) and e6 = (v2, v4), do not cross each other. Figure
2(b) shows a planar graph. Following the single-row routing rep-
resentation method, the vertices in the graph are placed on a line
and then the connection is established by either an upper edge or
a lower edge. Figure 2(c) shows a possible planar graph based
on the single-row routing representation. The two-edge-crossing
violation condition can be easily determined from the single-row
representation used. The existence of a crossing between two upper
edges (vi , vj ) and (vp , vq ) (or two lower edges) is determined by
the following conditions as shown in Fig. 2(d):

if vi < vp < vj < vq or vp < vi < vq < vj (13)

Consequently, under this representation, each edge has three
possible states according to whether, in accordance with a deter-
mined vertex sequence, the edge is a lower edge, it is not consid-
ered, or it is an upper edge. The objectives of solving the GPP is
actually to make the number of considered edges in the resultant
planar subgraph as large as possible, and further embed these edges
into the plane with respect to the established vertex sequence.

4.2. Description of TGSA In this paper, a novel
approach based on the TGSA to solve the GPP is presented. Since
there are three possibilities of placing the edges over the line, that
is, to be the upper (U) edges, the lower (L) edges, and the elim-
inated (E) ones, the encoding scheme is naturally designed from
the triple-valued set {U , L, E }. The agents in TGSA are defined as
the edges sequences, whose values are taken from the triple-valued
set. Formally, for a given m-vertex n-edge graph G = (V , E ), the
position Xi of the agent i is expressed as:

Xi = (e1
i , e2

i , ...., en
i ), ∀ej

i ∈ {U , L, E }, j = 1, 2, . . . , n

Here, it is worth emphasizing that the randomly generated
position Xi might become an invalid solution for the GPP, because
the resulting placement of edges is likely to satisfy the violation
conditions in (13). Thus, a repair operator to ensure the position
always corresponding to valid solutions is necessary. To realize
this, a very simple repair operator is proposed in this paper as
shown in Algorithm 1.

Algorithm 1 (Repair Operator used in TGSA):
Input: an arbitrary position Xi of the agent i , and an empty
graph with an established vertex sequence.
01: do: randomly generated a sequence (s1, s2, . . . , sn) from the
set {1, 2, . . . , n}
02: for j = s1 to sn

03: embed the edges one by one according to the sequence
(es1

i , e
s2
i , . . . , esn

n ) into the graph
04: if the current selected edge e

sj
i does not fulfill the violation

conditions with respect to the graph, then embed it into the graph
as a new edge (e

sj
i = U or L)

05: otherwise set e
sj
i = E

06: end-for
07: while: the termination condition is satisfied
Output: the best repaired position Xi of the agent, and a
resultant planar subgraph.

Obviously, all agents operated by the repair process will
generate valid solutions for the GPP. In this paper, the termination
condition in the repair operator is when the number of iteration
reaches TR . The computational complexity of the repair operator
is O(nTR).

The fitness for position Xi of agent i is counted as the number
of edges whose values equal U or L. The mass of each agent
is calculated according to (1)–(4). To compute the force during
agents using (5), the distance between agents should be defined

in advance. Unlike binary or continuous variants of GSA, where
Hamming or Euclidean distance metrics are typically used, the
distance metric |.|T used in TGSA is defined according to the
following equations:

|U − L| = |U − E | = |L − E | = 1

|U − U | = |L − L| = |E − E | = 0 (14)

Rij (t) = |Xi (t), Xj (t)|T =
n∑

d=1

|xd
i − xd

j | (15)

By doing so, the triangular hypercube forming the search space
can be depicted quantitatively. The distance between each pair of
basic elements in the triple-valued set {U , L, E } has equal values.
For instance, the solution shown in Fig. 2(c) corresponds to a
position Xi = (L, U , U , U , U , L), and its fitness is 6. The distance
between Xi and Xi = (L, U , U , U , E , L), Xk = (L, U , U , U , E , U )

is 1, 2, respectively.
The total forces from the set of first K agents with the heaviest

mass that apply on an agent can be computed based on (5). The
acceleration and velocity of an agent are calculated in the same
way using (6) and (7), respectively.

