46 research outputs found

    Métodos discriminativos para la optimización de modelos en la Verificación del Hablante

    Get PDF
    La creciente necesidad de sistemas de autenticación seguros ha motivado el interés de algoritmos efectivos de Verificación de Hablante (VH). Dicha necesidad de algoritmos de alto rendimiento, capaces de obtener tasas de error bajas, ha abierto varias ramas de investigación. En este trabajo proponemos investigar, desde un punto de vista discriminativo, un conjunto de metodologías para mejorar el desempeño del estado del arte de los sistemas de VH. En un primer enfoque investigamos la optimización de los hiper-parámetros para explícitamente considerar el compromiso entre los errores de falsa aceptación y falso rechazo. El objetivo de la optimización se puede lograr maximizando el área bajo la curva conocida como ROC (Receiver Operating Characteristic) por sus siglas en inglés. Creemos que esta optimización de los parámetros no debe de estar limitada solo a un punto de operación y una estrategia más robusta es optimizar los parámetros para incrementar el área bajo la curva, AUC (Area Under the Curve por sus siglas en inglés) de modo que todos los puntos sean maximizados. Estudiaremos cómo optimizar los parámetros utilizando la representación matemática del área bajo la curva ROC basada en la estadística de Wilcoxon Mann Whitney (WMW) y el cálculo adecuado empleando el algoritmo de descendente probabilístico generalizado. Además, analizamos el efecto y mejoras en métricas como la curva detection error tradeoff (DET), el error conocido como Equal Error Rate (EER) y el valor mínimo de la función de detección de costo, minimum value of the detection cost function (minDCF) todos ellos por sue siglas en inglés. En un segundo enfoque, investigamos la señal de voz como una combinación de atributos que contienen información del hablante, del canal y el ruido. Los sistemas de verificación convencionales entrenan modelos únicos genéricos para todos los casos, y manejan las variaciones de estos atributos ya sea usando análisis de factores o no considerando esas variaciones de manera explícita. Proponemos una nueva metodología para particionar el espacio de los datos de acuerdo a estas carcterísticas y entrenar modelos por separado para cada partición. Las particiones se pueden obtener de acuerdo a cada atributo. En esta investigación mostraremos como entrenar efectivamente los modelos de manera discriminativa para maximizar la separación entre ellos. Además, el diseño de algoritimos robustos a las condiciones de ruido juegan un papel clave que permite a los sistemas de VH operar en condiciones reales. Proponemos extender nuestras metodologías para mitigar los efectos del ruido en esas condiciones. Para nuestro primer enfoque, en una situación donde el ruido se encuentre presente, el punto de operación puede no ser solo un punto, o puede existir un corrimiento de forma impredecible. Mostraremos como nuestra metodología de maximización del área bajo la curva ROC es más robusta que la usada por clasificadores convencionales incluso cuando el ruido no está explícitamente considerado. Además, podemos encontrar ruido a diferentes relación señal a ruido (SNR) que puede degradar el desempeño del sistema. Así, es factible considerar una descomposición eficiente de las señales de voz que tome en cuenta los diferentes atributos como son SNR, el ruido y el tipo de canal. Consideramos que en lugar de abordar el problema con un modelo unificado, una descomposición en particiones del espacio de características basado en atributos especiales puede proporcionar mejores resultados. Esos atributos pueden representar diferentes canales y condiciones de ruido. Hemos analizado el potencial de estas metodologías que permiten mejorar el desempeño del estado del arte de los sistemas reduciendo el error, y por otra parte controlar los puntos de operación y mitigar los efectos del ruido

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Unsupervised maritime target detection

