25 research outputs found

    Convolutional Neural Networks for Image Steganalysis in the Spatial Domain

    Get PDF
    Esta tesis doctoral muestra los resultados obtenidos al aplicar Redes Neuronales Convolucionales (CNNs) para el estegoanálisis de imágenes digitales en el dominio espacial. La esteganografía consiste en ocultar mensajes dentro de un objeto conocido como portador para establecer un canal de comunicación encubierto para que el acto de comunicación pase desapercibido para los observadores que tienen acceso a ese canal. Steganalysis se dedica a detectar mensajes ocultos mediante esteganografía; estos mensajes pueden estar implícitos en diferentes tipos de medios, como imágenes digitales, archivos de video, archivos de audio o texto sin formato. Desde 2014, los investigadores se han interesado especialmente en aplicar técnicas de Deep Learning (DL) para lograr resultados que superen los métodos tradicionales de Machine Learning (ML).Is doctoral thesis shows the results obtained by applying Convolutional Neural Networks (CNNs) for the steganalysis of digital images in the spatial domain. Steganography consists of hiding messages inside an object known as a carrier to establish a covert communication channel so that the act of communication goes unnoticed by observers who have access to that channel. Steganalysis is dedicated to detecting hidden messages using steganography; these messages can be implicit in di.erent types of media, such as digital images, video €les, audio €les, or plain text. Since 2014 researchers have taken a particular interest in applying Deep Learning (DL) techniques to achieving results that surpass traditional Machine Learning (ML) methods

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    A comprehensive survey on Delaunay Triangulation: applications, algorithms, and implementations over CPUs, GPUs, and FPGAs

    Get PDF
    Delaunay triangulation is an effective way to build a triangulation of a cloud of points, i.e., a partitioning of the points into simplices (triangles in 2D, tetrahedra in 3D, and so on), such that no two simplices overlap and every point in the set is a vertex of at least one simplex. Such a triangulation has been shown to have several interesting properties in terms of the structure of the simplices it constructs (e.g., maximising the minimum angle of the triangles in the bi-dimensional case) and has several critical applications in the contexts of computer graphics, computational geometry, mobile robotics or indoor localisation, to name a few application domains. This review paper revolves around three main pillars: (I) algorithms, (II) implementations over central processing units (CPUs), graphics processing units (GPUs), and field programmable gate arrays (FPGAs), and (III) applications. Specifically, the paper provides a comprehensive review of the main state-of-the-art algorithmic approaches to compute the Delaunay Triangulation. Subsequently, it delivers a critical review of implementations of Delaunay triangulation over CPUs, GPUs, and FPGAs. Finally, the paper covers a broad and multi-disciplinary range of possible applications of this technique

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented
    corecore