181 research outputs found

    High-speed Design Of High-resolution Dacs

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2009Bu çalışmada, yüksek çözünürlüklü akım yönlendirmeli sayısal-analog dönüştürücülerin (SAD) hızlı tasarımını sağlayan yöntemler incelenmekte ve yeni yaklaşımlar önerilmektedir. Veri dönüştürücüler analog ve sayısal dünyalar arasında bir köprü oluşturdukları için hızlı ve verimli bir şekilde gerçekleştirilmeleri yüksek derecede arzu edilmektedir. Yüksek hızlı (birkaç 100MHz) ve yüksek çözünürlüklü (10 bitten fazla) SAD için artan rağbet, akım yönlendirmeli SADların kullanımını zorunlu kılmaktadır. Yüksek performanslı akım yönlendirmeli SADların tasarımında ve gerçekleştirmesinde kesimleme (segmentation) yöntemi kullanılmaktadır. Bu yöntem, yüksek hız ve yüksek çözünürlük gerektiren uygulamaların çoğunda avantajlı olmasına rağmen uzun süreli tasarım zamanı, karmaşıklık ve yüksek maliyet yüzünden değer kaybetmektedir. Böylece, bazı uygulamalar için zaman ve maliyet açısından bu yöntemin kullanılması hızlı ve verimli olmayabilir. Bu problemlerin üstesinden gelmek için yüksek çözünürlüklü SADların yüksek hızlı tasarımını sağlayan hızlı ve verimli yöntemler dikkate alınmaktadır. Uygun bir tasarım yöntemi ve yeni bir yapı önerilmektedir. Akım yönlendirmeli SADlar gibi karmaşık karma yapılı sistemlerin tasarımı için davranışsal modelin oluşturulması zorunlu olmaktadır. Bu amaçla gerçekleştirilen modellerin çoğu sistemin davranışı hakkında istenilen eksiksiz manzarayı vermemektedir. Bu yüzden, transistor seviyesindeki tasarıma geçmeden önce, tasarımı hızlandırabilen ve sistemin davranışını doğru bir şekilde yansıtabilen modeller geliştirilmektedir. SIMULINK® kullanılarak bir davranışsal model kurulmakta ve modelin performansı benzetimlerle sınanmaktadır. Sonuç olarak, uygulanan yöntemin verimliliğini ve davranışsal modelin doğruluğunu sınamak için 0.35µm CMOS proses teknolojisi için tasarlanan bir 12 bitlik melez akım yönlendirmeli SAD kullanılmaktadır. Yapı bloklarında yapılan iyileştirmeler ve kullanılan farklı yöntemler, gerçekleştirilen SAD’ın serimindeki ilgili kısımlarda yer almaktadırlar. CADENCE Geleneksel Tümleşik Devre Tasarım Araçları kullanılarak serim sonrası benzetimleri yapılmakta ve SAD’ın performans karakteristikleri incelenmektedir.In this thesis, different problems related to the design speed-up of high-resolution current-steering digital-to-analog converters (DAC) are addressed and novel solutions are proposed. Since data converters form the bridge between the analog and digital world their efficient implementation is highly desirable. The increase in demand for high-speed (several 100MHz) and high-resolution (higher than 10-bit) DAC, forces the use of current-steering DACs. Segmentation method is used for the design and the implementation of high performance current-steering DACs. Although this methodology is advantageous in most of the applications requiring high-speed and high-resolution, it suffers from the prolonged design time, complexity and high cost. Thus, the use of this methodology for some applications is not efficient concerning the time and the cost. To overcome these problems efficient methodologies for the high-speed design of high-resolution DACs are considered. A proper design methodology and a novel architecture are introduced. Behavioral modeling is necessary for the design of complex mixed-mode systems like current-steering DACs. Most of the models constructed can not give a complete view of the system’s behavior. For this reason, models that speed up the design and reflect accurately the behavior of the system prior to transistor level implementation are developed. A SIMULINK® based behavioral model is developed and verified through simulations. To conclude, the efficiency of the applied methodology and the accuracy of the behavioral model are validated through the implementation of a 12-bit hybrid current-steering DAC in a 0.35µm CMOS process technology. The improvements in the building blocks and the different approaches used are reflected in the respective parts of the layout of the implemented DAC. Post-layout simulations are obtained using CADENCE Custom IC Design Tools and the performance metrics of the DAC are investigated.DoktoraPh