    Get PDF
    The unsupervised detection of maritime targets in grey scale video is a difficult problem in maritime video surveillance. Most approaches assume that the camera is static and employ pixel-wise background modelling techniques for foreground detection; other methods rely on colour or thermal information to detect targets. These methods fail in real-world situations when the static camera assumption is violated, and colour or thermal data is unavailable. In defence and security applications, prior information and training samples of targets may be unavailable for training a classifier; the learning of a one class classifier for the background may be impossible as well. Thus, an unsupervised online approach that attempts to learn from the scene data is highly desirable. In this thesis, the characteristics of the maritime scene and the ocean texture are exploited for foreground detection. Two fast and effective methods are investigated for target detection. Firstly, online regionbased background texture models are explored for describing the appearance of the ocean. This approach avoids the need for frame registration because the model is built spatially rather than temporally. The texture appearance of the ocean is described using Local Binary Pattern (LBP) descriptors. Two models are proposed: one model is a Gaussian Mixture (GMM) and the other, referred to as a Sparse Texture Model (STM), is a set of histogram texture distributions. The foreground detections are optimized using a Graph Cut (GC) that enforces spatial coherence. Secondly, feature tracking is investigated as a means of detecting stable features in an image frame that typically correspond to maritime targets; unstable features are background regions. This approach is a Track-Before-Detect (TBD) concept and it is implemented using a hierarchical scheme for motion estimation, and matching of Scale- Invariant Feature Transform (SIFT) appearance features. The experimental results show that these approaches are feasible for foreground detection in maritime video when the camera is either static or moving. Receiver Operating Characteristic (ROC) curves were generated for five test sequences and the Area Under the ROC Curve (AUC) was analyzed for the performance of the proposed methods. The texture models, without GC optimization, achieved an AUC of 0.85 or greater on four out of the five test videos. At 50% True Positive Rate (TPR), these four test scenarios had a False Positive Rate (FPR) of less than 2%. With the GC optimization, an AUC of greater than 0.8 was achieved for all the test cases and the FPR was reduced in all cases when compared to the results without the GC. In comparison to the state of the art in background modelling for maritime scenes, our texture model methods achieved the best performance or comparable performance. The two texture models executed at a reasonable processing frame rate. The experimental results for TBD show that one may detect target features using a simple track score based on the track length. At 50% TPR a FPR of less than 4% is achieved for four out of the five test scenarios. These results are very promising for maritime target detection

    Kernel Feature Extraction Methods for Remote Sensing Data Analysis

    Get PDF
    Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, developments and applications of feature extraction methodologies using these techniques have increased exponentially in remote sensing. This improves the data visualization and the knowledge discovery. Several feature extraction methods have been addressed in the literature depending on the data availability, which can be classified in supervised, semisupervised and unsupervised. In particular, feature extraction can use in combination with kernel methods (nonlinear). The process for obtaining a space that keeps greater information content is facilitated by this combination. One of the most important properties of the combination is that can be directly used for general tasks including classification, regression, clustering, ranking, compression, or data visualization. In this Thesis, we address the problems of different nonlinear feature extraction approaches based on kernel methods for remote sensing data analysis. Several improvements to the current feature extraction methods are proposed to transform the data in order to make high dimensional data tasks easier, such as classification or biophysical parameter estimation. This Thesis focus on three main objectives to reach these improvements in the current feature extraction methods: The first objective is to include invariances into supervised kernel feature extraction methods. Throughout these invariances it is possible to generate virtual samples that help to mitigate the problem of the reduced number of samples in supervised methods. The proposed algorithm is a simple method that essentially generates new (synthetic) training samples from available labeled samples. These samples along with original samples should be used in feature extraction methods obtaining more independent features between them that without virtual samples. The introduction of prior knowledge by means of the virtual samples could obtain classification and biophysical parameter estimation methods more robust than without them. The second objective is to use the generative kernels, i.e. probabilistic kernels, that directly learn by means of clustering techniques from original data by finding local-to-global similarities along the manifold. The proposed kernel is useful for general feature extraction purposes. Furthermore, the kernel attempts to improve the current methods because the kernel not only contains labeled data information but also uses the unlabeled information of the manifold. Moreover, the proposed kernel is parameter free in contrast with the parameterized functions such as, the radial basis function (RBF). Using probabilistic kernels is sought to obtain new unsupervised and semisupervised methods in order to reduce the number and cost of labeled data in remote sensing. Third objective is to develop new kernel feature extraction methods for improving the features obtained by the current methods. Optimizing the functional could obtain improvements in new algorithm. For instance, the Optimized Kernel Entropy Component Analysis (OKECA) method. The method is based on the Independent Component Analysis (ICA) framework resulting more efficient than the standard Kernel Entropy Component Analysis (KECA) method in terms of dimensionality reduction. In this Thesis, the methods are focused on remote sensing data analysis. Nevertheless, feature extraction methods are used to analyze data of several research fields whereas data are multidimensional. For these reasons, the results are illustrated into experimental sequence. First, the projections are analyzed by means of Toy examples. The algorithms are tested through standard databases with supervised information to proceed to the last step, the analysis of remote sensing images by the proposed methods

