
Crowdcloud: a crowdsourced system for cloud infrastructure

Mahmood Hosseini1 • Constantinos Marios Angelopoulos1 • Wei Koong Chai1 • Stephane Kundig2

Received: 15 November 2017 / Revised: 15 February 2018 / Accepted: 20 August 2018 / Published online: 30 August 2018
� The Author(s) 2018

Abstract
The widespread adoption of truly portable, smart devices and Do-It-Yourself computing platforms by the general public

has enabled the rise of new network and system paradigms. This abundance of well-connected, well-equipped, affordable

devices, when combined with crowdsourcing methods, enables the development of systems with the aid of the crowd. In

this work, we introduce the paradigm of Crowdsourced Systems, systems whose constituent infrastructure, or a significant

part of it, is pooled from the general public by following crowdsourcing methodologies. We discuss the particular

distinctive characteristics they carry and also provide their ‘‘canonical’’ architecture. We exemplify the paradigm by also

introducing Crowdcloud, a crowdsourced cloud infrastructure where crowd members can act both as cloud service pro-

viders and cloud service clients. We discuss its characteristic properties and also provide its functional architecture. The

concepts introduced in this work underpin recent advances in the areas of mobile edge/fog computing and co-designed/co-

created systems.

Keywords Crowdsourcing � Crowdsourced systems � Cloud services � Crowdcloud � Mobile edge computing

1 Introduction

Cloud computing is a method of providing computing

resources as a service rather than a product. It is exten-

sively used by both for-profit organisations such as Google

App Engine [13, 72] and non-profit organisations such as

Science Cloud [43] to provide services in three different

ways: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS). The

many powerful characteristics of cloud computing, such as

cost reduction, device and location independence, easier

maintenance, higher performance capabilities, more relia-

bility, and higher scalability have helped to expand the

notion of cloud computing and broaden its applications and

usage [24].

These ‘‘as-a-service’’ architectures have leveraged new

models of resource orchestration and task execution, and

can be combined with crowdsourcing for novel, unprece-

dented applications. Crowdsourcing is a method of out-

sourcing tasks to a typically large, undefined group of

people via an open call [38]. Crowdsourcing provides an

opportunity for crowdsourcers to increase the efficiency of

executing the crowdsourced task both in terms of the

incurred costs and the time required. The reduction of both

money and time needed in obtaining possible solutions,

plus opening the in-house innovation and problem-solving

processes to the large diverse crowd can also lead to

attracting more creativity and wisdom that might otherwise

not be found inside organisations.

The widespread adoption of truly portable, hand-held

smart devices (such as smart phones and smart wearables)

by the general public, as well as the rise of Do-It-Yourself

computing platforms (such as the Arduino or the Raspberry

Pi) have formed a new reality where devices with signifi-

cant computational and communication capabilities are

abundant. This ubiquitous presence of smart devices pro-

vided by the general public offers an unprecedented ability

of augmenting traditional computer networks and systems

& Mahmood Hosseini

mhosseini@bournemouth.ac.uk

Constantinos Marios Angelopoulos

mangelopoulos@bournemouth.ac.uk

Wei Koong Chai

wchai@bournemouth.ac.uk

Stephane Kundig

stephane.kundig@unige.ch

1 Bournemouth University, Poole, UK

2 University of Geneva, Geneva, Switzerland

123

Cluster Computing (2019) 22:455–470
https://doi.org/10.1007/s10586-018-2843-2(0123456789().,-volV)(0123456789().,-volV)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/160272985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2843-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2843-2&domain=pdf
https://doi.org/10.1007/s10586-018-2843-2

with crowdsourced resources. This qualitatively extends

the notion of crowdsourcing from that of pooling human

resources (either in the form of manpower or crowd wis-

dom) to that of pooling the ICT infrastructure needed for

the execution of a task, which we refer to as crowdsourced

systems.

Crowdsourced systems are, roughly speaking, systems

whose constituent infrastructure (or at least a significant

part of it) is pooled from the general public following

crowdsourcing methodologies. A well-established example

of such systems are the Mobile Crowdsensing Systems

(MCSs) [22, 45], a special case of crowdsourced systems

focusing on collecting sensory data from the general public

with the use of smart phones. In this article, we introduce

another example of a crowdsourced system, namely the

crowdcloud.

Our contribution we formally introduce the notion of

Crowdsourced Systems. First, we provide the background

that motivates the introduction of this new paradigm in

Sect. 2. Then we provide the corresponding definition and

also identify the main components of such systems and

characterise their interactions by providing the core

architecture of textitcrowdsourced systems in Sect. 3. In

Sect. 4, we provide a high-level comparison between

crowdsourced systems and similar paradigms such as

Internet of Things (IoTs) as a service.

Following, we introduce crowdcloud in Sect. 5, a

crowdsourced system paradigm that refers to the avail-

ability of cloud infrastructure, cloud platform, and cloud

software services to the crowd by the crowd with or

without a legally binding contract. We outline the scope of

crowdcloud, present its architecture and explain its rela-

tionship to crowdsourced systems in general. In Sect. 6, we

illustrate our ongoing work on the pathway to the imple-

mentation of a framework for crowdsourced cluster com-

puting. We conclude the paper and provide the future work

in Sect. 7.

2 Related work

2.1 Background on crowdsourcing

Crowdsourcing is usually defined as the practice of col-

lecting and aggregating needed services, information, or

other kind of resources provided by the general public [32].

Crowdsourcing as a practice has been utilised in numerous

domains of study, such as business, computer science, and

medicine. Crowdsourcing has also been utilised in several

commercial and non-commercial platforms, such as Ama-

zon Mechanical Turk [40] and Threadless [8], and has been

structured in several forms, such as micro tasking [44] and

crowdfunding [50].

Furthermore, when applied in complex tasks, crowd-

sourcing can leverage the so called wisdom of the crowd

[62], e.g., crowdsourcing for the purpose of applying the

wisdom of the crowd within enterprises [30]. The notion in

this particular application of crowdsourcing is that apart

from being an efficient and cost effective method of

pooling resources, crowdsourcing can also provide quali-

tative benefits in task execution, i.e., by employing the

collective intelligence of the crowd, ordinary people can

often outperform individual experts.

In spite of the common understanding, crowdsourcing

has been employed as a method for many years in various

forms. One example is the provision of juries in several

judicial systems. Another example that is widely used in

the literature comes from 1906, when statistician Francis

Galton observed that the aggregated result from the esti-

mations of the weight of an ox from 800 people was

accurate within the 1% error margin [21]. The latter

example nicely demonstrates the mechanism that underpins

crowdsourcing; individual contributions can be seen as

sampling points of a probability distribution with the true

answer as its mean value. This interpretation characterises

crowdsourcing methodologies as relying on statistical

sampling and therefore provides hints towards a wise

crowd (e.g., homogeneous coverage of the sampling space,

stochastic independence of trials, etc.).

In his book [62], Surowiecki has identified the four

characteristics a crowd needs to have in order to be ‘‘wise’’.

These characteristics are:

– Diversity, i.e., each individual of the crowd should

carry its own contribution/information, even if this is an

eccentric one.

– Independence, i.e., each individual’s contribution

should not be determined or largely influenced by

other individuals.

– Decentralisation, i.e., each individual’s contribution

should be formed based on locally available informa-

tion and knowledge.

– Aggregation, i.e., a correct mechanism should exist for

aggregating individual contributions into a collective

outcome.

Later, we will refer to these characteristics when charac-

terising the system requirements for Crowdsourced

Systems.

2.2 Background on mobile crowdsensing
systems

During the past few years, smart phones and other truly

portable devices (such as tablets, smart watches and smart

glasses) have evolved into sophisticated multi-sensory

computing platforms, thus fuelling the rise of MCSs. In

456 Cluster Computing (2019) 22:455–470

123

[22], an overview is provided of the current state of

applications that are based on MCS. The main challenges

recognised refer to resource limitations, such as available

energy, bandwidth and computational power, privacy

issues that may arise due to the correlation of sensor data

with individuals, and the lack of a unifying architecture

that would optimise the cross-application usage of sensors

on a particular device or even on a set of correlated devices

(e.g., if they are located in the same geographical area).

In [55], authors use the notion of Participatory Sensing

(PS) to describe such systems. They consider the problem

of efficient data acquisition methods for multiple PS

applications while taking into consideration issues such as

resource constraints, user privacy, data reliability, and

uncontrolled mobility. They evaluate heuristic algorithms

that seek to maximise the total social welfare via simula-

tions that are based on mobility datasets consisting of both

real-life and artificial data traces.

In a previous work, we identified the basic design issues

of MCS and investigated some characteristic challenges

[5]. In particular, the core elements of an MCS were

defined—the task, the server, and the textitcrowd—along

with the functions governing their interactions. For a given

type of task, and a finite budget, the server makes offers to

the agents of the crowd based on some incentive policy.

Then, each individual of the crowd makes a decision on

whether to contribute to the execution of the task based on

its own utility function. From this formulation, interesting

results are extracted on the heuristics the server can follow

in order to increase the efficiency of the system subject to

the available budget.

