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Abstract 

Development of an optimal flocking control procedure is an essential problem in mobile sensor networks 

(MSNs). Furthermore, finding the parameters such that the sensors can reach the target in an appropriate 

time period is an important issue. This paper offers an optimization approach based upon the metaheuristic 

methods used for flocking control in MSNs to follow a target. We develop a non-differentiable optimization 

technique based on the gravitational search algorithm (GSA). Finding the flocking parameters using swarm 

behaviors is the main contribution of this paper in order to minimize the cost function. The cost function 

displays the average Euclidean distance of the center of mass (COM) away from the moving target. One of 

the benefits of using GSA is its application in multiple targets tracking with satisfactory results. The 

simulation results obtained that this scheme outperforms the existing ones, and demonstrate the ability of this 

approach in comparison with the previous methods. 

 

Keywords: Flocking Control, mobile Sensor Network, Target Tracking, Center of Mass, Gravitational 

Search Algorithms. 

1. Introduction 

Wireless sensor networks (WSNs) have been 

greatly investigated in the past few years [1, 2, 3, 

4]. The benefit of mobile sensor networks (MSNs) 

over the stationary ones is the environmental 

change adjustment [4]. Hence, MSNs can be used 

in various domains such as target tracking for 

protection of the exposed kinds of plants and 

underwater target observation [6, 7]. 

Flocks of agents are applicable to many areas 

including the distributed sensing, formation 

flying, cooperative surveillance, and point-to-

point mail delivery. This phenomenal has been 

attracted in physics [8], mathematics [9], and 

biology [10]. Flocking problems have become a 

major thrust in the system and control theory in 

the recent years [11]. 

Cooperative control between mobile sensors is 

essential due to collision among them [12]. 

Flocking control [11] is used to resolve this issue. 

Flocking is a group of several mobile sensors with 

local interactions with an overall objective [13]. 

These sensors are capable of splitting, rejoining, 

and forming highly ordered fast convergence of 

COM towards the target. 

Three rules have been presented by Reynolds 

[14]. They are considered as what follow. 

Flock Centering: Each sensor attempts to remain 

near its neighbors (cohesion). 

Collision Avoidance: The sensors keep away from 

collision with their neighbors (separation). 

Velocity Matching: The sensors try to adjust their 

speed with their neighbors (alignment). 

After the first flocking approach, various 

algorithms have been proposed for this issue. A 

survey on the application of flocking control has 

been investigated in [15]. Olfati-Saber [11] has 

introduced two algorithms for distributed 

flocking. The first one is working in free space. 

The second one is exhibiting this problem 

regarding the obstacles. In [16], flocking of robots 
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has been investigated with a virtual leader. Two 

extended flocking control algorithms, one of 

which being flocking control with a minority of 

informed agent [17] and the other one being 

flocking of sensors with a virtual leader of varying 

velocity, have been proposed by Su et. al [17]. 

Multi-target tracking [18] is another benefit of 

MSN in the dynamic mode. This approach 

requires that some robots split from the present 

sensors to follow a new target. If one target 

disappears in MSN, the robots following that 

should merge with the present robots that are still 

following the target. Random selection (RS) and 

seed growing graph partition (SGGP) are the 

algorithms that are used for solving the problem 

of robot splitting/merging in multi-target tracking 

[19]. 

Improvement of the performance of target 

tracking regarding the obstacle using Multi-COM 

and Single-COM has been presented in the 

flocking control with single-COM and Multi-

COM in [20-22]. Moreover, in order to solve the 

problem of designing an optimal flocking control 

in the obstacle space, they used genetic algorithms 

[23]. Some algorithms have been presented in [24] 

and [25], which are applicable to homogeneous 

MSNs. References [26, 27] follow some models 

for distributed flocking control. However, these 

works only consider the behavior of the flock 

without addressing target tracking. 