As the positions of agents are restricted within the triangular
hypercube discretely, (8) is no longer used because the resulting
new position might be updated out of the hypercube. Instead, a
proper probability function is defined to control the movement of
agents in (16), where r1 and r2 are two uniform random variables
distributed on the interval [0, 1]. |xd

i (t)|U denotes the number of
upper ones of the d th edge in the current population, while |xd

i (t)|L
and |xd

i (t)|E denote the number of lower and eliminated ones,
respectively.

xd
i (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U if r1 < tanh(vd
i (t + 1)) and

r2 <
|xd

i (t)|U
|xd

i (t)|U +|xd
i (t)|L+|xd

i (t)|E
L if r1 < tanh(vd

i (t + 1)) and

r2 <
|xd

i (t)|U +|xd
i (t)|L

|xd
i (t)|U +|xd

i (t)|L+|xd
i (t)|E

xd
i otherwise

(16)

In (16), the updating of the position for an agent i is related to
two indices. The prime index is a velocity index, which is a function
of the current velocity, tanh(vd

i (t + 1)) = (1 + e−vd
i (t+1))−1, and

determines whether the updating progress takes place or just
remains the same as with the previous position. The second index is
a population index, which is a cumulative index of being an upper
edge or a lower edge for the current selected one. The population
index is calculated based on the information collection of the whole
population. For instance, if more d th edges of the agent to be upper
ones exist in the population, larger is probability of the current d th
edge to be updated into an upper one. In addition, the update into
E never happens, since it will lead to a decrease of the fitness.

4.3. Properties of TGSA To conclude, the main con-
tribution of the triple-valued encoding scheme together with the
updating rule (16) is that it enables the TGSA to possess the fol-
lowing characteristics:

• The triple-valued encoding scheme of using the set {U , L, E }
naturally represents the choices of edges to be placed over the
established vertices line. Compared to the continuous or binary
GSAs, TGSA is novel and makes the algorithm more suitable
to solve the GPP.
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• A large value of velocity provides a high probability of changing
the position of the agent with respect to its previous position (to
be U, L, or remain the same), thus facilitating the agents that
have large velocities (usually lighter masses) to move, rather
than to stay at the original place. On the contrary, a small
value of velocity provides a small probability of changing the
position.

• Realizing the fact that the force acting on a heavier agent (imply-
ing to possess a good solution) causes a smaller acceleration of
the agent according to (6), the velocity of a heavier agent usu-
ally is hard to be changed by the acceleration, indicating that
a heavier agent is hard to move. Conversely, a lighter agent is
likely to change its position, and move toward better positions
at the end.

• Controlled by the population index in (16), which is imple-
mented using a roulette wheel selection method, it is clear that
if the current agent moves, it will move to the position where
most other agents stand. Hence, all agents will move toward the
global optimum position, thus finding the best solution eventu-
ally.

4.4. Algorithm To solve the GPP, an algorithm based
on TGSA is shown in Algorithm 2. Here it should be noted
that the vertex sequence is generated based on an improved
Hamiltonian cycle generation (HCG) method. For more details
of the original HCG method, refer to Ref. [23]. To make the
paper self-explanatory, the improve HCG method is described as
follows: The first vertex in the sequence is π(1) = vβ , where vβ is
a randomly selected vertex in the given graph G . Different vertex
sequence can be generated by selecting different β. After the first
k vertices of the sequence have been determined, say π(1), π(2),
..., π(k), the next vertex π(k + 1) is randomly selected from the
vertices adjacent to π(k) in G having the L least adjacencies in the
subgraph Gk of G induced by V \ {π(1), π(2), ..., π(k)}. If π(k)

has no neighbors in Gk , we select π(k + 1) as a vertex of the
L minimum degree in Gk with homogeneous probability. Then,
the vertices of G are placed on a line in accordance with the
determined vertex sequence π .

With respect to the generated vertex sequences, the TGSA is
used to find the optimal placements of edges. Thus, the largest
MPS can be acquired and embedded into a plane based on
the position of the heaviest agent and its corresponding vertex
sequence.

