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ABSTRACT 

This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both 

during night and day, as a dynamic reactive power compensator STATCOM. This 

technology, termed PV-STATCOM, is designed and developed for power factor correction in 

the networks of two utilities: Bluewater Power, Sarnia, and London Hydro. This thesis 

further describes for the first time, the harmonic impact studies on a utility distribution 

network in presence of the largest PV solar farm in Canada. 

This novel utilization of a PV-STATCOM for power factor correction of induction motor  

loads is demonstrated with (i) electromagnetic transient simulation in PSCAD/EMTDC 

software, (ii) real-time simulation studies in a Real Time Digital Simulator (RTDS), and (iii) 

Hardware-in-the-Loop (HIL) simulation studies of the PV-STATCOM controller 

implemented in a Digital Signal Processor based dSPACE system. Two different inverter 

control methods are employed - Hysteresis control and Pulse Width Modulation (PWM) 

control. The effectiveness of the PV-STATCOM controller is verified with different PV 

power outputs and at different loading conditions of the induction motor. The PV-

STATCOM is able to improve the motor power factor to unity both during night and in the 

day even while generating real power.  

The harmonic impact studies of the 20 MW large scale PV solar farm and a 10 kW PV solar 

system are performed with the PSCAD/EMTDC model of two distribution feeders 

connecting to the solar farm in Bluewater Power, Sarnia. The models are validated with load 

flow results obtained from the CYME load flow software and Supervisory Control and Data 

Acquisition (SCADA) data available from the utility. The network resonance behaviors of 

the two feeders are analyzed using frequency scanning method in PSCAD/EMTDC. The 

measured harmonics data provided by Hydro One for three different power levels from the 

solar farm are utilized for harmonic impact studies. It is shown that even with worst case 

harmonics injection from both the large scale PV solar farm and a small PV solar system, the 

voltage harmonic distortion is within the limits specified by IEEE Standard 519. 
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Chapter 1  

1 INTRODUCTION 

1.1 GENERAL 

Photovoltaic energy has attracted significant attention around the world due to its technical, 

economical, and environmental benefits, with annual growth rate of 25-35% over the last 10 

years and a substantial growth of 54% alone in the year 2011 [1]-[2]. With 67.4 GW of 

Photovoltaic (PV) installations by the end of 2011, photovoltaic solar energy is going 

mainstream [1]. Although PV is expensive, according to the European Photovoltaic Industry 

Association, PV solar module prices have dropped significantly by 40% over the last two 

years, and a further drop of 50% is expected in the next three years, according to the market 

survey [1]-[5]. The advancements in power electronics have placed the PV system as a 

competitive alternative to other renewable energy sources. Different PV incentive programs 

have been introduced in various countries to encourage the residential and commercial use of 

PV systems. As of July 2012, the largest grid connected solar farm is the Agua Caliente Solar 

Project in Arizona, USA with a nominal power output of 247 MW [4], [5], [8]. Similarly, 

other mega solar projects are the Charanka Solar Park in India, with a nominal power output 

of 214 MW, and the Golmud Solar Park in China, with a nominal power output of 200 MW 

[6], [8]. The Sarnia Photovoltaic Solar Farm in Ontario, Canada has a nominal capacity of 80 

MW, with installed capacity of 97 MW. Sault Ste Marie Solar Park in Ontario, Canada is the 

second largest photovoltaic solar farm, with an installed capacity of 68 MW. Canada is 

expected to achieve a solar PV installation from 9000 MW to 15000 MW by 2025 [7], [8]. 

1.2 MODELING OF GRID CONNECTED PV SOLAR 
SYSTEM 
A grid connected PV solar system consists of a PV solar array, a Voltage Source Inverter 

(VSI), a filter which is typically a part of the VSI, and a coupling transformer to interconnect 

to high voltage system.  Figure 1.1 depicts a grid connected PV solar system. 
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Figure 1.1 Grid connected Photovoltaic Solar System 

PV arrays consist of series/parallel connections of a number of PV modules, where a module 

comprises a series connection of a number of PV cells. The PV Solar arrays are connected in 

parallel to the dc-link capacitor, C, and the DC side terminals of the VSI. The main function 

of the dc-link capacitor is to maintain a constant DC bus voltage. The VSI is the core of the 

grid connected PV system that transforms DC power from the PV arrays into AC power via a 

set of solid-state switches such as IGBTs [9]. Each leg of the VSI has two semiconductor 

switches that produce one phase of the AC-side voltage. The switches in each leg are turned 