The recent research areas have converged to the 

arrangement problems in stationary and MSNs 

[28]. A new category of the emergent motion 

control algorithms is anti-flocking control 

algorithms that dynamic coverage performances 

improve in MSN [29]. The AI optimization 

methods have been considered in many research 

domains. The Tabu search algorithm has been 

employed for optimal design of a MIMO 

controller [30]. GA, PSO, and ACO have been 

exploited to design a rotational inverted pendulum 

system [31]. Stability analysis and 

configuration control of groups of sensors have 

been optimized in the recent years [32]. 

Meanwhile, in [20], the problem of designing a 

flocking control approach for mobile agents to 

follow the moving target is advanced. Designing a 

network to converge to the optimal solution in an 

appropriate time is an open investigation problem. 

Natural-inspired algorithms are robust tools used 

in solving many optimization problems [33]. 

Gravitational Search Algorithm (GSA) is a 

recently introduced nature-inspired method whose 

idea is the gravity and Newton lows [34, 35]. The 

results of [33-42] indicate that GSA and its 

advanced versions are appropriated tools in 

solving many optimization problems. Therefore, 

the strength of this algorithm encourages us to 

apply this method to find the optimal flocking 

forces. 

The main contributions and novelty of this work 

can be summarized as what follow: 

- GSA is adopted to solve the non-

differentiable problem in the flocking 

control design to compute the coefficients 

of the interaction forces in the cost 

function to minimize the error between 

the moving target and the center of 

flocking. 

- Single target moving with a circular wave 

trajectory is simulated to compare the 

performance of the proposed method with 

the previous ones. 
- Multiple targets moving with a semi-

circular and semi-sine wave trajectory are 

simulated to evaluate the proposed 

method. 

- The optimal flocking control for single 

and multiple dynamic target trackings is 

presented by adding Single-COM to the 

parabolic trajectories. 
This paper is organized as what follow. In Section 

2, we introduce the Single-COM flocking control 

algorithm in the free space for single and multiple 

dynamic target trackings. In Section 3, we 

investigate the gravitational search algorithm. In 

Section 4, the problem of flocking control is 

formulated and the proposed method is 

elaborated. In Section 5, we evaluate the 

performance of the proposed scheme. Finally, in 

Section 6, we give the conclusions. 

 

2. Flocking control in MSN 

2.1. Flocking control approach in free space 

A topology of flocks is shown by a graph   that 

includes a vertex set {1,2,..., }v m  and an edge 

set {( , ) : , , }E x y x y v x y   . Each vertex 

shows one agent of flocks, while the 

communication link between the two agents is 

denoted by each edge. 

,
n

xxq p R  are the location and speed of robot 

,x respectively. A set of neighborhood of robot x  

at moment   is defined as: 

{ :|| , {1,2,..., }, }xNB y v r v m x y    

 
(1) 

where, | . |||  is the Euclidean norm in 
n

R , and r  is 

the neighborhood radius. 



Sattari-Naeini et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018. 

 

209 

 

A group of moving agents (or sensors) are 

described with their motion relation as the 

following: 

(2) 
, 1,2,...,

x x

x x

q p

p u x m




   
An    lattice with the following condition is 

used to model the geometry of flocks [11]: 

(3) || ||x yq q    

In the above relation,   is the distance between 

robot x and its flock-mate .y  In [11], Olfati-Saber 

has presented a flocking control algorithm in the 

free space. This approach includes two control 

inputs as the following: 

(4) 
mt

x x xu f f   

The first component 
i

f


denotes a gradient-based 

term and a velocity consensus term as: 

(|| || )

x

x y x xy

y NB

f q q n




 




   

( )( )

x

xy y x

y NB

a q p p




   

 

(5) 

In this algorithm, ( )z

  is the action procedure 

among the sensors and | . |||


 of a vector is a map 

n
R R


  explained as 

21
| || [ 1 || || 1]| z z





    

[11]. The vector between 
x

q  and 
y

q is .xyn ( )
xy

a q  

is the adjacency matrix. For more details, see [11, 

20]. The second component of (4) 
mt

x
f  is the 

distributed navigational feedback owing to the 

group objective. 