    A Digital-to-Analog Converter Architecture for Multi-Channel Applications

    Get PDF
    Systems-on-chip with the capability of driving multiple analog voltages are useful for a variety of applications, including multiple actuator control for robotics applications, automated test equipment systems, industrial automation, programmable logic controllers, and satellite ywheel motor control. Such applications require a DAC for each analog output. A multi-channel architecture that saves power and area by sharing hardware is needed. This work introduces a new single-ramp multi-channel 12-bit DAC architecture. The architecture includes a low power Gray code counter, ramp generator, digital comparator, analog memory units, and control logic. The new multi-channel DAC architecture allows hardware sharing between multiple channels, and enables Systems-on-Chip to have multiple analog outputs for stimulating transducers or motors. The DAC architecture is to be used in a variety of space and defense applications as part of the BAE Systems RAD6000 microcontroller project

    Dynamic calibration of current-steering DAC

    Get PDF
    The demand for high-speed communication systems has dramatically increased during the last decades. Working as an interface between the digital and analog world, Digital-to-Analog converters (DACs) are becoming more and more important because they are a key part which limits the accuracy and speed of an overall system. Consequently, the requirements for high-speed and high-accuracy DACs are increasingly demanding. It is well recognized that dynamic performance of the DACs degrades dramatically with increasing input signal frequencies and update rates. The dynamic performance is often characterized by the spurious free dynamic range (SFDR). The SFDR is determined by the spectral harmonics, which are attributable to system nonlinearities.;A new calibration approach is presented in this thesis that compensates for the dynamic errors in performance. In this approach, the nonlinear components of the input dependent and previous input code dependent errors are characterized, and correction codes that can be used to calibrate the DAC for these nonlinearities are stored in a two-dimensional error look-up table. A series of pulses is generated at run time by addressing the error look-up table with the most significant bits of the Boolean input and by using the corresponding output to drive a calibration DAC whose output is summed with the original DAC output. The approach is applied at both the behavioral level and the circuit level in current-steering DAC.;The validity of this approach is verified by simulation. These simulations show that the dynamic nonlinearities can be dramatically reduced with this calibration scheme. The simulation results also show that this calibration approach is robust to errors in both the width and height of calibration pulses.;Experimental measurement results are also provided for a special case of this dynamic calibration algorithm that show that the dynamic performance can be improved through dynamic calibration, provided the mean error values in the table are close to their real values

    Digital pre-distortion of radio frequency digital to analog converters in a DOCSIS application

    Get PDF
    The use of Community Antenna Television Network (CATV) cable systems are a very common way that subscribers use to access the internet and download data. The transmitters that send the signals to subscribers must conform to a very stringent specification known as DOCSIS. Using traditional high frequency design techniques to meet this specification often lead to a lengthy and difficult production process where several calibrations have to be made. In order to send a digitally modulated signal that conforms to the DOCSIS specification some sort of conversion between the discrete digital domain and the analog domain must occur. To accomplish this a Digital to Analog converter is used. In recent years, the clocking or sampling frequency that can be used for Digital to Analog converters (DACs) has been rapidly increasing. The clocking frequency is directly proportional to the bandwidth that can be transmitted. DAC's that have exceptionally high clocking frequencies can be referred to as Radio Frequency DAC's. The clocking frequency of these devices has now progressed to the point where direct digital synthesis can be used for a DOCSIS transmitter without any analog frequency conversion stages. Since Radio Frequency DAC's are real devices the output is not a perfect representation of the discrete signal that is sent to it. Unwanted distortion is added that can be measured at the analog output. Removal of this distortion or at least significantly reducing it could be the difference meeting or or not meeting the DOCSIS specification. This thesis will explore the usage of these devices in this application. The basic structure of DAC's as well as the distortion signals themselves will be investigated in order to develop a method where the distortion can be removed. Ideally this can be done in a way that is suitable to be integrated into a transmitter architecture and meet the specification. The frequency response of the major distortion products across the DOCSIS band is measured. Once this is done a way to match these frequency responses is needed so a cancellation signal can be created that removes the distortion. A method is developed that uses an iterative algorithm to find filter coefficients whose frequency response matches that of the distortion signals as closely as possible. Since these cancellation signals are added to the discrete signal to be transmitted before the interface with the Radio Frequency DAC the process is known as pre-distortion. The generated coefficients are used in digital filters as part of a pre-distortion design. Tests are performed with discrete signals that are close approximates to a DOCSIS signal that would be sent to a subscriber. Measured results show a decrease in the power of targeted distortion signals. The reduction of the distortion level is enough that the DOCSIS specification is met for all test signals

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    Implémentation, ajustement laser et modélisation des convertisseurs numériques à analogique R2R

    Get PDF
    La conversion numérique à analogique -- Principales caractéristiques des CNA -- Algorithmes et architectures de conversion -- Techniques de linéarisation -- Le CNA R2R inversé -- Un CNA 14 bits ajusté au laser et fabriqué dans une technologie CMOS standard -- Puce -- Montage de test -- Notes et résultats de tests -- Une compensation améliorée pour les interrupteurs des CNA R2R inversés -- Modélisation des CNA R2R

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements
    corecore