Algorithm 2 (Solve the GPP based on TGSA):
Input: a given nonplanar graph G = (V , E ) with |V | = m ,
|E | = n
01: initialize user-specified parameters, and randomly generate S
positions for the agents
02: do:
03: for each agent i = 1 to S
04: generate a vertices πi for agent i using the improved HCG
method
05: operate the agent i using Algorithm 1
06: evaluate the fitness of agent i , and update G(t), best(t),
worst(t) and Mi (t)
07: end-for
08: compute the total force in different directions using (5)
09: compute the acceleration and velocity for each agent using
(6) and (7)
10: update all agents’ positions using Eq. (16)
11: while: the maximum iteration number achieves Tmax

Output: an optimal agent with the heaviest mass, and the
corresponding planar subgraph G ′ = (V , E ′)

5. Simulation Results and Discussion

To evaluate the performance of TGSA when applied it on the
GPP, a set of 21 benchmark problems described in the literature
[23] were used in the experiments. The problem instances are
summarized in Table I, where the information data are the name of
the input graph, the number of vertices (|V |), the number of edges
(|E |), the Euler upper bound (3|V | − 6) on the number of edges
in an MPS, and the number of edges in the best known solution
for the GPP published earlier. The algorithm is coded using ANSI
C language under the Visual Studio 2005 platform running on a
personal PC (Intel(R) Core i3, 2.40 GHz with 2 GB RAM). In the
experimental analysis, we tried to follow the suggestions given by
Johnson [30].

5.1. Parameter sensitivity The user-specified parame-
ters were first analyzed, and each combination was tested 30 times.
Intuitively, the number of agents used in the population directly
influences the trade-off between the search performance and the
computational times. To make the subsequent comparison with
other population-based algorithms [12],[13] fairly, the same size
of the population was set, i.e. S = 20. Besides, the initial attrac-
tion scope of the gravity force was set to be the whole population,
i.e. K0 = S , and the associated shrink parameter β was set to be
2% as in the original work.

The maximum iteration number Tmax determines the termination
condition of the algorithm. The larger the value of Tmax , the
more the computational time the algorithm needs. In preliminary
experiments, we found that TGSA converged to global or local
optimal solutions for all instances within 1000 iterations. Table II
records the smallest, largest, and average iteration number when
TGSA found the global optimal solution or had been trapped into
a local optimal solution (In this paper, the solution that cannot
be improved over 100 iterations is regarded as a local optimum).
From this table, we can find that, for the instances with small graph
size, TGSA converges fast. Especially, for the instance G1, TGSA
can always find the global optimum using only one iteration. Thus,
Tmax = 1000 was sufficient to evaluate the performance of TGSA
in all experiments.

Different from the declaration in Ref. [14] that the gravitational
constant parameter G strongly effects the performance of the
algorithm, in this study we found that TGSA was not so sensitive
to this parameter. After setting the initial constant G0 = m2n2,
a set of values as {0.8, 0.9, 0.95, 0.99, 0.995} for the declining
factor α was tested on all instances in the experiments. Similar
quality results were obtained for different settings, revealing that
TGSA was less sensitive to G . The reason for this seems to be the
influence of population index in (16), which partly decreases the
effects of the gravitational forces.

As to the maximum replication number TR used in the repair
operator, we set it as {1, 5, 10, 20, 50, 100}. Table III summarizes
the best and average solution qualities and the computational
times on the instances G2 and G11. From this table, we can find
that TR = 10 makes significant improvements of the solutions’
quality than TR = 1 and TR = 5, while possessing competitive
solutions when compared with TR = 20, 50, 100. However, with
the increment of the value of TR , the computational times steadily
increase. Thus, it can be concluded that the setting of TR = 10
can well balance the trade-off between the solution quality and
computational times.