( ) ( )mt

x x mt x mtf q q p p      (6) 
 

where, mt-agent ( , )mt mtq p is the dynamic target 

specified as follows: 

(7) 
( , )

mt mt

mt mt mt mt

q p

p f q p









 

 

Then the extended control protocol (4) is clearly 

defined as: 

(|| || )

x

x y x xy

y NB

u q q n


 




  

( ) ( )( )( )

x

x mt x mtxy y x

y NB

q q p pa q p p




   

 

(8) 

 

In this relation, the collision avoidance and the 

velocity matching are contributed by the first two 

terms, and the end terms explain the dynamic 

target tracking [11]. 

2.2. Single-COM flocking control approach in 

free space 

In this section, the flocking control protocol is 

described by adding Single-COM to the free 

space. COM is hard to reach the target in the 

Single-COM flocking control protocol (8). This 

makes the problem for robots to follow the target. 

Thus a recent limitation on the COM should be 

appended to this algorithm. In [20], extended 

flocking of robots with Single-COM of location 

and speed of robots are proposed in the obstacle 

space. Their protocol without obstacles is 

presented as the follows: 

(|| || )

x

x y x xy

y NB

u q q n


 




  

( )( )( )
mt

x

xy y x

y NB

q qa q p p


  

( ) ( ) ( )
mt x mt x mt

p p q q p p      

(9) 

The pair ( , )q p is COM of locations and speeds of 

mobile agents, respectively, specified in (10). 

     

(10) 
1

1

1

1

m

x

x

m

x

x

q p
m

p p
m










 





 

In relation (9), each robot should know the 

location and speed of other robots to compute 

COM ( , )q p . The details of the algorithm are 

described in [20]. Finally, based on the La and 

Sheng’s extended algorithm without obstacle, we 

propose a Single-COM flocking approach with a 

moving target in free space as (11). 

1
(|| || )

x

x y x xy

y NB

u c q q n




 




    

2
( )( )

x

xy y x

y NB

c a q p p






 

1 2
( ) ( )

SC SC

mt mt
c q q c p p   

1 2
( ) ( )

mt mt

x mt x mt
c q q c p p    

(11) 

 

Here,
1 2

( , )c c
 

, 
1 2

( , )
mt mt

c c , and 
1 2

( , )
sc sc

c c are 

positive constants.   

 

2.3. Multi-target tracking 

In the multi-target tracking, each robot uses the 

Single-COM flocking control algorithm, which 

handles with one of the different targets 

( , )
k kmt mtq p with 1,2,...,k N presented as (12). 
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1
(|| || )

x

x y x xy

y NB

u c q q n




 




  
 

2
( )( )

x

xy y x

y NB

c a q p p






 

1 2
( ) ( )

k k

SC SC

mt mt
c q q c p p   

1 2
( ) ( )

k k

mt mt

x mt x mt
c q q c p p    

(12) 

The random selection (RS) algorithm operates to 

solve the problem of agent splitting/merging for 

multi-target tracking in MSN. In this algorithm, if 

the new target appears in the 50% of agents that 

are following, the present target will be chosen 

randomly to follow the recent target [18]. 

 

3. A Gravitational Search Algorithm (GSA)  

GSA was first introduced in [33] as a novel 

metaheuristic search algorithm. It is basically 

influenced by the Newtonian laws and the notion 

of mass interactions [34]. In this way, the position 

of each mass is represented as a vector consisting 

of variables. As it is presented in [33], the 

gravitational mass of object   at the iteration 

 ,       is computed as (13), where     (t) is the 

cost of agent j, and          is the worst cost of 

swarms at time  . 