2.3 Background on Internet of Things

In a more applied work presented in [6], an IoT testbed

architecture for smart buildings was presented that enables

the seamless and scalable integration of crowdsourced

resources, such as smart phones and tablets. The purpose of

this integration is two-fold; first, the embedded sensory

capabilities of the resources provided by the crowd are

combined with the sensing capabilities of the building for

efficient smart actuations. Second, the system is able to

interact with its users in a direct, personal way both for

incentivising them to provide sensory data from their

devices and for receiving feedback on their preferences and

experienced comfort. This work is among the very first

demonstrating the use of crowdsourcing in order to

opportunistically augment the infrastructure of an ICT

system. It also highlights the dual nature of crowdsourcing

where the crowd not only contributes to the system but also

ameliorates it, thus receiving services of higher quality.

The same principles are also followed in [19], although in a

different context. Here, the focus is on employing

crowdsourcing as a powerful tool not only for conducting

research, but also for driving research via the co-design of

experiments for problems proposed by the crowd.

This brings us to the focal point of this study, i.e., the

notion of crowdsourced systems and the application of

crowdsourcing in the domain of cloud computing. The

stimulating advantages of crowdsourcing and the extensive

capabilities of cloud computing, plus the existence of

similar characteristics (e.g., reducing costs and increasing

diversity), facilitate a solid ground for the unification of the

two practices. Such a unification has already been noticed

and utilised in some cloud projects such as SETI@home

[4] and BOINC [2]. However, these cloud projects belong

to corporations and organisations, i.e., the crowd resources

have been utilised not by other crowd members but by

organisations. For example, SETI@home belongs to

Berkeley and Microsoft Azure belongs to Microsoft. As a

result, we believe that there is still a lack of a compre-

hensive cloud infrastructure that can actually be stemmed

from the crowd, be organised by the crowd, and be utilised

for the crowd. While Torrent clients and similar peer-to-

peer platforms do exist, they are mainly used for file

sharing and not for sharing other cloud resources such as

computing power, cloud storage, and software on-demand

services.

2.4 Background on cloud market models

The cloud marketplace, as the online storefront for pro-

viding cloud services by cloud service providers, is not a

recently devised concept [7]. However, the cloud market is

still mainly dominated by a handful of mostly private (and

sometimes public) cloud providers, which are both willing

and capable of investing in their cloud service provision

and the required infrastructure [7]. Examples of well-

known cloud marketplaces include the Amazon AWS

cloud marketplace, the Oracle cloud marketplace, the

Microsoft Azure cloud marketplace, and the Salesforce

AppExchange cloud marketplace [47].

With the move from Cloud 1.0 to Cloud 2.0, which adds

the new Web 2.0 social networking functionalities to the

cloud marketplace [52], more emphasis has been put on the

role of new players in this marketplace. For example, the

Open Cloud Exchange (OCX) has been proposed as a

public cloud marketplace where several stakeholders par-

ticipate in implementing and operating the cloud, as

opposed to only one cloud provider [7]. Intercloud is

another attempt to support and utilise the scaling of

applications across multiple vendor clouds in the cloud

marketplace [9], which we will discuss later as well. Other

similar cloud marketplaces and their characteristics have

been extensively researched and proposed, e.g., in [14, 48].

Cluster Computing (2019) 22:455–470 457

123

Most of these newer paradigms of cloud computing still

have two very distinct players: cloud service providers and

cloud service clients. In other words, cloud service clients

usually cannot be cloud service providers at the same time.

On the other hand, more recent attempts to unify cloud

service providers and clients, such as Social Cloud [11],

downplay the role of traditional cloud service providers

and instead rely heavily on social networking components

and services, but limit cloud service provision to those

clients with whom a social networking link has already

been established in the process. Such a limitation prevents

Social Cloud from being a truly open marketplace to

everyone, regardless of their social networking status.

Consequently, a cloud paradigm that could benefit from the

principles and fundamentals of crowdsourcing could be an

advance in the cloud marketplace.

3 The paradigm of crowdsourced systems

The notion of crowdsourced systems is a relatively new

one, which is different from the notion of crowdsourcing

platforms. In this section, we will present the paradigm of

crowdsourced systems by elaborating on the characteristics

and high-level architecture for crowdsourced systems.

3.1 The rise of crowdsourced systems

The high adoption rates of truly portable smart devices

(e.g., smart phones and smart watches) by the general

public, as well as the emergence of Do-It-Yourself com-

puting platforms [49] (e.g., Raspberry Pis and Arduinos)

have paved the way for new paradigms of computing and

networking with strong distributed and ad-hoc character-

istics. Both of these classes of devices are highly affordable

and are supported by appropriate development tools that

enable the public to use them in developing applications

and systems with relative ease. When such applications and

systems are designed to be open, then crowdsourcing

methods can be employed for them to grow and scale.

One real-life example of such a project is Safecast [57],

which was developed after the devastating earthquake and

tsunami which struck eastern Japan in 2011, and the sub-

sequent meltdown of the Fukushima Daiichi Nuclear

Power Plant. Safecast enabled citizens to build their own

DIY radiation monitoring sensor kits by employing open

source and open data methodologies. Essentially, the

crowd was enabled to monitor, collect, and openly share

information on environmental radiation and other pollu-

tants that was then aggregated and visualised in radiation

maps.

The same rationale spawned FLOAT [20], in which

citizens of Beijing were able to generate their own data on

air quality in the city using sensor kits attached on kites. In

this case, the design of the kits was also crowdsourced, thus

carrying strong elements of co-creation as well.

Apart from such ad-hoc examples, that emerged some-

how spontaneously, Mobile Crowdsensing Systems (MCSs)

[22] have been thoroughly studied in the research com-

munity. The main technological enablers for MCS are

smart phones; truly portable and personal devices equipped

with a variety of sensors which are able to support several

communication interfaces. MCS seek to exploit these

characteristics by orchestrating the collaborative operation

of multiple smart phones towards performing a task. Tasks

in the context of MCS mainly focus on collecting sensory

data and therefore crowdsensing systems can be regarded as

distributed sensing infrastructures whose sensing points are

crowdsourced.

By extending this line of thought, one could identify

systems that also employ other types of devices (e.g., DIY

computing platforms) and that focus on other application

areas than collecting sensory data (e.g., sharing computing

power or storage space). This is the core idea that under-

pins the definition of a new system paradigm; namely that

of crowdsourced systems.

3.2 Characteristics and high level architecture

Crowdsourced systems are systems whose constituent

infrastructure is pooled or augmented via crowdsourcing

methods. A clear distinction needs to be made between

crowdsourced systems and crowdsourcing systems, also

known as crowdsourcing platforms. Crowdsourcing sys-

tems or platforms act as tools enabling or facilitating the

execution of a task via crowdsourcing. For instance, they

may act as the gateway to the crowd (e.g., a web service

individuals use) or provide supporting mechanisms such as

a directory of active contributors or aggregation mecha-

nisms. On the other hand, crowdsourced systems are

themselves created or heavily rely on infrastructure that is

crowdsourced. For instance, in [6] a smart building

equipped with ambient luminance sensors is able to

opportunistically augment its sensing infrastructure (and

therefore improve the quality of service to the end users) by

employing the embedded sensory capabilities of the smart

phones of the end users. This also demonstrates the

advantages of crowdsourcing in developing scalable sys-

tems in a cost effective way.

While a crowdsourced system may be developed with

the aim of performing a particular task (such as in the case

of Safecast and FLOAT), in the general case a crowd-

sourced system should be application agnostic. In order to

characterise the ‘‘canonical’’ crowdsourced system—and

therefore define the corresponding system paradigm—we

458 Cluster Computing (2019) 22:455–470

123

revisit the prerequisites of the ‘‘wise’’ crowd as those are

specified by Surowiecki (see Sect. 2.1).

– Diversity a canonical (i.e., application agnostic) crowd-

sourced system needs to rely on diverse infrastructure

and therefore to be able to crowdsource heterogeneous

devices. It should not rely on specialised hardware that

is application specific.

– Independence each crowdsourced device should be

autonomous and non-reliable on other system compo-

nents for its operation. The crowdsourced infrastructure

should not include central nodes or dependencies

among the devices (e.g., gateways). However, ephem-

eral connections can be provisioned.

– Decentralisation no central mechanism should exist

that dictates the operation of the individual crowd-

sourced devices. However, orchestrating mechanisms

that supervise the task execution and manage the crowd

as a whole (e.g., micro-payments or other incentive

mechanisms) may exist.

– Aggregation an aggregation mechanism should be

defined that consolidates the individual contributions

towards executing the task. Such a mechanism may be

centrally operated by the task issuer or may be intrinsic

to the crowdsourced system (e.g., in the form of a

distributed protocol).

In light of the above discussion, Fig. 1 depicts the high-

level architecture of a canonical crowdsourced system.

In general, a crowdsourced system has the purpose of

performing a task and its architecture consists of three

layers; the Crowd layer, the Crowdsourcer layer and the

Task Execution layer. The base of a crowdsourced system

is the crowd that contributes to the system by providing the

infrastructure that is necessary for performing the task;

these are referred to as crowdsourced resources. The

crowdsourced resources are then employed by the crowd-

sourced system in order to provide data and/or services. On

the top of the architecture lies the crowdsourcer, who is the

key beneficiary of the operation of the crowdsourced sys-

tem. The crowdsourcer issues the task to be executed and

may also provide additional specifications related to the

task, such as specifications for the incentive mechanisms to

be employed or the available budget. Note that the

crowdsourcer is identified as the issuer of the task; a role

that may or may not be assumed by an individual of the

crowd, depending on the context of operation of the

system.