Compared to the vertex sequence construction method (HCG)
used in Ref. [23], the improved HCG method used in this paper is
a generalized version of HCG. By incorporating the parameter
L into HCG, more diversity of the vertex sequence can be
obtained, thus enabling TGSA to search more different areas in the
search space. In the experiments, we set L to be {1, 2, 3, 5, 10, m},
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Table I. Problem instances used in the experiments

Graph name No. vertices No. edges Upper bound Best known pre. (References)

G1 10 22 20a 20 ([8,9,23,24,12,13])
G2 45 85 82a 82 ([23,24,13])
G3 10 24 24a 24 ([23,24,13])
G4 10 25 24a 24 ([23,24,13])
G5 10 26 24a 24 ([23,24,13])
G6 10 27 24a 24 ([23,24,13])
G7 10 34 24a 24 ([23,24,13])
G8 25 69 69a 69 ([24,13])
G9 25 70 69a 69 ([24,13])
G10 25 71 69a 69 ([24,13])
G11 25 72 69a 69 ([24])
G12 25 90 69a 67 ([23,24])
G13 50 367 144 135 ([24])
G14 50 491 144 143 ([24,13])
G15 50 582 144 144 ([24])
G16 100 451 294 196 ([24])
G17 100 742 294 236 ([24])
G18 100 922 294 246 ([23,24])
G19 150 1064 444 311 ([24,13])
G20 300 4136 894 627 ([23])
G21 1000 9991 2994 1496 ([23])

aActual known optimal size of the planar subgraph.

Table II. Number of iterations that TGSA needs when it
converges to optimal (or suboptimal) solutions

G1 G2 G5 G8 G13 G16 G19 G20 G21

Smallest 1 32 18 54 112 151 278 325 581
Largest 1 125 32 89 256 287 523 612 735
Average 1 54 26.3 77.7 181.3 235 424 448.3 642.7

Table III. The influence of the parameter TR used in the
experiments

1 5 10 20 50 100

Best 81 82 82 82 82 82
G2 Average 79.5 81.7 81.8 81.8 81.8 81.8

Time 9.8 10 10.4 10.9 12.1 13.9
Best 68 68 69 69 69 69

G11 Average 66.7 67.5 68.2 68.2 68.3 68.3
Time 7.9 8.1 8.4 8.9 10.7 12

respectively, where m is the number of vertices of the input graph.
Note that the original HCG method was a specific case of the
improved one when L = 1. The case of L = m indicated that the
constraints of edges’ adjacencies were not considered any longer.
The experimental results are shown in Table IV, where the data
recorded are the best and average qualities of final solutions, the
computational times, and the average number of different vertex
sequences per iteration obtained by the algorithm. From this table,
we can find that, first, with the increment of the value of L, the
computational times made no significant changes (less than 0.1 s)
for all cases; second, the best solution qualities were acquired
when L = 3; third, the search performance suddenly declines when
L = m , which shows that the use of vertex’s degree does facilitate
HCG to generate more promising vertices sequences; and last
but not least, the average number of different vertex sequences
gradually becomes larger with the increment of the value of L.
The larger the Num. in Table IV, the more the different the areas
visited by the algorithm in the search space. Obviously, L = 3 was
the best choice for the algorithm.

Table IV. The influence of the parameter L used in the
experiments

1 2 3 5 10 m

Best 82 82 82 82 82 79
G2 Ave. 80.3 81.8 81.8 81.8 81.6 76.5

Time 10.4 10.4 10.4 10.4 10.4 10.4
Num. 17.8 18.5 19.2 19.9 19.9 20.0
Best 68 69 69 69 69 66

G11 Ave. 66.8 67.9 68.2 68.1 68.1 65.5
Time 8.4 8.4 8.4 8.4 8.4 8.4
Num. 17.5 18.3 18.8 19.8 19.9 20.0

Table V. User-specified parameters employed in the experiments

Number of agents (i.e. population size) S = 20
Initial gravitational constant G0 = m2n2

Gravitation declining coefficient α = 0.95
Initial attraction scope K0 = S
Attraction narrowing coefficient β = 2%
Vertices sequence generation parameter L = 3
Maximum replication number in Algorithm 1 TR = 10
Maximum iteration number in Algorithm 2 Tmax = 1000

Based the above analysis, we can say that the performance of
TGSA is competitive when using the user-specified parameters (for
any given input graph G = (V , E ) with |V | = m and E=n) shown
in Table V.