(13) 
 

 
1

( )
( )

( ( ) )
N

k

j

j

k

fit t worst t
M t

fit t worst t





  
 

The overall force acting on the agent   at 

dimension   from other agents is computed by 

(14). Based upon the mobility rules, relation (15) 

shows the acceleration of the agent   in dimension 

  at time  . Furthermore, the next velocity of the 

 th agent is calculated by (16). Then the next 

location of the  th agent would be computed using 

(17). 

 (14) 

   

   

 

_ , 

.
(x (t) x ( ))

m

j k

j k m m

k kbest set k j

k j

jk

F t rand G t

M t M t
t

R t 

 








 

(15) 
_ ,

( ( ))

( ( ))

( )

( )

kk kbest set

m

k j

j

j

m

j

F t

M t

rand G t

a t

 




 

( )
( ( ) ( ))

( )

m mk

k j

jk

M t
x t x t

R t 



 

(16)      1 ,m m m

j j j jv t rand v t a t   
 

(17) ( 1) ( ) ( 1),m m m

j j jx t x t v t   
 

 

Where,            is the collection of   agents 

that have the best costs.   is a decreasing function 

that takes the initial value    and is reduced by 

time.       is a random number in the interval 

     ,   is a small value, and     is the Euclidean 

distance between agents   and   [34, 35]. 

 

4. Proposed method 

In this work, it was assumed that in the distance 

between the current and new positions in which 

the robot is moving, the computational unit of the 

robot is in the standby mode. Since in this 

duration a long distance is traversed, it has a 

suitable effect on power consumption. Also it is 

assumed that the agents are GPS-enabled. The 

initial location of robots is random in the space. 

Meanwhile, the trajectory of target is predefined. 

4.1. Problem of flocking control protocol 

The problem of control protocol (11) is sought the 

optimal results of the interaction parameters 

1 2
( , )c c

 
,

1 2
( , )

mt mt
c c , and 

1 2
( , )

sc sc
c c that implement 

the Reynolds rules for delivering the demanded 

flock behaviour in which the cost function (18) is 

minimized. Clearly, the pair 
1 2

( , )c c
 

is applied to 

tune the forces between robot x and its flock 

mates (  robot); pair 
1 2

( , )
mt mt

c c  is applied to 

tune the forces between robot x and the dynamic 

target; and pair 
1 2

( , )
sc sc

c c  is employed to tune the 

forces between the canter of flock and the target. 

These coefficients should be chosen as well in 

order to maintain the    lattice formation, while 

sensors quickly converge to the target. 

Accordingly, the cost function is introduced as: 

(18) 1

|| ( ) ( ) ||

|| ( 0) ( 0) ||

z
mt

x x

x

mt

x x

q q

F
z q q

 

 





  



 

In the above relation, z shows the number of s

and the simulation time is T z   . 

The cost function (18) presents the following 

terms: 

 The average of Euclidean distance 

between COM and the dynamic target. 

 The Euclidean distance of center of flock 

away from the moving target at the 

beginning time. 

The cost function (18) is explicitly non-convex. 

Hence, in order to minimize this function, the 

evolutionary optimization strategy is stable since 

this mechanism results in a better performance in 

convergence percentage. GSA [33] is employed to 

optimize the problem of flocking control. 

The term | ( 0) ( 0) ||| mt

x x
q q     in the 

denominator of (18) shows the maximum distance 
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at the beginning time, the sensors being most 

distant from the moving target. Moreover, the 

other term | ( ) ( ) ||| mt

x x
q q   is the distance of the 

target away from COM at time .  During the 

target tracking, this distance is decreased using the 

flocking control protocol (11). Decreasing the cost 

function depends upon how the coefficients of the 

interaction forces 
1 2

( , )c c
 

, 
1 2

( , )
mt mt

c c , 
1 2

( , )
sc sc

c c are 

found out. 
 

4.2. GSA-based Single-COM flocking control  

In this section, GSA is adopted to solve the non-

differentiable (18) in the flocking control design. 