The Task Execution layer lies in between the Crowd

layer and the Crowdsourcer layer, providing the necessary

corresponding abstraction mechanisms. The Resources

Gateway module provides connectivity between each

individual resource and the Task Execution layer in such a

way that the heterogeneity of the crowd is hidden from the

upper layers. The Task Manager module provides the

interface between the Task Execution layer (and subse-

quently the Crowd layer) and the Crowdsourcer layer. It

enables the crowdsourcer to issue the task to the crowd

while remaining agnostic of the complexity and the

potential diversity of the underlying mechanisms. Towards

facilitating the task execution, this layer also provides core

management mechanisms. The Resource Manager module

supports the curation of the crowdsourced resources and

therefore of the crowd. The mechanisms embedded in this

module may include (but not be limited to) maintaining a

resource directory, implementing the incentive mecha-

nisms, maintaining the corresponding ledgers for managing

the available budget for incentives, and so on. Similarly,

the Data Manager module supports the curation of the

collected data by providing services related to normalising

the received raw data according to a data model, mining the

data and semantically annotating them, data aggregation

services, etc.

In this work, we only provide a high level presentation

of the architecture for a canonical crowdsourced system.

There exist several other aspects that need to be addressed,

such as trust and privacy issues, preserving anonymity for

the crowd, the efficient use of incentive mechanisms for

efficient task execution, the use of open interfaces and open

data in crowdsourced systems, and so on. These will beFig. 1 High-level architecture of a crowdsourced system

Cluster Computing (2019) 22:455–470 459

123

elaborated in our future work. In the following section, we

will compare the notion of crowdsourced systems to other

already-existing paradigms.

4 Comparison to other paradigms

4.1 Comparison to cloud-based paradigms

As already mentioned, the paradigm of crowdsourced

systems is underpinned by the high acceptance rates of

DIY computer platforms [49], i.e., affordable hardware

platforms that can be used by amateurs and the general

public to develop small ICT projects. Certain DIY com-

puter platforms, such as some flavours of the Raspberry Pi,

while being affordable are also characterised by significant

computational resources and communication capabilities.

As depicted in Fig. 1, the paradigm of crowdsourced sys-

tems provisions the federation of several such devices

towards a distributed system that provides services and

infrastructure to a set of users.

While this may seem similar to or a special case of

cloud-based paradigms, such as the Intercloud [26],

crowdsourced systems carry unique characteristics and

pose distinct challenges that justify their identification as a

new paradigm. In particular, crowdsourced systems differ

in at least the following ways.

Infrastructure and services provision and management

in cloud-based systems the cloud provider provisions and

provides access to the ICT infrastructure and the services

that run on top of it. This means that cloud systems are

centralised systems in the sense that they are centrally

managed. This, of course, does not preclude the adoption of

distributed architectures in the way the hardware and the

services are deployed and managed, but the management

and the provision of those is carried out centrally by the

cloud provider (e.g., consider the Amazon Web Services).

Cloud paradigms like Intercloud [26] consider the federa-

tion of multiple individual clouds in the context of dis-

tributed architectures. Such federations allow individual

clouds to share and exchange data, and to distribute loads

among them, overall providing improved services to their

end users in terms of availability, scalability and elasticity.

Crowdsourced systems radically differ as their infrastruc-

ture is not provided by a centralised provider but is pooled

from the crowd consisting of independent participants. This

means that the infrastructure of a crowdsourced system is

not centrally managed and therefore it is characterised by

heterogeneity and uncertainty regarding its availability.

Furthermore, a crowdsourced system is not a federation of

individual, stand-alone clouds but a system whose con-

stituent infrastructure is crowdsourced by contributing

individuals. One way to regard it is that such systems

follow similar organisation principles to cooperative ini-

tiatives where the provider is also a consumer, i.e., a

‘‘prosumer’’ [56].

Functional and technical requirements crowdsourced

systems have radically different functional and technical

requirements to other paradigms that are cloud-based.

Clouds are typically designed to accommodate the needs of

large numbers of end users or applications processing large

volumes of data. In this respect, cloud-based systems are

specifically engineered with high-end technical require-

ments such as those for High Performance Computing or

Big Data. On the other hand, crowdsourced systems are not

specifically engineered systems since their infrastructure is

crowdsourced. This also implies that this infrastructure is

typically characterised by constraints in terms of compu-

tational capabilities, resources (e.g., memory), and avail-

ability. The latter is due to the fact that the ownership (and

therefore the control) of the crowdsourced components

belongs and remains to the contributing individual(s).

Finally, contrary to the cloud, crowdsourced systems lie on

the edge of the network, close to the end user.

The human factor as mentioned above, crowdsourced

systems pool their infrastructure via means of crowd-

sourcing from the general public. One direct implication is

finding the answer to why someone should contribute to the

crowdsourced system. Therefore, a crowdsourced system

should incorporate an incentive mechanism, either

implicitly (e.g., the contributors benefit from the operation

of the system itself) or explicitly (e.g., monetary incentives

via micro-payments). Another important aspect is the fact

that DIY platforms [49] (e.g., the Raspberry Pi)—that are

key enablers of crowdsourced systems—are commonly

used in small scale projects by amateurs and are deployed

in sensitive premises such as homes and work environ-

ments. This means that aspects such as anonymity, privacy,

and trust lie in the core of crowdsourced systems. Overall,

due to their nature, the human factor and the challenges it

poses are more profound in crowdsourced systems than in

cloud-based systems.

4.2 Comparison to crowdsourcing systems

Crowdsourcing systems and crowdsourced systems both

rely on contributions from the general public (i.e., the

crowd). However, in spite of the similarity of the terms,

crowdsourced systems clearly differentiate from crowd-

sourcing systems. Crowdsourcing systems typically refer to

digital platforms that collect and consolidate input from the

crowd. In this case the input may come in several forms; a

recommendation or a review, a vote, a video, sharing of

location, or sensory data in the context of a crowdsensing

application. A crowdsourcing platform may or may not be

centralised or distributed in terms of system architecture.

460 Cluster Computing (2019) 22:455–470

123

Most often, however, the platform is deployed and cen-

trally managed. On the other hand, in crowdsourced sys-

tems the general public contributes to the system itself.

Individuals do not only provide input to the system but also

provide the means for collecting, processing, and curating

data and information.

4.3 Comparison to IoT as a Service

As already mentioned, one of the key enabling technolo-

gies for the paradigm of crowdsourced systems is the DIY

computer platforms such as Raspberry Pi and Arduino.

Such platforms are also regarded as key enablers for the

IoTs, mainly due to their small size and their use in small

automation projects. IoT as a Service is a system paradigm

in which smart devices are interconnected with a remote

cloud infrastructure via which their functionalities (e.g.,

sensor measurements) are made available [10]. Here,

although the IoT devices may be deployed in several dif-

ferent areas (thus allowing such systems to be characterised

as distributed), the core of the system remains cen-

tralised—at least from a management perspective—as it is

based on a cloud provider. This is a fundamentally dif-

ferent approach to crowdsourced systems, where the

components of the system itself are crowdsourced. Also,

the scope of a crowdsourced system is much broader as it is

not restricted in IoT applications.

5 Crowdcloud: an instance of crowdsourced
systems

In this section, we will introduce and present crowdcloud

as an instance of crowdsourced systems. In crowdcloud, the

crowd follow the principles of the free market and supply

their services on the cloud while also demanding for other

crowd members’ cloud services.

5.1 Foundation of crowdcloud

Crowdcloud [28] refers to the provision of computing

services at different levels of IaaS, PaaS, and SaaS by the

crowd and for the crowd. The crowd, in this definition, can

include both individuals and organisations. Crowdcloud

acts like an online free market where every individual and

every organisation can supply their resources or demand

for other crowd members’ resources, following the regu-

lations of the free market. The idea of crowdcloud applies

several features of crowdsourcing such as largeness,

diversity, and incentives provision [29] in the cloud.

Crowdcloud also builds upon the notion of crowdsourced

systems in terms of architecture and application. Crowd-

cloud lets the crowd provide their idle resources to other

individuals or organisations in the crowd, and also request

their required resources from other crowd members. This

can happen at the infrastructure level (i.e., IaaS), e.g., by

providing or asking for CPU power and storage space, at

the platform level (i.e., PaaS), e.g., by providing or asking

for runtime libraries and web servers, or at the software

level (i.e., SaaS), e.g., by providing or asking for email

applications and on-demand software systems.

Ordinary cloud services, such as Amazon EC2 or Goo-

gle Drive, are cloud services which are provided by

organisations for other organisations or people. These

cloud services come with a legally binding contract

between the cloud service provider and the cloud service

client and are mostly costly for other organisations, but

they are usually free or inexpensive for individuals to use.

In some cases where provided cloud services are free of

charge, organisations usually compensate for the costs by

introducing advertisements along with their free cloud

services. Furthermore, these services are generally man-

aged in a centralised way, and this has instigated issues

related to data control and privacy [74] as well as legal

issues [17]. Crowdcloud, on the other hand, is fully

decentralised, provides cloud services from the crowd to

the crowd, and can be contract-free.

