2,271 research outputs found

    Input current shaped ac-to-dc converters

    Get PDF
    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator

    IMPROVEMENT STUDY ON SOFT-SWITCHED QUASI-RESONANT DC/DC BOOST CONVERTER

    Get PDF
    This report describes a novel soft-switched quasi-resonant DC/DC boost converter. Recently, remarkable efforts have been made in soft-switched quasi-resonant DC/DC converters to reduce losses and improve power efficiency. This project presents a new technique and it had improved the performance of the most recent study on soft-switched quasi-resonant DC/DC boost converter, which is presented in Ba-Thunya and Prasad's study [1]. The proposed converter employs an active snubber circuit with an auxiliary switch in series with a clamp capacitor to reduce powerlosses in Ba-Thunya and Prasad's original an active snubber circuit with an auxiliary switch and a clamp diode to reduce power losses in Ba-Thunya and Prasad's original converter. The energy from the snubber inductor after the auxiliary switch turn-off is returned to the input or delivered to the output via the active snubber circuit, thus the voltage stress onthe main switch is reduced and switching losses are minimized. Furthermore, the proposed converter reduces the reverse-recovery-related losses of the boost rectifier by controlling the di/dt rate of the rectifier current with the snubber inductor. This report describes the principle of operation of the new soft-switched quasi-resonant DC/DC boost converter. The feasibility study of the proposed converter is investigated using PSPICE program

    DC-DC power converter research for Orbiter/Station power exchange

    Get PDF
    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    Design of Power Switched-Capacitor Converters and Their Performance Analysis in a Soft-Charging Operation

    Get PDF
    Switched-capacitor (SC) converters have gained more interest due to their high power density and appropriateness for small circuit integration. Building a SC DC-to-DC converter with only capacitors and switches is the main reason to seek a higher power density achievement. However, the SC converters suffer dominant losses related to their capacitors and switches. These losses can be determined and optimized by calculating the converter\u27s output impedance in its two asymptotic limits. We proposed a high voltage gain and a very low output impedance power switched-capacitor converter (PSC) with a lower number of components compared to other step-up switched-capacitor topologies. The high output efficiency and the higher power density are two fundamental aspects of the PSC converter. We can eliminate the current transient by applying the soft-charging technique that results a higher power density and a higher efficiency in PSC. The soft-charging operation is more preferable to the soft-switching technique (resonant operation) since it does not require any auxiliary components. Furthermore, soft-charging helps to resize capacitors and reduce the switching frequency of the PSC converter. Furthermore, a split-phase control design is proposed to achieve the complete soft-charging operation in a PSC. The control diagram was designed for a 1-to-4 PSC (two levels of the PSC) which controls eight switches to exhibit eight modes of operation. The complete soft-charging accomplishes a 96% efficiency due to the lower output impedance and the dead time switching. LT-spice software has been used to verify the proposed control, and the results were compared with hard-charging and incomplete soft-charging operations. In this research, we also proposed a two-level power switched-capacitor boost converter (PSC-boost) for a high voltage gain application by integrating a PSC converter and a conventional boost converter. The PSC switched-capacitors and the conventional boost converter are respectively cascaded as a primary and a secondary side of the proposed converter. Without alerting of the secondary side (conventional boost), the conversion ratio can be increased by adding more switched-capacitors cells. The proposed converter similarly acts as an MBC; however, it can maintain the rated voltage gain at a higher duty cycle. Unlike the MBC converter, the simulated voltage gain is closer to the calculated voltage gain for PSC-boost converter. In addition to the switched-capacitors insertion, a switched inductor model is used instead of the single inductor in the traditional boost converter. Five switches, five capacitors, seven diodes, and three inductors are used to build a PSC-boost switched-inductor converter. The PSC-boost converter accomplishes 94% efficiency which a higher rated power

    Interleaved High Step-up DC-DC Converter with Diode-Capacitor Multiplier Cell and Ripple-Free Input Current

    Full text link
    In this paper interleaving and switched-capacitor techniques are used to introduce a high step-up DC-DC converter for renewable energy systems application. The proposed converter delivers high voltage gain without utilizing transformer or excessive duty cycle and features ripple-free input current which results in lower conduction losses and decreased electromagnetic interference (EMI). Lower output capacitance is another advantage of proposed converter, leading to smaller size and lower cost. Furthermore lower voltage stress on switches allows the utilization of switches with low resistance. Simulation results verify the performance of suggested converter

    Interleaved High Step-up DC-DC Converter with Diode-Capacitor Multiplier Cell and Ripple-Free Input Current

    Get PDF
    In this paper interleaving and switched-capacitor techniques are used to introduce a high step-up DC-DC converter for renewable energy systems application. The proposed converter delivers high voltage gain without utilizing transformer or excessive duty cycle and features ripple-free input current which results in lower conduction losses and decreased electromagnetic interference (EMI). Lower output capacitance is another advantage of proposed converter, leading to smaller size and lower cost. Furthermore lower voltage stress on switches allows the utilization of switches with low resistance. Simulation results verify the performance of suggested converter
    corecore