The coefficients of the interaction forces in the 

cost function are computed via GSA. The 

following is a summary of the process: 

Step 1. A population in the size   consisting of 

  possible solutions is generated randomly. Each 

agent is an array of the flocking parameters. 

Therefore, each agent    can be represented as: 

1 2 1 2 1 2[ , , , , , ] , 1,2,...,I mt mt sc sc IX c c c c c c I M  
 

 

Step 2. The costs of agents are calculated by the 

cost function (18). All the remaining steps of the 

algorithm (GSA) would be conducted as described 

in Section 3. The best solution found by the 

algorithm is considered as the optimal array of the 

interaction parameters. 

Algorithm 1 briefly shows the procedure of the 

proposed method. 
 

Algorithm 1. Procedure of the proposed method 
1. Identify search space 

2. 
Generate random solutions considering 

IX  

3. Evaluate fitness function: 

3.1. Update position of sensor    

3.2. Update velocity of sensor   

3.3. Compute distance between COM and a moving target. 

3.4. Compute fitness value by (18) 

4. 
Update ( )

j
M t  using (13)  

5. Calculate total force in different directions using (14). 

6. Calculate acceleration and velocity using (15) and (16). 

7. Update positions using (17) 

8. Repeat steps 3-7 until stopping criterion is satisfied. 

 

5. Results and Discussion 
In order to evaluate the performance of the 

proposed method, some experiments were 

conducted. We simulated a single target moving 

with circular wave, and the multiple targets 

moving with a semi-circular and semi-sine wave 

trajectory. The parameters were set as follow: 

 GSA parameters : The search space of the 

coefficients of the interaction forces is 

considered between 0 and 10 

1 21 ( , ) 10v vc c   for , ,v mt sc ). Both 

the number of iterations and the 

population size were set to 100.   is a 

linearly decreasing function starting with 

         and ending with 0. The 

optimal value for    is computed by the 

trial-and-error method. 

 Parameters of flocking control in the free 

space: the number of sensors is 50, and 

the initial position of sensors is randomly 

distributed in the space              . 
The parameters   and   are equal to 5 (for 

( )z  [12]). For  -norm, 0.1;  0.2h   

for ( ).z  The coordinate radius is 

1.2 7.5.r    

 Parameters of single dynamic target: path 

of moving target is the circular  wave 

path: 

[210 100cos( ),105 80sin( )]T

mtq     , 

where is0 5.5   and 

( ( ) ( 1)) /mt mt mtp q q      . 

 Parameters of multiple moving targets: 

path of thev moving target is the semi-

circular wave path: 

[130 90cos( ),250 30 80sin( )]T

mtq      

 , where is0 6  , and 

( ( ) ( 1)) /mt mt mtp q q      . 

Path of the moving target is the semi-sine 

wave path: 

[200 40 ,50 50 150sin( )]T

mtq        

where is 0 6  , and 

( ( ) ( 1)) /mt mt mtp q q      . 
  

  is equal to 0.05 in this simulation experiment 

(see Figure 1). 

Comparative methods: In order to indicate the 

superiority of the proposed method, this protocol 

was compared with two methods that have been 

proposed in the literature works. The former 

method is the flocking control in the free space 

that has been proposed by Reza Olfati-Saber [11] 

and the later one is the extended flocking control 

with Single-COM that has been proposed by 

Sheng and La in [19]. These methods use relations 

(4) and (9), respectively. The experiments are 

performed on single and multiple moving target 

trackings. 

The optimal values for the interaction forces 

including
1 2

( , )c c
 

,
1 2

( , )
mt mt

c c , and 
1 2

( , )
sc sc

c c are 

found using GSA regarding (11) for various sizes 

of robots. The results obtained are reported in 

table 1 by varying the number of sensors as 10, 

30, 50, 70, and 90. Figure 1 shows the results of 

single target tracking on circular wave trajectory 



Sattari-Naeini et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018. 