Crowdcloud bears some similarities with a few concepts

in the literature, such as cloudsourcing, volunteer cloud

computing, and social cloud. However, the differences

between crowdcloud and these concepts render crowdcloud

as a novel idea and make crowdcloud stand out as an

entirely free market model for cloud service provision.

These differences will be discussed in detail in the fol-

lowing paragraphs.

Cloudsourcing refers to outsourcing various elements of

a business or organisation IT infrastructure to other com-

panies or organisations which provide such services in the

cloud [23, 41]. Therefore, the first difference between

cloudsourcing and crowdcloud lies both in the cloud ser-

vice providers and cloud service clients. In cloudsourcing,

organisations provide some cloud services to other organ-

isations. In crowdcloud, however, the crowd provide some

cloud services to the crowd. The second difference between

the two is that cloudsourcing is centralised while crowd-

cloud is not. The last difference between cloudsourcing and

crowdcloud is that cloudsourcing is always based on a

contract between two organisations, while crowdcloud may

or may not be contract-based.

Volunteer cloud computing, also known as peer-to-peer

computing or global computing, refers to the use of com-

puters volunteered by the general public for distributed

scientific computations [3, 15]. SETI@home and BOINC

are examples of volunteer cloud computing. In this case,

and apart from its aforementioned purpose, two main dif-

ferences exist between volunteer cloud computing and

Cluster Computing (2019) 22:455–470 461

123

crowdcloud. The first difference is that in volunteer cloud

computing, the crowd provides a service, such as CPU

power or storage, solely for organisations (and normally for

research purposes) and not for other people. The second

difference is that volunteer cloud computing, unlike ordi-

nary cloud services, is not based on a contract and people

have no obligations whatsoever to provide cloud services

or keep providing cloud services to their beneficiaries.

Crowdcloud, however, can be both contract-free and con-

tract-based.

Social cloud is probably the closest in meaning and

application to crowdcloud. Social cloud refers to a frame-

work for sharing resources and services based on rela-

tionships amongst the members of a social network [12].

The notion of social cloud implies three ideas that form the

differences between social cloud and crowdcloud. The first

difference is that social cloud depends on a social network

and relationships amongst the members of that social net-

work. This limits the cloud service provision to socially

connected members within the social network. Crowd-

cloud, on the other hand, is not necessarily a social net-

work, and can exist independently as an online free market

for cloud services. This provides a wider range of services

to acquaintances and non-acquaintances alike. The second

difference is that social cloud works solely on social con-

tracts, while crowdcloud can work on legally binding

contracts or be contract-free. Finally, social cloud explic-

itly limits the use of each individual’s resources to other

individuals. Crowdcloud, on the other hand, is open to both

individuals and organisations, for-profit or non-profit, for

the use of resources.

The differences between crowdcloud and other similar

cloud services are shown in Table 1. These differences

include who the service providers and service clients are,

how these platforms are managed, and whether a contract

is needed between cloud service providers and cloud ser-

vice clients for the use of cloud services.

5.2 Crowdcloud architecture

The proposed architecture for crowdcloud is presented in

this section along with a short description of its con-

stituents. It is depicted in Fig. 2.

As Fig. 2 illustrates, crowdcloud has the following three

constituents: the cloud, the crowd, and the crowdcloud

platform. The crowdcloud platform utilises three distinct

modules which interact with each other. These modules are

explained below:

– Crowd management module this module is responsible

for managing the crowd and their interactions. In

particular, this module manages crowd members’

registration, records their service agreements, handles

availability of service contracts (if any), and facilitates

interactions amongst cloud service providers and cloud

service clients in the crowd. The crowd management

module in crowdcloud can be mapped to the task

manager module and data manager module in crowd-

sourced systems architecture.

– Cloud management module this module is responsible

for managing the resources provided by the crowd in

the cloud. In particular, this module records the list of

all available cloud resources, documents their providers

and clients, keeps track of cloud resources availability

status, and manages cloud resource allocation. The

cloud management module in crowdcloud can be

mapped to the resource manager module and resource

gateway module in crowdsourced systems architecture.

– Platform management module this module is responsi-

ble for managing the crowdcloud platform. In partic-

ular, it serves as the interaction gateway between the

other two modules and coordinates their functionalities.

The platform management module in crowdcloud can

be mapped to the overall architecture of the crowd-

sourced systems.

5.3 Advantages and challenges of crowdcloud

In this section, some of the characteristics and advantages

of crowdcloud are presented. In the same fashion, some

Table 1 Differences between cloud paradigms

Cloud service Service providers Service clients Management Contract

Ordinary cloud services Organisations People or organisations Centralised Yes

Cloudsourcing Organisations Organisations Centralised Yes

Volunteer cloud computing People Organisations Centralised No

Social cloud People People Decentralised No

Crowdcloud People or organisations People or organisations Decentralised Yes/no

462 Cluster Computing (2019) 22:455–470

123

challenges that the implementation of crowdcloud can

introduce are discussed and possible solutions to avoid or

mitigate them are presented. It should be noted that

crowdcloud, as a novel concept, will need more theoretical

research to be conducted before any implementation

attempts are made in order to guarantee a quality service

which addresses all benefits and possible challenges

accordingly.

5.3.1 Crowdcloud characteristics and benefits

Crowdcloud brings about a set of features and advantages

that can be exploited to the benefit of the crowd, as well as

organisations, and which can differentiate crowdcloud

from other cloud services already in existence and give it a

competitive advantage. These features include, but are not

limited to, the following features.

Decentralised resource management resource manage-

ment, as a crucial factor in cloud computing [66], is usually

performed by organisations in ordinary cloud services and

in cloudsourcing, and is therefore conducted in a

centralised way, i.e., they are centrally managed by one

organisation. In volunteer cloud computing the resources

are distributed inherently, but their management is still

usually centralised by the service clients, i.e., the service

client decides when and how to use the resources.

Crowdcloud, on the other hand, is completely decen-

tralised in its resource management, meaning that each

cloud service provider (i.e., an individual or an organisa-

tion) in the crowdcloud environment is responsible for

managing the cloud resources they have provided, and

there is no central authority to manage all the provided

resources on a crowdcloud platform. The cloud manage-

ment module on the crowdcloud platform is not a central

entity either, but a distributed one where every crowd

member will manage their own cloud resources through

their own local copy, while interacting with other crowd-

cloud platforms over the network for coordination and

interaction purposes.

Bidirectional service exchange in ordinary cloud service

providers, cloudsourcing and volunteer cloud computing,

organisations either provide services (e.g., Google Drive

provides storage space for its clients) or they request ser-

vices (e.g., SETI@home requests CPU power to analyse

radio telescope data). This means that service provision in

these cloud environments in unidirectional.

Crowdcloud, similar to social cloud, provides the

opportunity for the ordinary crowd to both provide services

and request them, thus providing a bidirectional service

exchange. For example, a crowd member may provide a

storage space for another crowd member while requesting a

specific software program from the same or different

member. The key difference, however, between social

cloud and crowdcloud is that crowdcloud is not restricted

to individuals, and organisations can also play the role of

single entities in providing and requesting cloud services.

Democratised service provision when cloud service

providers are corporations and organisations (for-profit or

non-profit), they are fundamentally the ones who set the

trends, determine the prices, obligate terms of services, etc.

This means that the crowd will have no say and no control

over these domains and have to abide by the rules set for

them.

On crowdcloud, however, and similar to social cloud,

everything is determined by the people. It is a free market

where it is people who decide, possibly in a democratic

way, which services to provide and how these services

should be priced, how quality of service should be ensured,

etc. Furthermore, it is possible for the crowd members to

bargain over prices, terms and conditions, etc. This means

that, for example, you may even find free virtual desktops

or free on-demand software services for your needs. Here,

the difference between crowdcloud and social cloud is that

social cloud is based on a social network and relations

Fig. 2 The proposed architecture for crowdcloud; Notice that each

crowd member will have their own local version of ‘‘Crowdcloud

Platform’’, which means that ‘‘Crowdcloud Platform’’ is fully

decentralised

Cluster Computing (2019) 22:455–470 463

123

amongst people, which limits the provision of services to a

pre-defined list of friends, or friends of friends, etc. In

crowdcloud, however, resource requests can originate from

anybody in the crowd towards anybody in the crowd,

whether such requests are accepted or not.

Pricing using several existing cloud services usually

incurs a price on the clients, especially when the client is an

organisation. Free cloud services do exist, but they also

usually come with a set of limitations, such as bandwidth

or data volume limitations, or with unwanted, usually

obtrusive advertisements. However, paying for cloud ser-

vices is justified because of the costs of running, mainte-

nance, upgrade, personnel, etc.

Crowdcloud offers the possibility of getting cloud ser-

vices either for free or for a nominal cost. In social cloud,

this possibility also exists, but only for a certain group of

people in an individual’s social network, e.g., one’s friends

or friends of friends. In crowdcloud, on the other hand,

people may have different motivations to provide free or

inexpensive cloud services, friendship only being one of

them. Other reasons might include a mutual agreement to

use each other’s resources, getting social incentives such as

a better visibility in an online forum, or simply as an act of

altruism and helping towards a noble cause, such as pro-

viding one’s resources for global awareness about a certain

topic. While it is acknowledged that this may not be a

noticeable difference between crowdcloud and other cloud

services, the possibility of tapping into an overwhelmingly

large and possibly free pool of cloud services is still an

advantage of crowdcloud.

