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Abstract

Development of an optimal flocking control procedure is an essential problem in mobile sensor networks
(MSNs). Furthermore, finding the parameters such that the sensors can reach the target in an appropriate
time period is an important issue. This paper offers an optimization approach based upon the metaheuristic
methods used for flocking control in MSNs to follow a target. We develop a non-differentiable optimization
technique based on the gravitational search algorithm (GSA). Finding the flocking parameters using swarm
behaviors is the main contribution of this paper in order to minimize the cost function. The cost function
displays the average Euclidean distance of the center of mass (COM) away from the moving target. One of
the benefits of using GSA is its application in multiple targets tracking with satisfactory results. The
simulation results obtained that this scheme outperforms the existing ones, and demonstrate the ability of this
approach in comparison with the previous methods.

Keywords: Flocking Control, mobile Sensor Network, Target Tracking, Center of Mass, Gravitational

Search Algorithms.

1. Introduction

Wireless sensor networks (WSNs) have been
greatly investigated in the past few years [1, 2, 3,
4]. The benefit of mobile sensor networks (MSNSs)
over the stationary ones is the environmental
change adjustment [4]. Hence, MSNs can be used
in various domains such as target tracking for
protection of the exposed kinds of plants and
underwater target observation [6, 7].

Flocks of agents are applicable to many areas
including the distributed sensing, formation
flying, cooperative surveillance, and point-to-
point mail delivery. This phenomenal has been
attracted in physics [8], mathematics [9], and
biology [10]. Flocking problems have become a
major thrust in the system and control theory in
the recent years [11].

Cooperative control between mobile sensors is
essential due to collision among them [12].
Flocking control [11] is used to resolve this issue.
Flocking is a group of several mobile sensors with

local interactions with an overall objective [13].
These sensors are capable of splitting, rejoining,
and forming highly ordered fast convergence of
COM towards the target.

Three rules have been presented by Reynolds
[14]. They are considered as what follow.

Flock Centering: Each sensor attempts to remain
near its neighbors (cohesion).

Collision Avoidance: The sensors keep away from
collision with their neighbors (separation).
Velocity Matching: The sensors try to adjust their
speed with their neighbors (alignment).

After the first flocking approach, various
algorithms have been proposed for this issue. A
survey on the application of flocking control has
been investigated in [15]. Olfati-Saber [11] has
introduced two algorithms for distributed
flocking. The first one is working in free space.
The second one is exhibiting this problem
regarding the obstacles. In [16], flocking of robots
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has been investigated with a virtual leader. Two
extended flocking control algorithms, one of
which being flocking control with a minority of
informed agent [17] and the other one being
flocking of sensors with a virtual leader of varying
velocity, have been proposed by Su et. al [17].
Multi-target tracking [18] is another benefit of
MSN in the dynamic mode. This approach
requires that some robots split from the present
sensors to follow a new target. If one target
disappears in MSN, the robots following that
should merge with the present robots that are still
following the target. Random selection (RS) and
seed growing graph partition (SGGP) are the
algorithms that are used for solving the problem
of robot splitting/merging in multi-target tracking
[19].

Improvement of the performance of target
tracking regarding the obstacle using Multi-COM
and Single-COM has been presented in the
flocking control with single-COM and Multi-
COM in [20-22]. Moreover, in order to solve the
problem of designing an optimal flocking control
in the obstacle space, they used genetic algorithms
[23]. Some algorithms have been presented in [24]
and [25], which are applicable to homogeneous
MSNs. References [26, 27] follow some models
for distributed flocking control. However, these
works only consider the behavior of the flock
without addressing target tracking.

The recent research areas have converged to the
arrangement problems in stationary and MSNs
[28]. A new category of the emergent motion
control algorithms is anti-flocking control
algorithms that dynamic coverage performances
improve in MSN [29]. The Al optimization
methods have been considered in many research
domains. The Tabu search algorithm has been
employed for optimal design of a MIMO
controller [30]. GA, PSO, and ACO have been
exploited to design a rotational inverted pendulum
system [31]. Stability analysis and
configuration control of groups of sensors have
been optimized in the recent years [32].
Meanwhile, in [20], the problem of designing a
flocking control approach for mobile agents to
follow the moving target is advanced. Designing a
network to converge to the optimal solution in an
appropriate time is an open investigation problem.
Natural-inspired algorithms are robust tools used
in solving many optimization problems [33].
Gravitational Search Algorithm (GSA) is a
recently introduced nature-inspired method whose
idea is the gravity and Newton lows [34, 35]. The
results of [33-42] indicate that GSA and its
advanced versions are appropriated tools in

208

solving many optimization problems. Therefore,
the strength of this algorithm encourages us to
apply this method to find the optimal flocking
forces.