 

212 

 

for the proposed method, which obtains the 

optimal parameters using GSA (as in Table 1); 

also figures 2 and 3, respectively, show the results 

of the flocking control algorithm without COM 

[11] and the extended flocking control algorithm 

with Single-COM [20]. Figure 4 represents the 

result of the multiple moving target trackings on 

the semi-circular and semi-sine wave trajectories 

using the parameters achieved by GSA for single 

target tracking. The results reported in table 1 are 

also applicable to the multiple mode. It is clearly 

observable that the center of flocks precisely 

tracks the moving targets. Figures 5 and 6, 

respectively, illustrate the results of the flocking 

control algorithm without COM [11] and the 

extended flocking control algorithm with Single-

COM [20] in multiple moving target trackings. 

In these figures, the path of target and the mean of 

positions of all robots are displayed in red and 

black, respectively. Also the initial and end 

positions of all robots are indicated. As it can be 

observed in figures 1 and 4, the targets are 

followed precisely and surrounded by the flocks 

of robots. In fact, the path of COMs coincides 

with the path of targets in the proposed method, 

while according to figures 2 and 5 that use the 

method proposed by Olfati-Saber [11] and figures 

3 and 6 that use the Single-COM method 

presented by Hung La [20], the paths do not 

coincide and the distance between the targets and 

the center of flocks is high. 

Figure 7(a) shows the mean progress of the cost 

function (18) for 50 sensors during 100 iterations 

by GSA. The results obtained are averaged over 

10 independent runs, as the results reported in 

table 1. Figure 7(b) shows the distance between 

the center of flock and the moving target in 

circular wave trajectory using GSA during 100 

iterations of the algorithm. 

Figures 8(a) and 8(b) compare the errors between 

COM (center of mass) of the locations of robots 

and the location of a moving target (following 

performance) using three approaches, No-COM 

[11], Single-COM without iteration forces [20], 

and the proposed flocking protocol using the 

optimal parameters of table 1 for 50 sensors. 

Figures 8(a) and 8(b) evaluate three methods on a 

single moving target and multiple dynamic 

targets, respectively. These figures obviously 

display the superiority of the proposed method in 

comparison with the previous ones, and clearly 

represent big errors between COM of locations of 

all agents and the location of the dynamic target 

for flocking control algorithm without optimal 

parameters shown in [11] and [20]. 

Figure 9(a) displays the fitness values during 100 

iterations for various numbers of sensors using 

GSA; and figure 9(b) shows the error between 

COM and single moving target during target 

tracking using the data reported in table 1 for 

various numbers of sensors. 

Considering the results reported in figures 1 and 4 

by using the optimal flocking control leads to a 

better convergent speed, and errors reach zero 

after a few seconds. Also the parameters obtained 

for single target tracking as figures 4 and 7(b) 

have optimal results for multiple target trackings. 

 

6. Conclusion 
In this work, we investigated the optimization 
problem of Single-COM flocking control protocol 
to track a dynamic target for a mobile sensor 
network. The cost function was non-convex and 
the optimization technique based on GSA was 
developed. The optimal interaction forces for 
different numbers of sensors in the Single-COM 
flocking control protocol with single and multi-
target tracking were proposed. Evaluation of the 
swarm robots-like act based dynamic target 
following the free space is given. The numerical 
results obtained validate the proposed method 
performance in comparison with the other 
approaches. 

 In the future, we have decided to work on the 
flock behavior in free and obstacle spaces. Also we 
would like to improve GSA with memetic as well 
as discussing the flocking control in 3D. In 
addition, the power consumption analysis is 
deferred to the future work. 