Free market model crowdcloud follows a free market

model where the crowd provide and request cloud services.

In this free market model, the crowd can determine the

revenues and the costs, they can bid for services, and they

can exchange one service for another. The crowd can

cooperate on service provision or compete to receive them,

and in the long run, the crowd will learn from past expe-

riences and adapt to new emerging situations. Last but not

least, the crowd will self-organise their interactions, service

provisions and requests, and their forthcoming challenges.

This idea of free market is probably the most prominent

feature of crowdcloud.

Flexibility one challenge to traditional clouds is the need

for rapid provision of resources with low latency to support

new and emerging resource-hungry (real-time) applica-

tions. The volatile workload requiring constant auto-scal-

ing and load balancing in the cloud is posing a real

engineering challenge to current providers [69]. Various

effort in decentralising computing resources have been

proposed in the literature (e.g., [58, 63, 70, 73]). Crowd-

cloud presents itself as a potential solution to this as

resources can be sourced from nearby incentivised partic-

ipants and/or organisations rather than relying on resources

statically provisioned at some central data centres which

may incur long response time. By sourcing the resources

nearby, crowdcloud reduces the latency as well as allowing

the flexible adaptation of resources based on workload. As

such, we see crowdcloud as an enabler to such edge/fog

cloud technologies in providing seamless services under

uncertainties. Note that this is different from forming a

federated cloud or interlinking different clouds with mul-

tiple cloud providers enter into agreements [with or without

contractual enforcement for example via Service Level

Agreements (SLAs)] as we are focusing on sourcing suf-

ficient local resources on demand. We refer readers to [25]

for different forms of such cloud federation.

5.3.2 Challenges in crowdcloud

While the idea of crowdcloud can potentially offer several

advantages to the clients of cloud services, it amplifies

several already existing challenges in cloud service provi-

sioning that should be addressed and introduces new

challenges to this paradigm as well. Without appropriate

consideration of these challenges, a successful, useful

implementation of crowdcloud cannot be guaranteed.

Below, these major challenges are discussed and possible

solutions are proposed.

Availability one issue that should be addressed in

crowdcloud is availability. In ordinary cloud services and

cloudsourcing, a certain percentage of availability is

guaranteed for cloud services clients [1]. Although some-

times organisations fail to hold onto their promises about

the level of availability [64], clients can generally rely on

these promises, and they usually get compensated in situa-

tions where availability is compromised.

Such availability promises are often absent and cannot

be guaranteed in a crowdcloud environment. When service

providers in crowdcloud provide their services in an ad-hoc

manner with no contractual bindings, they may withdraw

from service provision without proper notice at any time.

But even with contracts made between cloud service pro-

viders and clients in crowdcloud, the nature of crowdcloud

still overshadows its availability. While this may not be a

big issue in some instances such as CPU power, i.e., the

client may connect to another client and use their CPU

power, this can cause a huge problem in some other

instances such as cloud storage, i.e., if a client becomes

unavailable while providing cloud storage, all files on their

storage device will be unavailable to their client during that

period of time.

To overcome availability issues, a number of solutions

can be adopted. One possible solution, when applicable,

can be redundancy, i.e., a client may use several similar

cloud services in crowdcloud to guarantee their desired

level of availability for that certain service, e.g., a client

464 Cluster Computing (2019) 22:455–470

123

may copy their files on several storage services just to

make sure they will never lose the availability of their data.

Another possible solution is for service providers and

service clients to sign a binding contract, negotiating and

detailing the level of service availability. Another possible

partial solution is the trust-based solution, i.e., people will

less likely stop providing their cloud service to their friends

without at least notifying them about it in a reasonable time

to let them find alternative cloud solutions. Reputation

systems can also be put in practice to make clients aware of

those cloud service providers who have gained more rep-

utation based on their service provision availability.

Security another prominent issue that cloud clients may

encounter in crowdcloud is the security. Ordinary cloud

services have their own security issues [42], but it can get

much aggravated in crowdcloud. When well-established,

reputable organisations provide cloud services, their clients

generally trust them as they request resources from them. If

any security breaches occur, clients are usually assured that

certain measures will be taken to both reduce the adverse

effects and to ensure that the possibilities of such breaches

in the future are minimised.

On the other hand, this is not the case on a crowdcloud

platform. Given that resources are provided by ordinary

people, clients cannot be guaranteed to benefit from any

security measures if and when security breaches occur.

Furthermore, trusting cloud service providers or clients is

also an issue when they are individuals rather than organ-

isations, especially in the absence of a legally binding

contract. For example, providing CPU power as a resource

to another individual could raise the possibility of one’s

system being hacked, inducing harm to the service provi-

der. Similarly, receiving storage space as a resource from

another individual could also raise the possibility of ones’

personal information being misused, inducing harm to the

service client.

It should be noted that even big organisations sometimes

fail to take good care of their clients’ security, leading to

many research into security issues in the cloud [61]. Fur-

thermore, in a crowdcloud platform, a trust-based system

can be formulated between every service provider and

service client as a possible solution to security issues. For

example, clients should be able to share certain resources

only with certain people, e.g., only with their friends or

with their friends and their friends of friends, as in the case

of social cloud. Furthermore, leaving a certain degree of

responsibility of ensuring security on its stakeholders is not

a new idea and many cloud service providers are already

practising this. For example, it is up to the Google Drive

client to decide which files to share and with whom. While

the consequences of sharing infrastructure resources with

the wrong people is probably more dire, it is still observed

as a good practice to leave it for the people to decide on it

and enforce it when and if necessary.

Privacy given the nature of crowdcloud, which is pro-

viding cloud services by the ordinary crowd to the ordinary

crowd, privacy issues constitute an instant threat. In ordi-

nary cloud computing, cloudsourcing and volunteer cloud

computing, organisations have a data security policy that

ensures data privacy and enforces clients’ data protection.

Even with big organisations and cloud service providers,

privacy always remains an issue in the cloud [39] and it

makes big news in the media every now and again [51], but

it can get even more exacerbated in the case of crowdcloud.

Cloud service providers in crowdcloud usually comprise

of ordinary individuals, whose locations might sometimes

be unknown, and whose local privacy regulations may

differ significantly from privacy regulations in the coun-

tries where cloud service clients reside. Then it is also the

issue of malicious service providers, which arises in many

contexts where the crowd is given authority or responsi-

bility [46, 67]. Combined together, these issues can form

significant threats to clients’ privacy.

There are a number of measures to take in order to

minimise clients’ privacy breaches in crowdcloud. Repu-

tation systems help the clients understand which cloud

service providers are well-famed or ill-famed, and request

for their services accordingly. Trust-based solutions also

help the clients and providers in determining where their

data can be stored, who can use the CPU power, etc. User-

driven privacy enforcement [27] is another solution that

can help increase privacy in crowdcloud.

Legal issues providing cloud services at the infrastruc-

ture level or platform level may pose legal threats, but

providing SaaS probably introduces the majority of legal

issues in crowdcloud. As for organisations, they usually

provide SaaS when they own the rights to the software or to

the provision of the SaaS. In this case, the organisation will

have all the rights to determine how to distribute the

software and to determine pricing mechanisms. Apart from

this, organisations usually provide their clients with SLAs

which usually clearly define each party’s rights and duties,

which can later be referred to when disagreements arise

between service providers and service clients [53].

The ordinary crowd, on the other hand, may own the

software they have on their systems through the purchase

of that software, but they usually do not have the rights to

redistribute the software or provide it as a service to other

people. Furthermore, there are usually no contracts or

SLAs between service providers and service clients in

crowdcloud, making it difficult to settle disagreements and

legal disputes if and when legal issues arise.

In order to resolve general legal issues in crowdcloud, it

seems necessary that service providers and service clients

should be required by the crowdcloud platform to agree

Cluster Computing (2019) 22:455–470 465

123

with certain rights and responsibilities before committing

to any service provision or initiating any service request.

However, providing SaaS will be impossible for several

software systems under copyright laws with current legis-

lation. Providing other forms of SaaS, such as freeware

software, open source software, and software under copy-

left laws, may not pose legal threats.

Transparency transparency is an emerging requirement

of the people in the age of information technology [36].

With so many Web-enabled devices and people’s personal

information being constantly transmitted over the Web,

transparency is becoming increasingly important. It should

be noted that people generally understand and accept the

fact that their personal information needs to be accessed by

Web entities, such as Web merchants and business Web-

sites, in order for them to receive tailored services and

products. What these Web entities fail to provide to the

people, however, is how (and sometimes why) this infor-

mation is being handled. For example, a lot of people

would like to know why a certain product appears in the

advertising panel of their e-mail provider or their search

engine when they just recently searched for the same or

similar product in a totally e-commerce platform.

In crowdcloud, transparency requirements become more

desirable as cloud service providers and clients can be

ordinary people about whom little or no information might

be available. Furthermore, transparency about the details of

cloud service provision or request can play an important

role in crowd’s engagement with crowdcloud. For example,

someone requesting CPU power may state why they need

to use somebody else’s CPU and how they intend to use it,

or someone offering cloud storage may explain how they

ensure the privacy and security of the stored information on

their storage device. Engineering approaches towards

transparency [31, 34, 35] can significantly help in formal-

ising and formulating such requirements, and the power of

the crowd engaged in crowdcloud can be harnessed to meet

such transparency requirements [33, 37].