ON/OFF in a complementary manner to convert DC power from the PV array to AC power 

to the grid. The switching action of these semiconductor valves is governed by the control 

system implemented in a microcontroller on the VSI inverter [9]. The LC filter keeps 

harmonic currents at low levels and ensures a low voltage distortion at the PCC. Typically, 

an interconnected transformer is used in a grid connected PV system in order to step up VSI 

terminal AC voltage to that of the grid PCC voltage. The type of transformer configuration 

depends upon the interconnection standards utilized by the utilities [9]-[11].  A DC 

disconnect switch is required ahead of the inverter to isolate the PV array from the network. 

Similarly, AC disconnect switches are used to disconnect the entire PV solar system from the 

grid [11].  

1.2.1 Modeling of PV panel  

In order to simulate the behavior of a solar panel, different models are developed in various 

softwares [12]-[15].  Among the different models, the single-diode circuit is the most 

commonly used model in power system simulation studies since it offers a reasonably good 

trade-off between simplicity and accuracy, and can be efficiently included in many power 

system simulation platforms.  Figure  1.2 shows the single-diode equivalent model of a PV 
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cell. The circuit is composed of a diode in parallel with the current source, the series 

resistance and a parallel resistance. Ig, Rs, and Rp represent the current source and series 

resistances of the PV cell, and the leakage resistance of the PV cell [16]. 

Rs

Ig 

 Id

 Ii

Ip

Vi VRp

 I

 

Figure 1.2 Single-diode equivalent circuit of a PV module 

The basic equation describing the nonlinear current-voltage relationship of the PV cell is 

𝐈 = 𝐈g – 𝐈o (𝐞
𝜷(𝐕+𝐑𝐬 𝐈)

𝜶 - 1) – ( 𝐕+𝐑𝐬 𝐈
𝐑𝐩

 )   (1.1) 

Where, I and V are the terminal current and voltage of the PV cell.  Io, β, and α, represent the 

diode reverse saturation current, inverse thermal voltage, and diode ideality factor 

respectively [16]-[17].  

1.2.2 Modeling of PV Inverter  

Photovoltaic inverters use self-commutated inverters due to advances in IGBTs and 

MOSFETs. Self-commutated inverters can be of two types: voltage source inverters (VSI), 

and current source inverters (CSI). A VSI uses a capacitor on the DC side to maintain a 

constant voltage at the DC link. A terminal voltage of the constant amplitude and variable 

width is obtained at the AC side. Similarly, a CSI uses an inductor on the DC side to 

maintain a constant current [18]-[19].  A current waveform of the constant amplitude and 

variable width is obtained at the AC side. These two different topologies have their own 

advantages, yet, the present practice of a PV inverter is to use the VSI topology due to its 

better efficiency, better dynamic response, and due to low output current harmonics as 

compared to CSI [19]-[22].  
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Two-level and three-level three-phase VSI are the most commonly used topologies in power 

systems [23]. A two level VSI system is a preferred configuration for medium and low power 

grid connected PV applications because of cost effectiveness and the option for utilizing high 

switching frequencies according to different PV inverter manufacturers [24]-[25]. 

Theoretically, the DC input bus voltage (Vdc) of a two-level VSI inverter needs to follow the 

relationship Vdc ≥ 1.633 VL−L [23], while some of the manufactures specify  Vdc ≥ 1.414 VL−L 

[20]. The operable range of the DC voltage differs according to the rated power of the 

inverter, and rated voltage of the AC utility grid system, etc. According to a survey 

conducted by International Energy Agency (IEA) on PV systems  and different PV inverters, 

the operational DC voltage range for a capacity of 1kW to 10 kW PV system includes 40-

95V, 72-145V, 75-225V, 100-350V, 125-375V, 139-400V, 150-500V, 250-600V, and 350-

750V and for  a capacity of 10 kW and over DC voltage can be  between 200-500V, and 450-

1000V [18].   

For power system studies, a VSI system can be modeled by ignoring the switching transients 

phenomena, such as tailing current or reverse recovery current. This type of model is called a 

“switched” model. For faster simulations of a complex network, an average model is 

preferred for a VSI system in which no valves or switches are modeled; only the terminal 

current and voltage variables on both DC and AC side are used for this analysis [19]. For this 

thesis, the switched model is considered. 