 

Table 1. Optimal forces of Single-COM flocking control for different sizes found by GSA for various numbers of sensors. 
Number 

of sensors 1
c


 2
c


 
1

mt
c  

2

mt
c  

1

sc
c  2

sc
c  

10 5.48098 3.73038 4.61782 4.38692 8.45326 3.0838 

30 8.24948 3.7478 3.77368 5.0691 5.44878 2.11092 

50 8.90246 2.63806 7.05536 4.97568 5.46172 3.4584 

70 6.95232 2.17282 3.92754 8.16904 7.35568 3.13232 

90 7.71056 3.28264 3.7309 5.27358 6.52208 2.34054 
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Figure 1. Beginning and ending locations of 50 mobile agents that are following a dynamic target in circular wave path with 

optimal parameters in table 1 by proposed flocking control algorithm using (11) and GSA. 
 

  

Figure 2. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path 

without iteration forces using (4) [11]. 

 

Figure 3. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path with 

extended flocking control algorithm using (9) [20]. 
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Figure 4. Beginning and ending locations of 30 mobile agents that are following two dynamic targets in semi-circular and 

semi-sine wave paths with optimal parameters in table 1 by proposed flocking control algorithm using (11) and GSA. 

 

 

Figure 5. Beginning and ending locations of 30 mobile agents that are following two moving targets in semi-circular and semi-

sine wave paths without iteration forces using (4) [11]. 

 

Figure 6. Beginning  and ending locations of 50 mobile agents that are following two moving target in semi-circular and semi-

sine wave paths with extended flocking control algorithm using (9) [20]. 
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Figure 7. (a) Value of  cost function during 100 iteration for 50 sensors, (b) errors between COM of locations of robots and 

location of target during 100 iterationa for 50 sensors. 

  

Figure 8. (a) Errors between COM of locations of robots and location of target in circular trajectory, (b) errors between 

COM of locations of robots and locations of two targets in semi-circular and semi-sine trajectory; all following processes for 

three algorithms are done on 50 sensors. 

 
 

Figure 9. (a) Value of cost function for various numbers of sensors during 100 iterations, (b) errors between COM of 

locations of robots and location of target in circular trajectory for different numbers of sensors. 
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منفرد برای ردیابی یک یا چند هدف -یک الگوریتم جستجوی گرانشی براساس کنترل توده با مرکز توده

 پویا در مسیرهای سهمی برای شبکه های حسگر متحرک

 

 3مینا میرحسینی و  ،*2نائینی وحید ستاری، 1الهام خدایاری
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 چکیده:

ا پی دا پیشرفت رویه کنترل توده بهینه، یکی از مشکلات اصلی در شبکه های حسگر متحرک می باشد. علاوه بر این، یکی از مسائل مهم در این شبکه ه 

د. کردن پارامترهای بهینه است بنحوی که حسگرهای متحرک با بهترین سرعت به سمت هدف پویا همگرا شوند و به خوبی زمان ردیابی را ک اه  دهن 

م ا در ای ن کن د. اساس متدهای فراابتک اری ارائ ه م یاین مقاله یک الگوریتم کنترل توده بهینه برای ردیابی هدف پویا در شبکه های حسگر متحرک بر

بهین ه ب رای هدف کلی این مقال ه پی دا ک ردن پارامتره ای  ایم.لگوریتم جستجوی گرانشی بهره بردهسازی غیر محدب براساس امقاله از یک روش بهینه

تابع برازندگی می انگین فاص له ایلیدس ی مرک    الگوریتم کنترل توده است تا رفتارهای گروهی خواسته شده را برای کم کردن تابع برازندگی انجام دهد.

نت ایج ایج رضایت بخ  است. های استفاده از الگوریتم جستجوی گرانشی، کاربرد آن در ردیابی چند هدف با نتز هدف پویا می باشد. یکی از م یتتوده ا

 دهد.با کارهای گذشته به وضوح نشان میسازی، کارایی الگوریتم جستجوی گرانشی را در مقایسه شبیه

 کنترل توده، ردیابی هدف، شبکه حسگر متحرک، مرک  توده، الگوریتم جستجوی گرانشی.  :کلمات کلیدی

 


