3,476 research outputs found

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    Low Voltage Regulator Modules and Single Stage Front-end Converters

    Get PDF
    Evolution in microprocessor technology poses new challenges for supplying power to these devices. To meet demands for faster and more efficient data processing, modem microprocessors are being designed with lower voltage implementations. More devices will be packed on a single processor chip and the processors will operate at higher frequencies, exceeding 1GHz. New high-performance microprocessors may require from 40 to 80 watts of power for the CPU alone. Load current must be supplied with up to 30A/µs slew rate while keeping the output voltage within tight regulation and response time tolerances. Therefore, special power supplies and Voltage Regulator Modules (VRMs) are needed to provide lower voltage with higher current and fast response. In the part one (chapter 2,3,4) of this dissertation, several low-voltage high-current VRM technologies are proposed for future generation microprocessors and ICs. The developed VRMs with these new technologies have advantages over conventional ones in terms of efficiency, transient response and cost. In most cases, the VRMs draw currents from DC bus for which front-end converters are used as a DC source. As the use of AC/DC frond-end converters continues to increase, more distorted mains current is drawn from the line, resulting in lower power factor and high total harmonic distortion. As a branch of active Power factor correction (PFC) techniques, the single-stage technique receives particular attention because of its low cost implementation. Moreover, with continuously demands for even higher power density, switching mode power supply operating at high-frequency is required because at high switching frequency, the size and weight of circuit components can be remarkably reduced. To boost the switching frequency, the soft-switching technique was introduced to alleviate the switching losses. The part two (chapter 5,6) of the dissertation presents several topologies for this front-end application. The design considerations, simulation results and experimental verification are discussed

    Integration of an Active Filter and a Single-Phase AC/DC Converter with Reduced Capacitance Requirement and Component Count

    Get PDF
    Existing methods of incorporating an active filter into an AC/DC converter for eliminating electrolytic capacitors usually require extra power switches. This inevitably leads to an increased system cost and degraded energy efficiency. In this paper, a concept of active-filter integration for single-phase AC/DC converters is reported. The resultant converters can provide simultaneous functions of power factor correction, DC voltage regulation, and active power decoupling for mitigating the low-frequency DC voltage ripple, without an electrolytic capacitor and extra power switch. To complement the operation, two closed-loop voltage-ripple-based reference generation methods are developed for controlling the energy storage components to achieve active power decoupling. Both simulation and experiment have confirmed the eligibility of the proposed concept and control methods in a 210-W rectification system comprising an H-bridge converter with a half-bridge active filter. Interestingly, the end converters (Type I and Type II) can be readily available using a conventional H-bridge converter with minor hardware modification. A stable DC output with merely 1.1% ripple is realized with two 50-μF film capacitors. For the same ripple performance, a 900-μF capacitor is required in conventional converters without an active filter. Moreover, it is found out that the active-filter integration concept might even improve the efficiency performance of the end converters as compared with the original AC/DC converter without integration

    Modular Multilevel Cascaded Flying Capacitor STATCOM for Balanced and Unbalanced Load Compensation

    Get PDF
    Voltage and current unbalance are major problems in distribution networks, particularly with the integration of distributed generation systems. One way of mitigating these issues is by injecting negative sequence current into the distribution network using a Static Synchronous Compensator (STATCOM) which normally also regulates the voltage and power factor. The benefits of modularity and scalability offered by Modular Multilevel Cascaded Converters (MMCC) make them suitable for STATCOM application. A number of different types of MMCC may be used, classified according to the sub-module circuit topology used. Their performance features and operational ranges for unbalanced load compensation are evaluated and quantified in this research. This thesis investigates the use of both single star and single delta configured five-level Flying Capacitor (FC) converter MMCC based STATCOMs for unbalanced load compensation. A detailed study is carried out to compare this type of sub-module with several other types namely: half bridge, 3-L H-bridge and 3-L FC half bridge, and reveals the one best suited to STATCOM operation. With the choice of 5-L FC H-bridge as the sub-module for STATCOM operation, a detailed investigation is also performed to decide which pulse width modulation technique is the best. This was based on the assessment of total harmonic distortion, power loss, sub-module switch utilization and natural balancing of inner flying capacitors. Two new modulation techniques of swapped-carrier PWM (SC-PWM) along with phase disposed and phase shifted PWM (PS-PWM) are analyzed under these four performance metrics. A novel contribution of this research is the development of a new space vector modulation technique using an overlapping hexagon technique. This space vector strategy offers benefits of eliminating control complexity and improving waveform quality, unlike the case of multilevel space vector technique. The simulation and experimental results show that this method provides superior performance and is applicable for other MMCC sub-modules. Another contribution is the analysis and quantification of operating ranges of both single star and delta MMCCs in rating the cluster dc-link voltage (star) and current (delta) for unbalanced load compensation. A novel method of extending the operating capabilities of both configurations uses a third harmonic injection method. An experimental investigation validates the operating range extension compared to the pure sinusoidal zero sequence voltage and current injection. Also, the superiority of the single delta configured MMCC for unbalanced loading compensation is validated

    Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives

    Get PDF

    A Control Scheme for an AC-DC Single-Stage Buck-Boost PFC Converter with Improved Output Ripple Reduction

    Get PDF
    AC-DC power factor correction (PFC) single-stage converters are attractive because of their cost and their simplicity. In these converters, both PFC and power conversion are done at the same time using a single converter that regulates the output. Since they have only a single controller, these converters operate with an intermediate transformer primary-side DC bus voltage that is unregulated and is dependent on the converters’ operating conditions and component values. This means that the DC bus voltage can vary significantly as line and load conditions are changed. Such a variable DC bus voltage makes it difficult to optimally design the converter transformer as well as the DC bus capacitor. One previously proposed single-stage AC-DC converter, the Single-Stage Buck-Boost Direct Energy Transfer (SSBBDET) converter has a clamping mechanism that can clamp the DC bus voltage to a pre-set limit. The clamping mechanism, however, superimposes a low frequency 120 Hz AC component on the output DC voltage so that some means must be taken to reduce this component. These means, however, make the converter transient slow and sluggish. The main objective of this thesis is to minimize the 120 Hz output ripple component and to improve the dynamic response of the SSBBDET converter by using a new control scheme. In the thesis, the operation of the SSBBDET converter is reviewed and the proposed control method is introduced and explained in detail. Key design considerations for the design of the converter controller are discussed and the converter’s ability to operate with fixed DC bus voltage, low output ripple and fast dynamic response is confirmed with experimental results obtained from a prototype converter

    Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability

    Get PDF
    Power electronic converters are typically either step-down converters that take an input voltage and produce an output voltage of low amplitude or step-up converters that take an input voltage and produce an output voltage of higher amplitude. There are, however, applications where a converter that can step-up voltage or step-down voltage can be very useful, such as in applications where a converter needs to operate under a wide range of input and output voltage conditions such as a grid-connected solar inverter. Such converters, however, are not as common as converters that can only step down or step up voltage because most applications require converters that need to only step down voltage or only step up voltage and such converters have better performance within a limited voltage range than do converters that are designed for very wide voltage ranges. Nonetheless, there are applications where converters with step-down and step-up capability can be used advantageously. The main objectives of this thesis are to propose new power electronic converters that can step up voltage and step down voltage and to investigate their characteristics. This will be done for two specific converter types: AC/DC single-stage converters and DC-AC inverters. In this thesis, two new AC/DC single-stage converters and a new three-phase converter are proposed and their operation and steady-state characteristics are examined in detail. The feasibility of each new converter is confirmed with results obtained from an experimental prototype and the feasibility of a control method for the inverter is confirmed with simulation work using commercially available software such as MATLAB and PSIM

    Novel Control and Harmonics Impact of PV Solar Farms

    Get PDF
    This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This technology, termed PV-STATCOM, is designed and developed for power factor correction in the networks of two utilities: Bluewater Power, Sarnia, and London Hydro. This thesis further describes for the first time, the harmonic impact studies on a utility distribution network in presence of the largest PV solar farm in Canada. This novel utilization of a PV-STATCOM for power factor correction of induction motor loads is demonstrated with (i) electromagnetic transient simulation in EMTDC/PSCAD software, (ii) real-time simulation studies in a Real Time Digital Simulator (RTDS), and (iii) Hardware-in-the-Loop (HIL) simulation studies of the PV-STATCOM controller implemented in a Digital Signal Processor based dSPACE system. Two different inverter control methods are employed - Hysteresis control and Pulse Width Modulation (PWM) control. The effectiveness of the PV-STATCOM controller is verified with different PV power outputs and at different loading conditions of the induction motor. The PV-STATCOM is able to improve the motor power factor to unity both during night and in the day even while generating real power. The harmonic impact studies of the 20 MW large scale PV solar farm and a 10 kW PV solar system are performed with the EMTDC/PSCAD model of two distribution feeders connecting to the solar farm in Bluewater Power, Sarnia. The models are validated with load flow results obtained from the CYME load flow software and Supervisory Control and Data Acquisition (SCADA) data available from the utility. The network resonance behaviors of the two feeders are analyzed using frequency scanning method in EMTDC/PSCAD. The measured harmonics data provided by Hydro One for three different power levels from the solar farm are utilized for harmonic impact studies. It is shown that even with worst case harmonics injection from both the large scale PV solar farm and a small PV solar system, the voltage harmonic distortion is within the limits specified by IEEE Standard 519
    corecore