A VSI can be operated in either voltage control mode or current control mode. In voltage 

control mode, the output AC terminal voltage is controlled to become equal to a set reference 

value [19]. In current control mode, inverter output currents are measured and compared to 

the reference signals and control is performed so that actual output current agrees with the 

reference value. The voltage control scheme is suitable for standalone PV applications, 

whereas, the current control scheme is generally preferred in grid connected photovoltaic 

inverter applications due to its excellent dynamic characteristics, less susceptibility to grid 

voltage distortion, and inherent over-current limitation capabilities. Over-current limitation 

capability is particularly suitable during the fault scenarios, where a current controlled VSI 

type PV system can limit the fault current close to its rated value. Nearly 81% of grid 

connected PV inverters use current control schemes as per the survey made by IEA [18]-[19]. 

Hence, in this thesis, the current control scheme is employed.  
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1.2.3 Control Schemes for PV Inverter  

The control scheme of the photovoltaic inverter is typically a combination of two control 

loops: the outer control loop and the inner control loop. The outer control loop can be of 

different types depending upon the operational objectives from the PV system [18], [19], 

[25]-[27]. These can be real or reactive power control loops, AC voltage control loop, etc. 

The outer control loop generates the reference currents to be tracked by the inner control 

loop. The inner control loop is essentially a current control loop which generates signals for 

the switching pulse generation module to generate firing pulses for the inverter switches.  

1.2.4 Switching Pulse Generation Methods for PV Inverter  

There are different switching methodologies adopted for firing pulse generation in 

photovoltaic inverters. The current control techniques which have performed effectively in 

different VSI inverter applications are the hysteresis current control and Pulse Width 

Modulated control techniques [28]-[29]. Hence, both Pulse Width Modulated (PWM) control 

and Hysteresis current control strategies are utilized in this thesis, and is discussed as 

follows.  

1.2.4.1 Hysteresis Current Control Technique 

The hysteresis current control method regulates the output current of a PV inverter by forcing 

it to follow a reference current signal. This is achieved by using a hysteresis band around the 

reference signal. The inverter output currents are sensed and compared with the respective 

reference currents using hysteresis comparators having a hysteresis band. Hysteresis 

comparators are used to impose a dead band around the reference current. As long as an error 

is within the hysteresis band, no switching action takes place [28]. Switching action takes 

place when an error hits the hysteresis band. Normally compensated current or voltage is 

compared to the reference current to produce an error signal to the hysteresis band 

comparator to determine gating signals for inverters. To obtain a compensating current with 

minimum switching ripples as small as possible, the hysteresis band has to be made small. 

However, doing so results in a higher switching frequency and hence increases system losses 

[28]-[31].  
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There are two types of hysteresis current controllers: fixed-band and sinusoidal band current 

controllers, shown in Figure  1.3.  

 (a) Sinusoidal Band  (a) Fixed Band  

Figure 1.3 Hysteresis current controller (a) Sinusoidal band (b) Fixed band [28] 

In fixed-band hysteresis control, the hysteresis band is fixed over the fundamental period, and 

in the case of a sinusoidal-band scheme, the hysteresis band varies sinusoidally over a period. 

The advantage of the hysteresis control method lies in the simplicity of its implementation and 

its excellent dynamic response. The main disadvantage of this scheme is that it generates low 

order harmonics and does not operate at a fixed switching frequency [29]-[30]. 

1.2.4.2 PWM Control Technique 

PWM modulation is a voltage modulation technique. The most common methods for PWM 

modulation are carrier based PWM, space vector modulation (SVM), and random PWM. The 

fundamental differences between these methods are described in [23], [28], [31]. Among the 

above-mentioned PWM methods, the sinusoidal PWM method is the basic and most common 

technique to modulate the switching signals [23], [28].  

Sinusoidal PWM voltage modulation of the power converter is done by comparing the 

modulating signal (sinusoidal signals) with the carrier signal. The sinusoidal signals 

representing the phase voltages are compared to a carrier signal of fixed frequency in order to 

generate switching signals for the power converter switches, so that current errors are reduced 

and PV inverter output current follows the reference current. The principle of the generation 
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of switch signals is shown in Figure  1.4, where triangular carrier signals are compared to 

sinusoidal signals. If the sinusoidal signal is larger than the carrier wave, the inverter switch is 

turned on, and if it is less, the switch is turned off [31]. 