The main contributions and novelty of this work
can be summarized as what follow:

- GSA is adopted to solve the non-
differentiable problem in the flocking
control design to compute the coefficients
of the interaction forces in the cost
function to minimize the error between
the moving target and the center of
flocking.

- Single target moving with a circular wave
trajectory is simulated to compare the
performance of the proposed method with
the previous ones.

- Multiple targets moving with a semi-
circular and semi-sine wave trajectory are
simulated to evaluate the proposed
method.

- The optimal flocking control for single
and multiple dynamic target trackings is
presented by adding Single-COM to the
parabolic trajectories.

This paper is organized as what follow. In Section
2, we introduce the Single-COM flocking control
algorithm in the free space for single and multiple
dynamic target trackings. In Section 3, we
investigate the gravitational search algorithm. In
Section 4, the problem of flocking control is
formulated and the proposed method is
elaborated. In Section 5, we evaluate the
performance of the proposed scheme. Finally, in
Section 6, we give the conclusions.

2. Flocking control in MSN

2.1. Flocking control approach in free space

A topology of flocks is shown by a graph T that
includes a vertex set v=4{1,2,...,m} and an edge

setEc{(x,y):x,yev,x=y}. Each vertex

shows one agent of flocks, while the
communication link between the two agents is
denoted by each edge.

d,, P, € R" are the location and speed of robot
X, respectively. A set of neighborhood of robot x
at moment 7 is defined as:

NB, ={yev:<r,v={L2,...m}, x =y} 1)
where, ||.|| is the Euclidean normin R",and I is
the neighborhood radius.
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A group of moving agents (or sensors) are
described with their motion relation as the
following:

4 = Py
p,=u,Xx=12,..m

An «— lattice with the following condition is
used to model the geometry of flocks [11]:

la,—q, ll=»

)

3)

In the above relation, y is the distance between
robot x and its flock-mate y. In [11], Olfati-Saber

has presented a flocking control algorithm in the
free space. This approach includes two control
inputs as the following:

u="f"+f" (4)
The first component f“ denotes a gradient-based
term and a velocity consensus term as:

fxa = Z ¢a(” qy -0, ”a)nxy

yeNB:

+> a @)(p,-p,)

yeNBy

In this algorithm, ¢ (z) is the action procedure

()

among the sensors and ||. || of a vector is a map

R" = R, explained as || z ||U=1[»\/1+s|| | -1
&

" axy (q)
is the adjacency matrix. For more details, see [11,
20]. The second component of (4) f™ is the

distributed navigational feedback owing to the
group objective.

fxmt = _(qx _qmt) _(px -

[11]. The vector between g, and q,is n,,

Prt) (6)

where, mt-agent (Q,,, P,,)is the dynamic target
specified as follows:

{qmt = Py
mt

fmt (qmt ' pmt)

Then the extended control protocol (4) is clearly
defined as:

u=> ¢(a-al)n, +

yeNB!

D a,(a)p,

yeNB;‘

(7)

-p)-(,-a,)-(p,-p,)

In this relation, the collision avoidance and the
velocity matching are contributed by the first two
terms, and the end terms explain the dynamic
target tracking [11].
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2.2. Single-COM flocking control approach in
free space

In this section, the flocking control protocol is
described by adding Single-COM to the free
space. COM is hard to reach the target in the
Single-COM flocking control protocol (8). This
makes the problem for robots to follow the target.
Thus a recent limitation on the COM should be
appended to this algorithm. In [20], extended
flocking of robots with Single-COM of location
and speed of robots are proposed in the obstacle
space. Their protocol without obstacles is
presented as the follows:

u=> 4,04 -ql)n,+

yeNB!

Z axy (q)( py - px) - (q_ qu) -
yeNBy
P-p,0-@,—-9,)-(p,—P,)

The pair (@, p) is COM of locations and speeds of
mobile agents, respectively, specified in (10).

9)

M=

—Q\

Px

I
=N

X

pr

X=.

(10)

'o\
B\H B\H

In relation (9), each robot should know the
location and speed of other robots to compute
COM (q,p). The details of the algorithm are
described in [20]. Finally, based on the La and
Sheng’s extended algorithm without obstacle, we
propose a Single-COM flocking approach with a
moving target in free space as (11).

u =c > 4,(d -ql)n, +

yeNB,

¢ > a (@)p,-p,)-

(11)
(@ 0,) =6 (P~ P) —
¢ (A — ) —C5 (P, — Pry)

Here, (c/,c’), (¢,c)), and (c*,c’)are

pOSItIVE‘ constants.

