460 research outputs found

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Get PDF
    Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. R. Muñoz, V. López, R. Casellas, O. González de Dios, F. Cugini, N. Sambo, A. d'Errico, O. Gerstel, D. King, S. López-Buedo, P. Layec, A. Cimmino, R. Martínez, and R. Moro, "IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks", in Future Network and Mobile Summit, 2013, pp. 1-10Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project.This work was partially funded by the European Community’s Seventh Framework Programme FP7/2007-2013 through the Integrated Project (IP) IDEALIST under grant agreement nº 317999

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer

    Get PDF
    A vertical perspective, ranging from management and routing to physical layer options, concerning dynamic network monitoring and compensation of impairments (M&C), is given. Feasibility, reliability, and performance improvements on reconfigurable transparent networks are expected to arise from the consolidated assessment of network management and control specifications, as a more accurate evaluation of available M&C techniques. In the network layer, physical parameters aware algorithms are foreseen to pursue reliable network performance. In the physical layer, some new M&C methods were developed and rating of the state-of-the-art reported in literature is given. Optical monitoring implementation and viability is discussed.Publicad
    corecore