 

Figure 1.4  Generation of switching signal in PWM control method [23] 

The main advantage of this control technique is the absence of low order harmonics at the 

output. As it operates at fixed switching frequency, voltage harmonics are generated around 

the switching frequency and multiples of switching frequency, which is much higher than the 

fundamental frequency. The main disadvantage of this scheme is the switching loss due to 

operation at higher switching frequency [23], [31].  

1.3 STATCOM 

A Static Synchronous Compensator (STATCOM) – a class of Voltage Source Converter 

based FACTS device is a controlled reactive power source consisting of a VSI that is 

connected to the network via a shunt transformer [32]-[33]. It is a shunt connected device 

used for voltage control, power factor correction, load balancing and harmonics compensation 

by providing reactive power using its underlying inverter technologies. The exchange of 

reactive power between the converter and the AC system can be controlled by varying the 

amplitude of the three-phase output voltage, Es ,of the converter, as shown in Figure  1.5. If the 

amplitude of the output voltage is increased above that of the utility bus voltage, Et, then the 

current flows from the converter to the AC system and the converter generates capacitive-

reactive power for the AC system. Similarly, if the amplitude of the output voltage is 

decreased below the utility bus voltage, then the current flows from the AC system to the 

converter and the converter absorbs inductive-reactive power from the AC system [32]-[33]. 
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Figure 1.5 Basic Structure of a STATCOM [32] 

If the output voltage equals the AC system voltage, the reactive-power exchange becomes 

zero, in which case the STATCOM is said to be in a floating state. STATCOM can supply 

real power to the AC system from its DC energy storage by adjusting the phase shift between 

the converter-output voltage and the AC system voltage. In this case, converter output 

voltage is made to lead AC system voltage. On the other hand, it can absorb real power from 

the AC system if its voltage lags behind the AC system voltage [32]. 

As shown in Figure  1.6, a STATCOM can supply both the capacitive and inductive reactive 

current over the rated maximum capacitive or inductive range irrespective of the system 

voltage. A STATCOM can provide full capacitive reactive power at a voltage of 0.15 pu. 

This characteristic of a STATCOM is particularly useful in situations where the STATCOM 

is required to support the grid voltage during and after the fault. 
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Figure 1.6 V-I characteristics of a STATCOM [32] 

A STATCOM is used for providing voltage control, enabling grid integration of renewable 

energy [34]-[35], dynamic reactive power support, mitigating voltage flicker [36]-[38], power 

oscillation damping, mitigating sub-synchronous resonance [39]-[40], load balancing, and 

power factor correction [41]-[43]. 

1.4 NOVEL CONTROL OF PV SYSTEM AS PV-STATCOM 
A STATCOM, as described in previous section, is based on a Voltage Source Converter 

(VSC), whereas a PV solar system is also built around a Voltage Source Inverter (VSI).  A 

STATCOM is a controlled reactive power source that exchanges reactive power with a power 

system network, whereas a PV solar system is only an active power source. A new technology 

has been proposed for utilizing a PV solar system inverter as a STATCOM, the concept of 

which is described below [44]. 

Figure  1.7 depicts the variation in power output from a 10 kW PV system on a typical sunny 

day during the summer time. Conventionally, these PV inverters are designed to send active 

power based on the available DC power. However, over 80% of the time, PV inverters run 

below their rated output current, depicted in Figure  1.7. It is seen that the PV system starts 

producing real power Ppv around 6:30 AM, reaching its peak production around noon, and 

finally ceasing to generate by 8:00 PM. Thus, the entire 10 kVA inverter capacity is unused 
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during late evening and night hours, from 8:00 PM to 6:30 AM. In addition, the inverter 

capacity is only partially used during early morning and late evening hours. 

 

Figure 1.7 Power output of a 10 kW PV solar system on a sunny day during summer season 

During the night, a PV system inverter can utilize inverter capacity SPV to provide 10 kvar of 

support to the grid. Similarly, it can be seen that during the day, except around noon, a 

substantial amount of QPV from the PV solar system inverter is still available, QPV =

��SPV2 −  PPV2�, which can be utilized for reactive power support to the grid. PPV represents 

the real power from a PV system. 

Thus, the unused capacity of the PV inverter can be put to use to generate reactive power by 

operating as a STATCOM to provide necessary reactive power support to the grid, depending 

on the availability of reactive power after real power generation. This allows full utilization of 

the expensive asset of the PV solar farm during an entire 24-hour period [44]-[49]. There is, 

therefore, an incentive to explore the utilization of a PV solar farm inverter as a STATCOM, 

for different objectives such as voltage control, and power factor correction, etc.  
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1.5 SIMULATION STUDIES 
  Modern power systems are currently undergoing a transformative change with market 

deregulation and with the addition of power electronics based renewable energy systems. 