2.3. Multi-target tracking

In the multi-target tracking, each robot uses the
Single-COM flocking control algorithm, which
handles with one of the different targets

(U, » Py, ) With k =1,2,..., N presented as (12).
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u=c Y ¢,(la, - l,)n, +

yeNB,

c; > a (a)p,-p,)-

yeNB!
¢ (@ =0y )—C (P =Py, ) —
¢ (9, =Gy, ) —C; (P, — Py, )
The random selection (RS) algorithm operates to
solve the problem of agent splitting/merging for
multi-target tracking in MSN. In this algorithm, if
the new target appears in the 50% of agents that

are following, the present target will be chosen
randomly to follow the recent target [18].

(12)

3. A Gravitational Search Algorithm (GSA)
GSA was first introduced in [33] as a novel
metaheuristic search algorithm. It is basically
influenced by the Newtonian laws and the notion
of mass interactions [34]. In this way, the position
of each mass is represented as a vector consisting
of variables. As it is presented in [33], the
gravitational mass of object j at the iteration
t, M;(t) is computed as (13), where fit;(t) is the
cost of agent j, and worst(t) is the worst cost of
swarms at time t.

fiit, (t)—worst(t)
> (fit, (t) - worst (1))

The overall force acting on the agent j at
dimension m from other agents is computed by
(14). Based upon the mobility rules, relation (15)
shows the acceleration of the agent j in dimension
m at time t. Furthermore, the next velocity of the
ith agent is calculated by (16). Then the next
location of the jth agent would be computed using
@an.

M;(t) = (13)

F'(t)= > randG(t)
kekbest _set, k= j (14)
M (t
(M, ¢ )(Xf(t)—XT(t))
R, (t)+&
m (F(®)
a;(t)y=——-=
0 (M, )
Zkekbest set,k rande(t) (15)
MM
R+ 2 — (% () - (1)
vi'(t+1)=rand, xVv{ (t)+a] (t), (16)
Xj (t+1) = 7' (t) +v]' (t+1), (17)

Where, kbest_set is the collection of k agents
that have the best costs. G is a decreasing function
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that takes the initial value G, and is reduced by
time. randj, is a random number in the interval
[0,1], € is a small value, and Ry is the Euclidean
distance between agents j and k [34, 35].

4. Proposed method

In this work, it was assumed that in the distance
between the current and new positions in which
the robot is moving, the computational unit of the
robot is in the standby mode. Since in this
duration a long distance is traversed, it has a
suitable effect on power consumption. Also it is
assumed that the agents are GPS-enabled. The
initial location of robots is random in the space.
Meanwhile, the trajectory of target is predefined.
4.1. Problem of flocking control protocol

The problem of control protocol (11) is sought the
optimal results of the interaction parameters

(c,ce), (™, ey, and (c,c’)that implement

the Reynolds rules for delivering the demanded
flock behaviour in which the cost function (18) is

minimized. Clearly, the pair (c,c;)is applied to
tune the forces between robot x and its flock
mates (o —robot); pair (c¢",c;") is applied to
tune the forces between robot x and the dynamic
target; and pair (c°,c;’) is employed to tune the
forces between the canter of flock and the target.
These coefficients should be chosen as well in
order to maintain the « — lattice formation, while

sensors quickly converge to the target.
Accordingly, the cost function is introduced as:

ZII g, () —a" ()|l

z|| qx(f—O)—qx (z=0)||
In the above relation, z shows the number of AzS

and the simulation time is T =ZxA7
The cost function (18) presents the following
terms:

e The average of Euclidean distance
between COM and the dynamic target.

e The Euclidean distance of center of flock
away from the moving target at the
beginning time.

The cost function (18) is explicitly non-convex.
Hence, in order to minimize this function, the
evolutionary optimization strategy is stable since
this mechanism results in a better performance in
convergence percentage. GSA [33] is employed to
optimize the problem of flocking control.

The term |G (r=0)-q"(r=0)| in the
denominator of (18) shows the maximum distance

(18)
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at the beginning time, the sensors being most
distant from the moving target. Moreover, the

other term ||, (z) —q." (z) || is the distance of the

target away from COM at time 7- During the
target tracking, this distance is decreased using the
flocking control protocol (11). Decreasing the cost
function depends upon how the coefficients of the

interaction forces (c/’,c;), (¢]",c;"), (c¢,c,’)are
found out.