5.2. Characteristics analysis Compared with CGSA
and BGSA, TGSA has the main novelties of the encoding scheme
which is based on the triple-valued set {U , L, E }, and the position
updating rule shown in (16). The triple-valued encoding scheme
naturally depicted the three choices (upper, lower, or eliminated)
of placing edges upon the vertices line, and then quantitatively
forming a triangular hypercube of search space for the algorithm.
Afterward, the position updating rule matured the solutions within
the search space.
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Table VI. Comparative results with the variants of TGSA

TGSA1 TGSA2 TGSA

Graph Best Ave. Best Ave. Best Ave. No.

G1 20 20 20 19.7 20 20 48
G2 82 80.5 80 78.2 82 81.8 17
G3 24 24 22 20.8 24 24 42
G4 24 24 21 20.7 24 24 41
G5 24 24 21 19.5 24 24 38
G6 24 23.7 20 18.4 24 24 35
G7 24 23.5 19 17.5 24 24 36
G8 69 68.8 56 54.2 69 69 45
G9 69 68.7 56 53.9 69 69 32
G10 68 66.5 56 53.5 69 69 29
G11 68 66.4 54 52.7 69 68.2 10
G12 68 67.3 51 48.3 69 68.4 12
G13 136 124.4 78 72.3 137 131.3 6
G14 143 133.2 82 72.6 143 140.6 5
G15 143 135 98 88.5 144 142.9 7
G16 205 199.3 103 97.1 205 201.7 5
G17 235 228.5 98 95.2 241 238.7 2
G18 249 239.8 121 118.2 257 248.5 2
G19 321 302.7 128 122.5 328 315.5 3
G20 754 728.2 452 449.5 762 734.2 1
G21 1878 1856.3 1378 1365.1 1903 1885.2 1
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Fig. 3. (a) The original input graph, (b) a typical optimal solution
obtained by TGSA for the instance G11

In particular, two indices were related with the updating
rule. In order to verify the effects of each factor index, two
variants of TGSA were constructed (named TGSA1 and TGSA2).
TGSA1 utilizes the updating rule that only considered the velocity
index (17), while TGSA2 only took the population index into
consideration (18).

xd
i (t + 1) =

⎧⎨
⎩

U if r1 < tanh(vd
i (t + 1))

L if r1 < tanh(vd
i (t + 1))

xd
i otherwise

(17)

xd
i (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

U if r2 <
|xd

i (t)|U∑
L if r2 <

|xd
i (t)|U +|xd

i (t)|L∑
xd

i otherwise

(18)

The comparative simulation results during TGSA, TGSA1, and
TGSA2 are given in Table VI. For all tested instances, TGSA1

performed slightly worse than TGSA in terms of the best and
average qualities of solutions, indicating that the velocity index in
(16) did enable the algorithm to move toward promising areas
in the search space and finally to find good solutions for the
GPP. However, the missing of population index in TGSA1 also
indicated that the population index had the effects of promoting
the search performance for the algorithm. On the other hand,
TGSA2 performed significantly worse than TGSA, showing that
only population index would result in a very fast local optimum
trapping. From the above analysis regarding (16), we can conclude
that both the velocity index and the population index play positive
roles in determining the search directions for the algorithm.

For the convenience of describing the progress of solving the
GPP using TGSA, we used G11 as an illustration. Figure 3(a)
shows the input nonplanar graph G11 with 25 vertices and 72
edges. After generating a vertices sequence of {13, 16, 20, ..., 11, 5}
by the improved HCG method, TGSA optimized the values of the
combination of all edges. Finally, 47 edges were set to be the
values of U , 22 edges to be L, and 3 to be E . Figure 3(b) depicts
its corresponding planar subgraph based on the single-row routing
representation method. Clearly, TGSA can solve the GPP with two
objectives simultaneously: not only the acquisition of an MPS, but
also the embeddness of these edges into a planar subgraph.

In addition, due to the stochastic nature of the algorithm
and of the populations evolved during the convergence process,
TGSA can produce more than one planar subgraph for the GPP.
To show this capacity of TGSA, we give an example for the
instance G3, as shown in Fig. 4. Figure 4(a) depicts the input
graph G3 with 10 vertices and 24 edges, while Fig. 4(b)–(h)
illustrate seven different global optimal solutions of G3 found by
TGSA. For all tested instances, the number of different global
optimal solutions in the final iteration found by the algorithm
was recorded. The index “No.” shown in Table VI counted the
total number of such solutions over 30 runs. A major benefit
of this feature is that it will help the decision maker to assess
and select an engineering-relevant planar subgraph for industrial
applications.