Retention a significant issue in crowd-based systems is

that, in the absence of an appropriate type of motivation,

crowd members may lose their interest in actively partic-

ipating in crowdsourced activities. Crowdcloud is no

exception in this case and will require an incentive model

for the engagement and retention of the crowd in providing

cloud services.

The problem of crowd engagement and retention in

crowdcloud can be circumvented in several ways. First,

crowd members’ active participation can be encouraged

through the free market model, where crowd members can

fulfil their cloud requirements through a supply and

demand model. That is to say, crowd members will need to

stay engaged and active on the crowdcloud if they want to

maintain their access to cloud services they require.

Second, and similar to other crowd-based systems and

platforms [16, 59], gamification can be a plausible method

of motivating and retaining crowd engagement through

points, badges, and leaderboards [68]. For instance, crowd

members can be incentivised for each cloud service pro-

vision through points, and they can appear on leaderboards

based on the most positive feedback they get from their

clients. When carefully engineered and implemented, such

immersion in gamification can cause crowd members to

fully engage in crowdcloud, while it also makes them

commit to higher quality cloud service provision for more

points, more badges, and higher ranks in leaderboards.

6 Ongoing and future work: a crowdcloud
implementation for cluster computing

In this section, we present an ongoing implementation of a

framework for crowdsourced cluster computing, which

follows the architecture and design guidelines of the

crowdcloud. The proposed implementation delivers a

crowdsourced application execution environment, which is

able to leverage computing resources even from resource-

constrained devices in an incentivised manner which

rewards participation.

We use Apache Spark [60] as the core software enabler

for this implementation; Spark is a general-purpose cluster

computing system which supports the MapReduce pro-

gramming model and achieves great speed and scalability

thanks to in-memory data abstractions [71]. It provides

high-level APIs in some of the most widely used pro-

gramming languages, namely Java, Scala, Python, and R,

as well as a rich set of built-in tools including Spark SQL

for structured data processing, MLlib for machine learning,

and Spark Streaming for handling live data streams. Fig-

ure 3 depicts the functional architecture of a Spark cluster;

Spark applications run as independent sets of processes,

coordinated by the SparkContext object on the driver

program in a master/slave configuration. SparkContext can

connect to several types of cluster managers which allocate

resources across applications. Once connected, the cluster

Fig. 3 Spark cluster overview

466 Cluster Computing (2019) 22:455–470

123

manager acquires executors on nodes in the cluster, which

are processes that run computations and store data for

applications.

Following the crowdcloud architecture described in

Sect. 5.2, the cloud management module is represented by

the native Spark standalone cluster manager which we use

in this prototype. Other open source resource managers

such as Mesos or YARN could be used equivalently for this

crowdsourcing implementation. We choose to use the

standalone mode as it is the simplest one to set up when not

using an existing Hadoop or Mesos cluster. To expose their

resources on the cluster, users have simply to mount the

spark-worker image on their device and register in the

crowdsourcing platform. Once this is done, the cloud

manager can retrieve part of the device’s computing cores

according to the established plan and policy.

Metadata regarding the crowd participants, such as the

number of cores, available memory, etc., will be commu-

nicated from the cluster manager to the crowd management

module, which is where all the marketplace and incen-

tivisation functions will be encapsulated. Implementation

of the crowd management module is still part of our future

work and so far different open source tools, such as HIVE

[65] and PYBOSSA [54], are being evaluated for its

deployment. The cloud and crowd management modules

will act as two discrete entities orchestrated by a higher-

layer of management which will compose the platform

management module, where the various service layer

functions will take place.

Diving deeper into the crowd layer requirements for this

use-case, a critical factor regarding the viability of the

proposed framework is the capability of the cluster man-

ager to leverage computing resources in small chunks from

many peers; crowd participants usually do not possess the

powerful machines which are traditionally used in cluster

computing and even in that case the total deprivation of

their computing resources is not desired. Therefore, effi-

cient ways to adjust existing cluster computing method-

ologies, which are based on resource-rich fully available

machines, or develop novel ones, will be an imposed

research challenge.

In order to test and validate the proposed framework

with regard to the above requirement, we deployed a local

Spark cluster of Raspberry Pi devices (Fig. 4), in the

context of Syndesi Testbed [18] at the University of Gen-

eva. Syndesi is an IoT framework and testbed which

includes a wireless sensor network and mobile crowd-

sensing modules interconnected via a gateway server. For

this cluster we chose the Raspberry Pi 3 Model B version

which possesses a quad-core processor at 1.2 GHz and

1 GB of RAM, specifications which fall into the range of

devices crowd participants may own. This prototype aims

to serve as a proof of concept for the computing challenges

imposed in a crowdsourced cluster computing framework

and networking constraints are not taken into consideration

in this ethernet-based configuration. That being said, with

the recent technological advances in mobile networks, such

as the emergence of 5G generation networks which will

provide a throughput of order of Gbit/s, we believe that

related issues will be easily tackled.

Providing the reader with a disclaimer of this being

ongoing work, initial testing of the Spark computing

framework on the Raspberry Pi cluster indicates that effi-

cient crowdsourced computing with resource-constrained

devices is possible. Nevertheless, an initial stage of cali-

bration and configuration of the system parameters is

undoubtedly required to obtain the desired behaviour.

7 Conclusion

In this work we introduced the new paradigm of Crowd-

sourced Systems; systems whose constituent infrastructure

is pooled from the general public. While heavily relying on

crowdsourcing, crowdsourced systems are not to be con-

fused with crowdsourcing platforms. While the latter act as

tools or mediators in order to access the crowd and con-

solidate its input, crowdsourced systems rely on crowd

contributions to pool and augment their infrastructure. We

also introduced Crowdcloud as an instance of the crowd-

sourced systems paradigm. Essentially, crowdcloud is a

crowdsourced cloud infrastructure. We also discussed and

compared the particular characteristics of these new con-

cepts and how they are different to already existing ones,

such as crowdsourcing platforms and the cloud. Finally, we

gave a brief overview of how crowdcloud, as an example of

a crowdsourced system, can be implemented by presenting

some of our ongoing work on crowdsourced cluster com-

puting with Raspberry Pis.

Fig. 4 Raspberry Pi Spark cluster at University of Geneva. Master

node (bottom right) and worker nodes (three stacks of four) connected

via an ethernet switch in a local network configuration

Cluster Computing (2019) 22:455–470 467

123

The concept of enabling a crowd not only to provide a

service or perform a task, but to co-create and pool the

technical means to do so is a disruptive one. It directly

correlates to and firmly underpins recent advances in fog/

edge computing. Consider a neighbourhood being able to

set up its own local data centre based on a community

provided network, totally independent of any centralised

control or dominating vendors. In our future work, we plan

to demonstrate the use and the efficient performance of

such crowdsourced systems by fully implementing a

crowdsourced cluster computing framework.

Acknowledgements This work was partially funded by the Engi-

neering and Physical Sciences Research Council (EPSRC) under the

CHIST-ERA CONCERT (A Context-Adaptive Content Ecosystem

Under Uncertainty), Project Number I1402.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Addis, B., Ardagna, D., Panicucci, B., Zhang, L.: Autonomic

management of cloud service centers with availability guarantees.

In: 2010 IEEE 3rd International Conference on Cloud Computing

(CLOUD), pp. 220–227. IEEE (2010)

2. Anderson, D.P.: BOINC: a system for public-resource computing

and storage. In: Fifth IEEE/ACM International Workshop on Grid

Computing, 2004. Proceedings, pp. 4–10. IEEE (2004)

3. Anderson, D., Fedak, G.: The computational and storage potential

of volunteer computing. In: Sixth IEEE International Symposium

on Cluster Computing and the Grid, 2006. CCGRID 06, vol. 1,

pp. 73–80 (2006). https://doi.org/10.1109/CCGRID.2006.101

4. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer,

D.: SETI@ home: an experiment in public-resource computing.

Commun. ACM 45(11), 56–61 (2002)

5. Angelopoulos, C.M., Nikoletseas, S.E., Raptis, T.P., Rolim,

J.D.P.: Characteristic utilities, join policies and efficient incen-

tives in mobile crowdsensing systems. In: 2014 IFIP Wireless

Days, WD 2014, Rio de Janeiro, Brazil, 12–14 November 2014,

pp. 1–6 (2014)

6. Angelopoulos, C.M., Evangelatos, O., Nikoletseas, S.E., Raptis,

T.P., Rolim, J.D.P., Veroutis, K.: A user-enabled testbed archi-

tecture with mobile crowdsensing support for smart, green

buildings. In: 2015 IEEE International Conference on Commu-

nications, ICC 2015, London, UK, 8-12 June 2015, pp. 573–578

(2015)

7. Bestavros, A., Krieger, O.: Toward an open cloud marketplace:

vision and first steps. IEEE Internet Comput. 18(1), 72–77 (2014)

8. Brabham, D.C.: Moving the crowd at threadless: motivations for

participation in a crowdsourcing application. Inf. Commun. Soc.