These developments demand a more efficient use of power electronic technologies and a 

better control of power flow. Hence, a comprehensive analysis of these technologies is 

essential to understand their operating characteristics and their impact on the power systems. 

The design and development of these high power electronic systems needs considerable 

investment and time. The control system is an essential part of a power electronics system that 

needs to be evaluated thoroughly prior to installation in the network. To efficiently implement 

high power electronic control devices in power systems, a formal procedure is required to help 

transfer the design from the simulation model to the final hardware implementation. Usually 

this procedure includes: Electromagnetic Transients Software simulation, Real-time 

simulation, Hardware-in-the-Loop (HIL) simulation, and finally, the commissioning of these 

devices [50]-[53]. These different simulation techniques are described below. 

1.5.1 Electromagnetic Transients Software Simulation Studies 

Electromagnetic transient software simulation studies are the initial phase of designing a 

prototype hardware model. This is an efficient way for the designer to learn how a power 

electronic system and its controller work during the fault, or during any abnormal conditions, 

along with steady-state operation in a simulated power system environment. There are 

different commercially available software simulation tools used for the simulation of power 

electronic converters, such as MATLAB/SIMULINK [54], PSPICE [55] and 

PSCAD/EMTDC [56], etc. PSPICE is generally employed in the simulation of power 

electronics at low power levels, and MATLAB/SIMULNIK and PSCAD/EMTDC are used 

for low power and high power electronic applications [53]-[55]. 

1.5.2 Real-Time Digital Simulation Studies 

Power system simulation softwares provide a wide range of power system block sets/models 

for different types of studies, but the main disadvantages of these power system tools are that 

they operate in non-real time. It means that the processing time required to compute the 

response of a network modeled in these software tools take more time to simulate than the 
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time taken by the phenomena in real time [57]-[58]. For example, a five-cycle fault may take 

several seconds or minutes depending upon the size of the system. Recent advances in digital 

signal processing, computing hardware, and sophisticated power system modeling techniques 

have significantly increased the application of real-time digital simulation in the power system 

industry [58]-[59].  

The popular real-time digital simulation platforms available for the simulation of power 

system are RTDS and OPAL-RT [60]-[61]. The Real Time Digital Simulator (RTDS) from 

RTDS Technologies is a combination of specialized computer hardware and software 

designed specifically for the solution of power system electromagnetic transients. The power 

electronic converters with higher PWM carrier frequency in the range of 5-10 kHz require 

smaller time steps of less than 10 μs in order to validate the performance of the system. 

RTDS, with its small time step simulation feature, has the capability to simulate a FACTS 

based power electronics controller in less than 2 μs [60]. Besides this, RTDS provides 

facilities for Hardware-in-the-Loop simulations. RTDS is widely used by different power 

industry manufacturers and also in research centers for the testing and validation of different 

controllers used in power systems [62]-[65]. 

1.5.3 Hardware-in-the Loop Simulation Studies 

A Hardware-in-the-Loop (HIL) simulation is an efficient method of comprehensive testing 

and verification of the performance of an actual hardware system. An HIL simulation is 

accomplished by isolating the control system from the real-time simulation environment using 

a real-time digital simulator (RTDS, eMEGASim, etc.), and replacing the simulated 

input/output signal for the control system with actual input/output signal. The RTDS 

simulation includes mathematical models, sensors, actuators, and various analog/digital 

channels to interact with the real hardware. It presents an actual environment to the control 

system running with real hardware, and exchanges signals in a realistic manner. The control 

system running on real hardware cannot differentiate between the real world and the simulated 

real-time environment in the HIL simulator [60]-[61].  Thus, the HIL simulator provides an 

array of testing features on the controller without any risk to the power system network or the 

test hardware. The HIL simulation is adopted in various industries and research centers for 
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testing control systems and protective relays [66]-[73]. The basic concepts of HIL simulation 

are demonstrated in Figure  1.8.  
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Figure 1.8 Basic concept of HIL Simulation 

A motivation is therefore provided to design, develop, and test a PV-STATCOM controller 

through an electromagnetic transient simulation using PSCAD/EMTDC; and to subsequently 

validate its performance through real-time digital simulation and Hardware-In-the Loop 

simulation.  