4.2. GSA-based Single-COM flocking control

In this section, GSA is adopted to solve the non-
differentiable (18) in the flocking control design.
The coefficients of the interaction forces in the
cost function are computed via GSA. The
following is a summary of the process:

Step 1. A population in the size M consisting of
M possible solutions is generated randomly. Each
agent is an array of the flocking parameters.
Therefore, each agent X! can be represented as:

X' =[c’cs e e er,crl,l =12,..,M

Step 2. The costs of agents are calculated by the
cost function (18). All the remaining steps of the
algorithm (GSA) would be conducted as described
in Section 3. The best solution found by the
algorithm is considered as the optimal array of the
interaction parameters.

Algorithm 1 briefly shows the procedure of the
proposed method.

Algorithm 1. Procedure of the proposed method

1. Identify search space

2 Generate random solutions considering X !

3. Evaluate fitness function:

3.1 Update position of sensor x

3.2. Update velocity of sensor x

3.3. Compute distance between COM and a moving target.
3.4. Compute fitness value by (18)

Update M (t) using (13)

Calculate total force in different directions using (14).
Calculate acceleration and velocity using (15) and (16).
Update positions using (17)

Repeat steps 3-7 until stopping criterion is satisfied.

© N g

5. Results and Discussion
In order to evaluate the performance of the
proposed method, some experiments were
conducted. We simulated a single target moving
with circular wave, and the multiple targets
moving with a semi-circular and semi-sine wave
trajectory. The parameters were set as follow:
e GSA parameters : The search space of the
coefficients of the interaction forces is

considered between 0 and 10
1<(c/,c;) <10 for v=q,mt,sc). Both
the number of iterations and the
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population size were set to 100. G is a
linearly decreasing function starting with
Go = 0.125 and ending with 0. The
optimal value for G, is computed by the
trial-and-error method.

e Parameters of flocking control in the free
space: the number of sensors is 50, and
the initial position of sensors is randomly
distributed in the space [0,90]%[0,90].
The parameters a and b are equal to 5 (for
#(z) [12]). For o -norm, £=0.1; h=0.2
for ¢, (z). The coordinate radius is
r=1.2y=7.5.

e Parameters of single dynamic target: path
of moving target is the circular wave
path:

q,, =[210-100cos(z),105+80sin(z)]",
wherez is0<7<5.5 and

P = (Ot (7) =G (7 1))/ Az .

e Parameters of multiple moving targets:
path of thev moving target is the semi-
circular wave path:

0, =[130—90cos(z), 250+ 307 +80sin(z)]"
, wherez is0<7<6, and

pmt = (qmt (T) - qmt (T _1)) [AT.

Path of the moving target is the semi-sine
wave path:

0, =[200+407,50+507 +150sin(7)]"
where 7 is0<7<6,
Pt = (O (7) = A (7 =D)) / A7 .

At is equal to 0.05 in this simulation experiment
(see Figure 1).

Comparative methods: In order to indicate the
superiority of the proposed method, this protocol
was compared with two methods that have been
proposed in the literature works. The former
method is the flocking control in the free space
that has been proposed by Reza Olfati-Saber [11]
and the later one is the extended flocking control
with Single-COM that has been proposed by
Sheng and La in [19]. These methods use relations
(4) and (9), respectively. The experiments are
performed on single and multiple moving target
trackings.

The optimal values for the interaction forces
including (¢, c;),(c,c;'), and (c’,c,)are
found using GSA regarding (11) for various sizes
of robots. The results obtained are reported in
table 1 by varying the number of sensors as 10,
30, 50, 70, and 90. Figure 1 shows the results of
single target tracking on circular wave trajectory

and
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for the proposed method, which obtains the
optimal parameters using GSA (as in Table 1);
also figures 2 and 3, respectively, show the results
of the flocking control algorithm without COM
[11] and the extended flocking control algorithm
with Single-COM [20]. Figure 4 represents the
result of the multiple moving target trackings on
the semi-circular and semi-sine wave trajectories
using the parameters achieved by GSA for single
target tracking. The results reported in table 1 are
also applicable to the multiple mode. It is clearly
observable that the center of flocks precisely
tracks the moving targets. Figures 5 and 6,
respectively, illustrate the results of the flocking
control algorithm without COM [11] and the
extended flocking control algorithm with Single-
COM [20] in multiple moving target trackings.