    Effective and efficient visual description based on local binary patterns and gradient distribution for object recognition

    Get PDF
    Cette thèse est consacrée au problème de la reconnaissance visuelle des objets basé sur l'ordinateur, qui est devenue un sujet de recherche très populaire et important ces dernières années grâce à ses nombreuses applications comme l'indexation et la recherche d'image et de vidéo , le contrôle d'accès de sécurité, la surveillance vidéo, etc. Malgré beaucoup d'efforts et de progrès qui ont été fait pendant les dernières années, il reste un problème ouvert et est encore considéré comme l'un des problèmes les plus difficiles dans la communauté de vision par ordinateur, principalement en raison des similarités entre les classes et des variations intra-classe comme occlusion, clutter de fond, les changements de point de vue, pose, l'échelle et l'éclairage. Les approches populaires d'aujourd'hui pour la reconnaissance des objets sont basé sur les descripteurs et les classiffieurs, ce qui généralement extrait des descripteurs visuelles dans les images et les vidéos d'abord, et puis effectue la classification en utilisant des algorithmes d'apprentissage automatique sur la base des caractéristiques extraites. Ainsi, il est important de concevoir une bonne description visuelle, qui devrait être à la fois discriminatoire et efficace à calcul, tout en possédant certaines propriétés de robustesse contre les variations mentionnées précédemment. Dans ce contexte, l objectif de cette thèse est de proposer des contributions novatrices pour la tâche de la reconnaissance visuelle des objets, en particulier de présenter plusieurs nouveaux descripteurs visuelles qui représentent effectivement et efficacement le contenu visuel d image et de vidéo pour la reconnaissance des objets. Les descripteurs proposés ont l'intention de capturer l'information visuelle sous aspects différents. Tout d'abord, nous proposons six caractéristiques LBP couleurs de multi-échelle pour traiter les défauts principaux du LBP original, c'est-à-dire, le déffcit d'information de couleur et la sensibilité aux variations des conditions d'éclairage non-monotoniques. En étendant le LBP original à la forme de multi-échelle dans les différents espaces de couleur, les caractéristiques proposées non seulement ont plus de puissance discriminante par l'obtention de plus d'information locale, mais possèdent également certaines propriétés d'invariance aux différentes variations des conditions d éclairage. En plus, leurs performances sont encore améliorées en appliquant une stratégie de l'image division grossière à fine pour calculer les caractéristiques proposées dans les blocs d'image afin de coder l'information spatiale des structures de texture. Les caractéristiques proposées capturent la distribution mondiale de l information de texture dans les images. Deuxièmement, nous proposons une nouvelle méthode pour réduire la dimensionnalité du LBP appelée la combinaison orthogonale de LBP (OC-LBP). Elle est adoptée pour construire un nouveau descripteur local basé sur la distribution en suivant une manière similaire à SIFT. Notre objectif est de construire un descripteur local plus efficace en remplaçant l'information de gradient coûteux par des patterns de texture locales dans le régime du SIFT. Comme l'extension de notre première contribution, nous étendons également le descripteur OC-LBP aux différents espaces de couleur et proposons six descripteurs OC-LBP couleurs pour améliorer la puissance discriminante et la propriété d'invariance photométrique du descripteur basé sur l'intensité. Les descripteurs proposés capturent la distribution locale de l information de texture dans les images. Troisièmement, nous introduisons DAISY, un nouveau descripteur local rapide basé sur la distribution de gradient, dans le domaine de la reconnaissance visuelle des objets. [...]This thesis is dedicated to the problem of machine-based visual object recognition, which has become a very popular and important research topic in recent years because of its wide range of applications such as image/video indexing and retrieval, security access control, video monitoring, etc. Despite a lot of e orts and progress that have been made during the past years, it remains an open problem and is still considered as one of the most challenging problems in computer vision community, mainly due to inter-class similarities and intra-class variations like occlusion, background clutter, changes in viewpoint, pose, scale and illumination. The popular approaches for object recognition nowadays are feature & classifier based, which typically extract visual features from images/videos at first, and then perform the classification using certain machine learning algorithms based on the extracted features. Thus it is important to design good visual description, which should be both discriminative and computationally efficient, while possessing some properties of robustness against the previously mentioned variations. In this context, the objective of this thesis is to propose some innovative contributions for the task of visual object recognition, in particular to present several new visual features / descriptors which effectively and efficiently represent the visual content of images/videos for object recognition. The proposed features / descriptors intend to capture the visual information from different aspects. Firstly, we propose six multi-scale color local binary pattern (LBP) features to deal with the main shortcomings of the original LBP, namely deficiency of color information and sensitivity to non-monotonic lighting condition changes. By extending the original LBP to multi-scale form in different color spaces, the proposed features not only have more discriminative power by obtaining more local information, but also possess certain invariance properties to different lighting condition changes. In addition, their performances are further improved by applying a coarse-to-fine image division strategy for calculating the proposed features within image blocks in order to encode spatial information of texture structures. The proposed features capture global distribution of texture information in images. Secondly, we propose a new dimensionality reduction method for LBP called the orthogonal combination of local binary patterns (OC-LBP), and adopt it to construct a new distribution-based local descriptor by following a way similar to SIFT.Our goal is to build a more efficient local descriptor by replacing the costly gradient information with local texture patterns in the SIFT scheme. As the extension of our first contribution, we also extend the OC-LBP descriptor to different color spaces and propose six color OC-LBP descriptors to enhance the discriminative power and the photometric invariance property of the intensity-based descriptor. The proposed descriptors capture local distribution of texture information in images. Thirdly, we introduce DAISY, a new fast local descriptor based on gradient distribution, to the domain of visual object recognition.LYON-Ecole Centrale (690812301) / SudocSudocFranceF