5.3. Comparison with other algorithms Finally, Table
VII summarizes the comparative results of TGSA with other six
meta-heuristics. It should be noted that all the compared algorithms
were able to solve the GPP by fulfilling the two objectives
simultaneously. Those algorithms that were only capable of
finding the MPS for the GPP were not considered in this study,
even though they might find better MPSs. In Table VII, the
recorded results of the earlier six algorithms were taken from
the original literature, while the latter results were taken on
the basis of 30 replication runs of TGSA. The symbol ‘−’
means there is no record for the corresponding instance. From
this table, it can be easily found that, for all tested instances,
the sizes of the acquired MPSs by TGSA were larger than
those by the other meta-heuristics. Besides, TGSA can always
find the global optima for a part of the input graphs (9 out
of 21 instances), because the average quality of solutions are
equal to the best one, thus revealing the strong robustness
of TGSA.

Regarding the computational times, Fig. 5 illustrates the compu-
tational times in seconds versus the number of edges of the input
instances. For all the comparative algorithms, the times increased
along with the size of the input graphs grown, nearly at polyno-
mial speed. Although TGSA cannot dominate the other algorithms
in terms of the computational times, it can be concluded that
TGSA is able to find better solutions for the GPP within reasonable
times.
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Fig. 4. Global optimum solutions for the instance G3 based on TGSA

Table VII. Simulation results using seven algorithms

This paper

Graph Ref. [8] Ref. [9] Ref. [23] Ref. [24] Ref. [12] Ref. [13] Best Ave.

G1 20 20 20 20 20 20 20 20
G2 80 80 82 82 80 82 82 81.8
G3 21 22 24 24 22 24 24 24
G4 22 22 24 24 22 24 24 24
G5 22 22 24 24 22 24 24 24
G6 22 22 24 24 22 24 24 24
G7 23 23 24 24 23 24 24 24
G8 58 61 68 69 61 69 69 69
G9 59 61 69 69 61 69 69 69
G10 58 61 68 69 61 69 69 69
G11 60 61 68 69 61 68 69 68.2
G12 61 63 67 67 63 65 69 68.4
G13 70 82 129 135 84 131 137 131.3
G14 100 109 138 143 114 143 143 140.6
G15 101 115 142 144 119 142 144 142.9
G16 92 100 183 196 101 192 205 201.7
G17 116 126 215 236 127 225 241 238.7
G18 115 135 234 246 138 237 257 248.5
G19 127 138 291 311 145 311 328 315.5
G20 250 − 627 − − − 762 734.2
G21 322 − 1496 − − − 1903 1885.2
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Fig. 5. Computational times of all tested algorithms
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6. Conclusions

The TGSA has been successfully used to solve the GPP by
finding its MPS and embedding the edges into a plane. Based
on the single-row routing representation method, once the vertex
sequence was determined by the improved HCG method, TGSA
was utilized to optimize the placement of edges, wherein all agents
interacted based on the gravity law, and the triple-valued encoding
strategy of their positions naturally suited the three choices of
edges’ placements.

To improve the search performance of TGSA, the position
updating rule was manipulated by two important indices. The
velocity index, which is a probability function of velocities, is
the prime factor controlling the search direction of an agent by
indirectly using the weight of its mass and the forces from other
agents. The other is the population index, which is based on
the cumulative information collected from the whole population,
directly influencing the movement direction by calculating the
proportion of the selected edges in the population. By doing so,
the local exploitation and global exploration of the search can be
well balanced, thus enhancing the search ability of TGSA.

Experimental results based on 21 benchmark instances veri-
fied the effectiveness of TGSA. Compared to other traditional
meta-heuristics, TGSA could always find better solutions for the
GPP within reasonable computational times. In addition, due to its
stochastic property and the populations evolved during the conver-
gence process, TGSA can find multiple optimal solutions, which
enables the decision maker to assess and select an engineering-
relevant planar subgraph.
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