In these figures, the path of target and the mean of
positions of all robots are displayed in red and
black, respectively. Also the initial and end
positions of all robots are indicated. As it can be
observed in figures 1 and 4, the targets are
followed precisely and surrounded by the flocks
of robots. In fact, the path of COMs coincides
with the path of targets in the proposed method,
while according to figures 2 and 5 that use the
method proposed by Olfati-Saber [11] and figures
3 and 6 that use the Single-COM method
presented by Hung La [20], the paths do not
coincide and the distance between the targets and
the center of flocks is high.

Figure 7(a) shows the mean progress of the cost
function (18) for 50 sensors during 100 iterations
by GSA. The results obtained are averaged over
10 independent runs, as the results reported in
table 1. Figure 7(b) shows the distance between
the center of flock and the moving target in
circular wave trajectory using GSA during 100
iterations of the algorithm.

Figures 8(a) and 8(b) compare the errors between
COM (center of mass) of the locations of robots
and the location of a moving target (following
performance) using three approaches, No-COM
[11], Single-COM without iteration forces [20],
and the proposed flocking protocol using the

optimal parameters of table 1 for 50 sensors.
Figures 8(a) and 8(b) evaluate three methods on a
single moving target and multiple dynamic
targets, respectively. These figures obviously
display the superiority of the proposed method in
comparison with the previous ones, and clearly
represent big errors between COM of locations of
all agents and the location of the dynamic target
for flocking control algorithm without optimal
parameters shown in [11] and [20].

Figure 9(a) displays the fitness values during 100
iterations for various numbers of sensors using
GSA; and figure 9(b) shows the error between
COM and single moving target during target
tracking using the data reported in table 1 for
various numbers of sensors.

Considering the results reported in figures 1 and 4
by using the optimal flocking control leads to a
better convergent speed, and errors reach zero
after a few seconds. Also the parameters obtained
for single target tracking as figures 4 and 7(b)
have optimal results for multiple target trackings.

6. Conclusion

In this work, we investigated the optimization
problem of Single-COM flocking control protocol
to track a dynamic target for a mobile sensor
network. The cost function was non-convex and
the optimization technique based on GSA was
developed. The optimal interaction forces for
different numbers of sensors in the Single-COM
flocking control protocol with single and multi-
target tracking were proposed. Evaluation of the
swarm robots-like act based dynamic target
following the free space is given. The numerical
results obtained validate the proposed method
performance in comparison with the other
approaches.

In the future, we have decided to work on the
flock behavior in free and obstacle spaces. Also we
would like to improve GSA with memetic as well
as discussing the flocking control in 3D. In
addition, the power consumption analysis is
deferred to the future work.

Table 1. Optimal forces of Single-COM flocking control for different sizes found by GSA for various numbers of sensors.

’c:lfusr:rt\)seorrs Cla C; Clm t c ;n t C1SC c ;c

10 5.48098 3.73038 4.61782 4.38692 8.45326 3.0838
30 8.24948 3.7478 3.77368 5.0691 5.44878 2.11092
50 8.90246 2.63806 7.05536 4.97568 5.46172 3.4584
70 6.95232 2.17282 3.92754 8.16904 7.35568 3.13232
90 7.71056 3.28264 3.7309 5.27358 6.52208 2.34054
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optimal parameters in table 1 by proposed flocking control algorithm using (11) and GSA.
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Figure 2. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path

without iteration forces using (4) [11].
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Figure 3. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path with

extended flocking control algorithm using (9) [20].
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Figure 4. Beginning and ending locations of 30 mobile agents that are following two dynamic targets in semi-circular and
semi-sine wave paths with optimal parameters in table 1 by proposed flocking control algorithm using (11) and GSA.
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Figure 5. Beginning and ending locations of 30 mobile agents that are following two moving targets in semi-circular and semi-
sine wave paths without iteration forces using (4) [11].
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Figure 6. Beginning and ending locations of 50 mobile agents that are following two moving target in semi-circular and semi-
sine wave paths with extended flocking control algorithm using (9) [20].
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Figure 7. (a) Value of cost function during 100 iteration for 50 sensors, (b) errors between COM of locations of robots and
location of target during 100 iterationa for 50 sensors.
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Figure 8. (a) Errors between COM of locations of robots and location of target in circular trajectory, (b) errors between
COM of locations of robots and locations of two targets in semi-circular and semi-sine trajectory; all following processes for
three algorithms are done on 50 sensors.
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Figure 9. (a) Value of cost function for various numbers of sensors during 100 iterations, (b) errors between COM of
locations of robots and location of target in circular trajectory for different numbers of sensors.
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