13(8), 1122–1145 (2010)

9. Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: utility-ori-

ented federation of cloud computing environments for scaling of

application services. In: International Conference on Algorithms

and Architectures for Parallel Processing, pp. 13–31. Springer

(2010)

10. Celesti, A., Fazio, M., Giacobbe, M., Puliafito, A., Villari, M.:

Characterizing cloud federation in IoT. In: 2016 30th Interna-

tional Conference on Advanced Information Networking and

Applications Workshops (WAINA), pp. 93–98. IEEE (2016)

11. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social cloud:

cloud computing in social networks. In: 2010 IEEE 3rd Interna-

tional Conference on Cloud Computing (CLOUD), pp. 99–106.

IEEE (2010)

12. Chard, K., Bubendorfer, K., Caton, S., Rana, O.: Social cloud

computing: a vision for socially motivated resource sharing.

IEEE Trans. Serv. Comput. 5(4), 551–563 (2012). https://doi.org/

10.1109/TSC.2011.39

13. Ciurana, E.: Developing with Google App Engine. Apress (2009).

https://doi.org/10.1007/978-1-4302-1832-6

14. Comi, A., Fotia, L., Messina, F., Rosaci, D., Sarné, G.M.: A

partnership-based approach to improve QoS on federated com-

puting infrastructures. Inf. Sci. 367, 246–258 (2016)

15. Costa, F., Silva, L., Dahlin, M.: Volunteer cloud computing:

MapReduce over the internet. In: 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), pp. 1855–1862. IEEE (2011)

16. Dalpiaz, F., Snijders, R., Brinkkemper, S., Hosseini, M., Shahri,

A., Ali, R.: Engaging the crowd of stakeholders in requirements

engineering via gamification. In: Gamification, pp. 123–135.

Springer, Cham (2017)

17. De Filippi, P., McCarthy, S.: Cloud computing: legal issues in

centralized architectures. In: VII International Conference on

Internet, Law and Politics (2011)

18. Evangelatos, O., Samarasinghe, K., Rolim, J.: Syndesi: a frame-

work for creating personalized smart environments using wireless

sensor networks. In: 2013 IEEE International Conference on

Distributed Computing in Sensor Systems, pp. 325–330 (2013).

https://doi.org/10.1109/DCOSS.2013.35

19. Fernandes, J., Nati, M., Loumis, N., Nikoletseas, S., Raptis, T.P.,

Krco, S., Rankov, A., Jokic, S., Angelopoulos, C.M., Ziegler, S.:

Iot lab: towards co-design and IoT solution testing using the

crowd. In: 2015 International Conference on Recent Advances in

Internet of Things (RIoT), pp. 1–6. IEEE (2015)

20. FLOAT: http://civicus.org/thedatashift/wp-content/uploads/2015/

07/Float-Beijing-case-study.pdf. Accessed 14 Nov 2017

21. Galton, F.: Vox populi (the wisdom of crowds). Nature 75(7),
450–451 (1907)

22. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state

and future challenges. IEEE Commun. Mag. 49(11), 32–39

(2011)

23. Géczy, P., Izumi, N., Hasida, K.: Cloudsourcing: managing cloud

adoption. Glob. J. Bus. Res. 6, 57–70 (2011)

24. Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The charac-

teristics of cloud computing. In: 2010 39th International Con-

ference on Parallel Processing Workshops (ICPPW),

pp. 275–279. IEEE (2010)

25. Grozev, N., Buyya, R.: Inter-cloud architectures and application

brokering: taxonomy and survey. Softw. Pract. Exp. 44, 369–390
(2012). https://doi.org/10.1002/spe.2168

26. Grozev, N., Buyya, R.: Inter-cloud architectures and application

brokering: taxonomy and survey. Softw. Pract. Exp. 44(3),
369–390 (2014)

27. Henze, M., Hermerschmidt, L., Kerpen, D., Häußling, R., Rumpe,
B., Wehrle, K.: User-driven privacy enforcement for cloud-based

services in the Internet of Things. In: 2014 International Con-

ference on Future Internet of Things and Cloud (FiCloud),

pp. 191–196. IEEE (2014)

468 Cluster Computing (2019) 22:455–470

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CCGRID.2006.101
https://doi.org/10.1109/TSC.2011.39
https://doi.org/10.1109/TSC.2011.39
https://doi.org/10.1007/978-1-4302-1832-6
https://doi.org/10.1109/DCOSS.2013.35
http://civicus.org/thedatashift/wp-content/uploads/2015/07/Float-Beijing-case-study.pdf
http://civicus.org/thedatashift/wp-content/uploads/2015/07/Float-Beijing-case-study.pdf
https://doi.org/10.1002/spe.2168

28. Hosseini, M.: Crowdcloud: cloud of the crowd. In: The IEEE 5th

International Conference on Future Internet of Things and Cloud.

IEEE Computer Society (2017)

29. Hosseini, M., Phalp, K., Taylor, J., Ali, R.: The four pillars of

crowdsourcing: a reference model. In: 2014 IEEE Eighth Inter-

national Conference on Research Challenges in Information

Science (RCIS), pp. 1–12. IEEE (2014)

30. Hosseini, M., Moore, J., Almaliki, M., Shahri, A., Phalp, K., Ali,

R.: Wisdom of the crowd within enterprises: practices and chal-

lenges. Comput. Netw. 90, 121–132 (2015)

31. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Towards engineering

transparency as a requirement in socio-technical systems. In:

2015 IEEE 23rd International Requirements Engineering Con-

ference (RE), pp. 268–273. IEEE (2015)

32. Hosseini, M., Shahri, A., Phalp, K., Taylor, J., Ali, R.: Crowd-

sourcing: a taxonomy and systematic mapping study. Comput.

Sci. Rev. 17, 43–69 (2015)

33. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Crowdsourcing

transparency requirements through structured feedback and social

adaptation. In: 2016 IEEE Tenth International Conference on

Research Challenges in Information Science (RCIS), pp. 1–6.

IEEE (2016)

34. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Foundations for

transparency requirements engineering. In: International Working

Conference on Requirements Engineering: Foundation for Soft-

ware Quality, pp. 225–231. Springer (2016)

35. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: A modelling lan-

guage for transparency requirements in business information

systems. In: International Conference on Advanced Information

Systems Engineering, pp. 239–254. Springer (2016)

36. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Four reference

models for transparency requirements in information systems.

Requir. Eng. 23, 1–25 (2017)

37. Hosseini Moghaddam, S.M.: Engineering of transparency

requirements in business information systems. PhD Thesis,

Bournemouth University (2016)

38. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4
(2006)

39. Ion, I., Sachdeva, N., Kumaraguru, P., Čapkun, S.: Home is safer

than the cloud!: privacy concerns for consumer cloud storage. In:

Proceedings of the Seventh Symposium on Usable Privacy and

Security, SOUPS ’11, pp. 13:1–13:20. ACM, New York (2011).

https://doi.org/10.1145/2078827.2078845

40. Ipeirotis, P.G.: Analyzing the Amazon Mechanical Turk mar-

ketplace. XRDS Crossroads ACM Mag. Stud. 17(2), 16–21

(2010)

41. Joint, A., Baker, E., Eccles, E.: Hey, you, get off of that cloud?

Comput. Law Secur. Rev. 25(3), 270–274 (2009). http://www.

sciencedirect.com/science/article/pii/S0267364909000570

42. Kandukuri, B.R., Rakshit, A., et al.: Cloud security issues. In:

IEEE International Conference on Services Computing, 2009.

SCC’09, pp. 517–520. IEEE (2009)

43. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.:

Science clouds: early experiences in cloud computing for scien-

tific applications. Cloud Comput. Appl. 2008, 825–830 (2008)

44. Kittur, A., Chi, E., Suh, B.: Crowdsourcing for usability: using

micro-task markets for rapid, remote, and low-cost user mea-

surements. In: Proceedings of CHI 2008 (2008)

45. Krause, A., Horvitz, E., Kansal, A., Zhao, F.: Toward community

sensing. In: Proceedings of the 7th International Conference on

Information Processing in Sensor Networks, IPSN 2008, St.

Louis, Missouri, USA, 22–24 April 2008, pp. 481–492 (2008)

46. Lasecki, W.S., Teevan, J., Kamar, E.: Information extraction and

manipulation threats in crowd-powered systems. In: Proceedings

of the 17th ACM Conference on Computer Supported Coopera-

tive Work and Social Computing, CSCW ’14, pp. 248–256.

ACM, New York (2014). https://doi.org/10.1145/2531602.

2531733

47. Menychtas, A., Vogel, J., Giessmann, A., Gatzioura, A., Gomez,

S.G., Moulos, V., Junker, F., Müller, M., Kyriazis, D., Sta-

noevska-Slabeva, K.: 4CaaSt marketplace: an advanced business

environment for trading cloud services. Future Gener. Comput.

Syst. 41, 104–120 (2014)

48. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.:

A trust-aware, self-organizing system for large-scale federations

of utility computing infrastructures. Future Gener. Comput. Syst.