    An Electroencephalogram (EEG) Based Biometrics Investigation for Authentication: A Human-Computer Interaction (HCI) Approach

    Get PDF
    Encephalogram (EEG) devices are one of the active research areas in human-computer interaction (HCI). They provide a unique brain-machine interface (BMI) for interacting with a growing number of applications. EEG devices interface with computational systems, including traditional desktop computers and more recently mobile devices. These computational systems can be targeted by malicious users. There is clearly an opportunity to leverage EEG capabilities for increasing the efficiency of access control mechanisms, which are the first line of defense in any computational system. Access control mechanisms rely on a number of authenticators, including “what you know”, “what you have”, and “what you are”. The “what you are” authenticator, formally known as a biometrics authenticator, is increasingly gaining acceptance. It uses an individual’s unique features such as fingerprints and facial images to properly authenticate users. An emerging approach in physiological biometrics is cognitive biometrics, which measures brain’s response to stimuli. These stimuli can be measured by a number of devices, including EEG systems. This work shows an approach to authenticate users interacting with their computational devices through the use of EEG devices. The results demonstrate the feasibility of using a unique hard-to-forge trait as an absolute biometrics authenticator by exploiting the signals generated by different areas of the brain when exposed to visual stimuli. The outcome of this research highlights the importance of the prefrontal cortex and temporal lobes to capture unique responses to images that trigger emotional responses. Additionally, the utilization of logarithmic band power processing combined with LDA as the machine learning algorithm provides higher accuracy when compared against common spatial patterns or windowed means processing in combination with GMM and SVM machine learning algorithms. These results continue to validate the value of logarithmic band power processing and LDA when applied to oscillatory processes

