10,222 research outputs found

    Security and Privacy Issues in Cloud Computing

    Full text link
    Cloud computing transforming the way of information technology (IT) for consuming and managing, promising improving cost efficiencies, accelerate innovations, faster time-to-market and the ability to scale applications on demand (Leighton, 2009). According to Gartner, while the hype grew ex-ponentially during 2008 and continued since, it is clear that there is a major shift towards the cloud computing model and that the benefits may be substantial (Gartner Hype-Cycle, 2012). However, as the shape of the cloud computing is emerging and developing rapidly both conceptually and in reality, the legal/contractual, economic, service quality, interoperability, security and privacy issues still pose significant challenges. In this chapter, we describe various service and deployment models of cloud computing and identify major challenges. In particular, we discuss three critical challenges: regulatory, security and privacy issues in cloud computing. Some solutions to mitigate these challenges are also proposed along with a brief presentation on the future trends in cloud computing deployment

    A Mobile Transient Internet Architecture

    Get PDF
    This paper describes a new architecture for transient mobile networks destined to merge existing and future network architectures, communication implementations and protocol operations by introducing a new paradigm to data delivery and identification. The main goal of our research is to enable seamless end-to-end communication between mobile and stationary devices across multiple networks and through multiple communication environments. The architecture establishes a set of infrastructure components and protocols that set the ground for a Persistent Identification Network (PIN). The basis for the operation of PIN is an identification space consisting of unique location independent identifiers similar to the ones implemented in the Handle system. Persistent Identifiers are used to identify and locate Digital Entities which can include devices, services, users and even traffic. The architecture establishes a primary connection independent logical structure that can operate over conventional networks or more advanced peer-to-peer aggregation networks. Communication is based on routing pools and novel protocols for routing data across several abstraction levels of the network, regardless of the end-points’ current association and state. The architecture also postulates a new type of network referred to as the Green Network. The Green Network has protocols to coordinate routing traffic and to allow for the identification and authentication of devices, services, users and content characterized as Digital Entities. Transmission is assumed to initiate and terminate at transient physical locations. The network implements every reasonable effort to coordinate a prompt delivery to the transient end-points using whatever means available. This paper is a conceptual logical model of the intended architecture and specifics about its particular components and their implementations will be discussed in future papers

    From mashups to telco mashups: A survey

    Get PDF
    Given their increasing popularity and novel requirements and characteristics, telco mashups deserve an analysis that goes beyond what's available for mashups in general. Here, the authors cluster telco services into different types, analyze their features, derive a telco mashup reference architecture, and survey how well existing mashup tools can respond to these mashups' novel needs. © 2012 IEEE

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Crowdcloud: A Crowdsourced System for Cloud Infrastructure

    Get PDF
    The widespread adoption of truly portable, smart devices and Do-It-Yourself computing platforms by the general public has enabled the rise of new network and system paradigms. This abundance of wellconnected, well-equipped, affordable devices, when combined with crowdsourcing methods, enables the development of systems with the aid of the crowd. In this work, we introduce the paradigm of Crowdsourced Systems, systems whose constituent infrastructure, or a significant part of it, is pooled from the general public by following crowdsourcing methodologies. We discuss the particular distinctive characteristics they carry and also provide their “canonical” architecture. We exemplify the paradigm by also introducing Crowdcloud, a crowdsourced cloud infrastructure where crowd members can act both as cloud service providers and cloud service clients. We discuss its characteristic properties and also provide its functional architecture. The concepts introduced in this work underpin recent advances in the areas of mobile edge/fog computing and co-designed/cocreated systems

    Developing our capability in cyber security: Academic Centres of Excellence in Cyber Security Research

    Get PDF
    corecore