56, 77–94 (2016)

49. Mohomed, I., Dutta, P.: The age of DiY and dawn of the maker

movement. GetMobile Mob. Comput. Commun. 18(4), 41–43

(2015)

50. Mollick, E.: The dynamics of crowdfunding: an exploratory

study. J. Bus. Ventur. 29(1), 1–16 (2014)
51. O’Connor, L.: Celebrity nude photo leak: Just one more reminder

that privacy does not exist online and legally, there’s not much

we can do about it. GGU Law Review Blog Paper 30 (2014)

52. Pallis, G.: Cloud computing: the new frontier of internet com-

puting. IEEE Internet Comput. 14(5), 70–73 (2010)

53. Patel, P., Ranabahu, A.H., Sheth, A.P.: Service Level Agreement

in Cloud Computing. The Ohio Center of Excellence in Knowl-

edge-Enabled Computing (Kno.e.sis) Publications (2009)

54. PYBOSSA S: Scifabric pybossa. https://pybossa.com/ (2013)

55. Riahi, M., Papaioannou, T.G., Trummer, I., Aberer, K.: Utility-

driven data acquisition in participatory sensing. In: Joint 2013

EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy,

18–22 March 2013, pp. 251–262 (2013)

56. Ritzer, G., Jurgenson, N.: Production, consumption, prosumption:

the nature of capitalism in the age of the digital prosumer.

J. Consum. Cult. 10(1), 13–36 (2010)

57. Safecast: https://blog.safecast.org/. Accessed 14 Nov 2017

58. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case

for VM-based cloudlets in mobile computing. IEEE Pervasive

Comput. 8(4), 14–23 (2018)

59. Shahri, A., Hosseini, M., Ali, R., Dalpiaz, F.: Gamification for

volunteer cloud computing. In: 2014 IEEE/ACM 7th Interna-

tional Conference on Utility and Cloud Computing (UCC),

pp. 616–617. IEEE (2014)

60. Spark A: Apache Spark: lightning-fast cluster computing. http://

spark.apache.org (2016)

61. Subashini, S., Kavitha, V.: A survey on security issues in service

delivery models of cloud computing. J. Netw. Comput. Appl.

34(1), 1–11 (2011). http://www.sciencedirect.com/science/arti

cle/pii/S1084804510001281

62. Surowiecki, J., Silverman, M.P.: The wisdom of crowds. Am.

J. Phys. 75(2), 190–192 (2007)

63. Taleb, T., Ksentini, A.: Follow me cloud: interworking federated

clouds and distributed mobile networks. IEEE Netw. 27(5),
12–19 (2013)

64. The AWS Team: Summary of the Amazon EC2 and Amazon

RDS service disruption in the US east region (2011). http://aws.

amazon.com/message/65648/

65. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony,

S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solu-

tion over a Map-Reduce framework. Proc. VLDB Endow. 2(2),
1626–1629 (2009). https://doi.org/10.14778/1687553.1687609

66. Ullrich, M., Lssig, J., Gaedke, M.: Towards efficient resource

management in cloud computing: a survey. In: 2016 IEEE 4th

International Conference on Future Internet of Things and Cloud

(FiCloud), pp. 170–177 (2016). https://doi.org/10.1109/FiCloud.

2016.32

67. Wang, G., Wang, T., Zheng, H., Zhao, B.Y.: Man vs. machine:

practical adversarial detection of malicious crowdsourcing

Cluster Computing (2019) 22:455–470 469

123

https://doi.org/10.1145/2078827.2078845
http://www.sciencedirect.com/science/article/pii/S0267364909000570
http://www.sciencedirect.com/science/article/pii/S0267364909000570
https://doi.org/10.1145/2531602.2531733
https://doi.org/10.1145/2531602.2531733
https://pybossa.com/
https://blog.safecast.org/
http://spark.apache.org
http://spark.apache.org
http://www.sciencedirect.com/science/article/pii/S1084804510001281
http://www.sciencedirect.com/science/article/pii/S1084804510001281
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1109/FiCloud.2016.32
https://doi.org/10.1109/FiCloud.2016.32

workers. In: 23rd USENIX Security Symposium. USENIX

Association, Berkeley (2014)

68. Werbach, K., Hunter, D.: For the Win: How Game Thinking Can

Revolutionize Your Business. Wharton Digital Press, Philadel-

phia (2012)

69. Yang, B., Chai, W.K., Pavlou, G., Katsaros, K.: Seamless support

of low latency mobile applications with NFV-enabled mobile

edge-cloud. In: 5th IEEE International Conference on Cloud

Networking (CloudNet), Pisa, Italy

70. Yang, B., Chai, W.K., Xu, Z., Katsaros, K.V., Pavlou, G.: Cost-

efficient NFV-enabled mobile edge-cloud for low latency mobile

applications. IEEE Trans. Netw. Serv. Manag. (2018). https://doi.

org/10.1109/TNSM.2018.2790081

71. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave,

A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J.,

Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache Spark: a

unified engine for big data processing. Commun. ACM 59(11),
56–65 (2016). https://doi.org/10.1145/2934664

72. Zahariev, A.: Google App Engine. In: Helsinki University of

Technology Seminar on Internetworking (2009)

73. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of

task scheduling and image placement in fog computing supported

software-defined embedded system. IEEE Trans. Comput. 65(12),
3702–3712 (2016)

74. Zhuang, H., Rahman, R., Aberer, K.: Decentralizing the cloud:

how can small data centers cooperate? In: 14th IEEE Interna-

tional Conference on Peer-to-Peer Computing (P2P), pp. 1–10

(2014). https://doi.org/10.1109/P2P.2014.6934303

Mahmood Hosseini is a Lecturer
in Business Computing at

Bournemouth University. His

research interests include

crowdsourcing in requirements

engineering and the analysis of

transparency requirements. Dr.

Mahmood Hosseini received a

PhD in Engineering Social

Informatics from Bournemouth

University.

Constantinos Marios Angelo-
poulos is Lecturer in Computing

at Bournemouth University

(UK) since 2016, specializing in

future and emerging paradigms

of computer networks and dis-

tributed systems. Previously, he

spent 3.5 years as a Postdoctoral

Researcher at University of

Geneva (CH) under the presti-

gious Swiss Government

Excellence Scholarship for For-

eign Researchers. Marios is the

Founding Program Leader of

the three IoT Master courses

offered in BU; namely, MSc in Internet of Things, MSc in IoT and

Cyber Securtiy, and MSc in IoT and Data Analytics. He is also

Founder and Head of the Future and Complex Networks (FlexNet)

Research Group. Marios is the Lead Editor of the ITU-T Recom-

mendation (Standard) on ‘‘Requirements and Functional Architecture

of IoT-related Crowdsourced Systems’’, Co-editor of another 2 rec-

ommendations on IoT, Artificial Intelligence and Smart Cities, and

the Liaison Co-Rapporteur to the SCV for Study Group 20.

Wei Koong Chai is a Senior

Lecturer in Bournemouth

University (BU), UK. He heads

the Future and Complex Net-

works Research Group (Flex-

Net) in the Department of

Computing and Informatics in

BU. He is also currently a

Visiting Academic in the

Department of Electronic and

Electrical Engineering, Univer-

sity College London (UCL),

UK. Previously, he was a Senior

Research Associate in UCL,

where he led the research

activities of several research projects, conduct collaborative research

and contribute to the teaching and supervision of students at both

undergraduate and postgraduate levels. He has successfully raised

research funding from both EU and UK funding bodies. He has

published papers in fully refereed international conferences and

journals and contributed chapters to books. His research work has

been constantly receiving citations, recording over 1000 citations to

date (source Google Scholar). He also serves on the Technical Pro-

gram Committee of several IEEE/ACM international conferences and

workshops. Dr. Chai received the BEng (Hons) Degree in Electrical

Engineering from the Universiti Teknologi Malaysia, Johor Bahru,

Malaysia, in 2000, and the MSc (Distinction) and PhD Degrees from

the University of Surrey, Surrey, UK, in 2002 and 2008, respectively.

Stephane Kundig is a research

assistant and PhD candidate at

the TCS-Sensor Lab of the

University of Geneva. Previ-

ously he obtained his Diploma

Ing. Degree in Electrical and

Computer Engineering from the

National Technical University

of Athens (NTUA). His research

interests lie in the field of

modern networks, wireless sen-

sor networks, collaborative

computing and cognitive IoT.

470 Cluster Computing (2019) 22:455–470

123

https://doi.org/10.1109/TNSM.2018.2790081
https://doi.org/10.1109/TNSM.2018.2790081
https://doi.org/10.1145/2934664
https://doi.org/10.1109/P2P.2014.6934303

	Crowdcloud: a crowdsourced system for cloud infrastructure
	Abstract
	Introduction
	Related work
	Background on crowdsourcing
	Background on mobile crowdsensing systems
	Background on Internet of Things
	Background on cloud market models

	The paradigm of crowdsourced systems
	The rise of crowdsourced systems
	Characteristics and high level architecture

	Comparison to other paradigms
	Comparison to cloud-based paradigms
	Comparison to crowdsourcing systems
	Comparison to IoT as a Service

	Crowdcloud: an instance of crowdsourced systems
	Foundation of crowdcloud
	Crowdcloud architecture
	Advantages and challenges of crowdcloud
	Crowdcloud characteristics and benefits
	Challenges in crowdcloud

	Ongoing and future work: a crowdcloud implementation for cluster computing
	Conclusion
	Acknowledgements
	References