    Voice Modeling Methods for Automatic Speaker Recognition

    Get PDF
    Building a voice model means to capture the characteristics of a speaker´s voice in a data structure. This data structure is then used by a computer for further processing, such as comparison with other voices. Voice modeling is a vital step in the process of automatic speaker recognition that itself is the foundation of several applied technologies: (a) biometric authentication, (b) speech recognition and (c) multimedia indexing. Several challenges arise in the context of automatic speaker recognition. First, there is the problem of data shortage, i.e., the unavailability of sufficiently long utterances for speaker recognition. It stems from the fact that the speech signal conveys different aspects of the sound in a single, one-dimensional time series: linguistic (what is said?), prosodic (how is it said?), individual (who said it?), locational (where is the speaker?) and emotional features of the speech sound itself (to name a few) are contained in the speech signal, as well as acoustic background information. To analyze a specific aspect of the sound regardless of the other aspects, analysis methods have to be applied to a specific time scale (length) of the signal in which this aspect stands out of the rest. For example, linguistic information (i.e., which phone or syllable has been uttered?) is found in very short time spans of only milliseconds of length. On the contrary, speakerspecific information emerges the better the longer the analyzed sound is. Long utterances, however, are not always available for analysis. Second, the speech signal is easily corrupted by background sound sources (noise, such as music or sound effects). Their characteristics tend to dominate a voice model, if present, such that model comparison might then be mainly due to background features instead of speaker characteristics. Current automatic speaker recognition works well under relatively constrained circumstances, such as studio recordings, or when prior knowledge on the number and identity of occurring speakers is available. Under more adverse conditions, such as in feature films or amateur material on the web, the achieved speaker recognition scores drop below a rate that is acceptable for an end user or for further processing. For example, the typical speaker turn duration of only one second and the sound effect background in cinematic movies render most current automatic analysis techniques useless. In this thesis, methods for voice modeling that are robust with respect to short utterances and background noise are presented. The aim is to facilitate movie analysis with respect to occurring speakers. Therefore, algorithmic improvements are suggested that (a) improve the modeling of very short utterances, (b) facilitate voice model building even in the case of severe background noise and (c) allow for efficient voice model comparison to support the indexing of large multimedia archives. The proposed methods improve the state of the art in terms of recognition rate and computational efficiency. Going beyond selective algorithmic improvements, subsequent chapters also investigate the question of what is lacking in principle in current voice modeling methods. By reporting on a study with human probands, it is shown that the exclusion of time coherence information from a voice model induces an artificial upper bound on the recognition accuracy of automatic analysis methods. A proof-of-concept implementation confirms the usefulness of exploiting this kind of information by halving the error rate. This result questions the general speaker modeling paradigm of the last two decades and presents a promising new way. The approach taken to arrive at the previous results is based on a novel methodology of algorithm design and development called “eidetic design". It uses a human-in-the-loop technique that analyses existing algorithms in terms of their abstract intermediate results. The aim is to detect flaws or failures in them intuitively and to suggest solutions. The intermediate results often consist of large matrices of numbers whose meaning is not clear to a human observer. Therefore, the core of the approach is to transform them to a suitable domain of perception (such as, e.g., the auditory domain of speech sounds in case of speech feature vectors) where their content, meaning and flaws are intuitively clear to the human designer. This methodology is formalized, and the corresponding workflow is explicated by several use cases. Finally, the use of the proposed methods in video analysis and retrieval are presented. This shows the applicability of the developed methods and the companying software library sclib by means of improved results using a multimodal analysis approach. The sclib´s source code is available to the public upon request to the author. A summary of the contributions together with an outlook to short- and long-term future work concludes this thesis

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    corecore