1.6 HARMONIC AND NETWORK RESONANCE IN THE 
PRESENCE OF PHOTOVOLTAIC SOLAR FARM 

Power system harmonics are defined as currents or voltages with frequencies that are integral 

multiples of fundamental power frequency. Harmonics are classified as characteristics and 

non-characteristics [74].  Power electronic converters are the main source of characteristic 

harmonics (5th, 7th, 11th, and 13th) in the system. Even harmonics and non-characteristics 

harmonics (3rd, 9th, and 15th) are primarily caused by unbalanced supply voltage magnitude or 

phase asymmetry, even though some power electronic converters used in arc furnaces and 

railway traction systems which inject both even and non-characteristics harmonics [75]. 

Harmonics in a distribution network are due to the presence of different non-linear loads, 

demonstrated in [76]-[81]. A photovoltaic system is a prominent source of current harmonics. 

Some of the studies on commercial solar farms reveal that although the total current harmonic 

distortion from the PV solar farms is relatively high, the voltage harmonic distortion can be 

below the specified in standards such as IEEE 519  [82]-[84]. However, there is a technical 

concern of the amplification of harmonics from a PV solar farm due to resonances in the 
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network caused by bus capacitors in the network and other capacitive elements such as cables 

[84]-[88].  

Network resonance can be classified into two types: series resonance, and parallel resonance. 

In the case of series resonance the impedance becomes low at resonant frequency, which 

causes the flow of large current in the network. At times this can also cause a high distortion 

in the voltage at the distant buses. However, parallel resonance is associated with high 

impedance at resonant frequencies that causes large distortion in the voltage and produces a 

large harmonics current [85]-[86]. A PV system is a source of harmonics current. If for any 

network condition(s), the network resonance frequency becomes aligned with the harmonics 

injected by the PV system, excessive voltage and current harmonics distortions may occur, 

and can cause damage to the customer and utility equipments. Network resonance frequency 

varies with the short circuit ratio (SCR) of the system. For a network, if the SCR increases, 

the resonance frequency shifts towards higher order frequencies and as SCR decreases, 

resonant frequency shifts toward lower order frequencies [88].  

IEEE Standard 519-1992 specifies harmonic indices in order to quantify the limits for voltage 

and current harmonics in a network. These harmonic indices are Total Harmonic Distortion 

(THD), Total Demand Distortion (TDD) [84].  

Total Harmonic Distortion of a voltage waveform (VTHD) is the square root of the ratio of sum 

of the squares of harmonic content of voltage waveform to the root mean square value of the 

fundamental voltage. Similarly, Total Harmonic Distortion of a current waveform  ( ITHD ) is 

the square root of the ratio of sum of the squares of harmonic content of current waveform to 

the root mean square value of the fundamental current [84]. 

VTHD = �∑ Vi2n
i=2
V1

                                           (1.1) 

    ITHD = �∑ Ii2n
i=2
I1

                                            (1.2) 

where, Vi and Ii represent the individual voltage and current harmonic component. 



15 

 

 

 

Total Demand Distortion of a voltage waveform is same as VTHD; however, Total Demand 

Distortion of a current waveform is different from ITHD. Total Demand Distortion of a current 

waveform (ITDD) is defined as the square root of the ratio of sum of the squares harmonic 

content of current waveform to the root mean square value of the maximum rated load 

current[84]. 

             ITDD=�∑ Ii2n
i=2
Irated

                                            (1.3) 

where, Irated represent the maximum rated load current. 

This standard identifies the network resonance condition as a key factor that impacts the 

harmonic level in a utility system. Table 10.2 in IEEE Standard 519 specifies permissible 

VTHD of 5% for any general system and 3% for a special system such as a hospital or airport. 

A harmonic current drawn through an impedance causes voltage distortion [84]. Hence, the 

level of VTHD on a network can be attributed to the impedance of the network at various 

harmonic frequencies. A thorough investigation is therefore needed to evaluate the impact of 

harmonics of both small scale and large scale PV solar farms, especially when network 

resonances are present. 

1.7 OBJECTIVES AND SCOPE OF THE THESIS 
The objectives and scope of the thesis are as follows: 

1. To develop a novel controller of a PV solar farm inverter to perform as STATCOM for 

power factor correction along with generation of real power. Two utilities, Bluewater 

Power Distribution Corporation and London Hydro Inc., who are industry partners in the 

OCE project supporting this research, have offered to showcase this novel technology in 

their utility networks.  

2. To perform a simulation case study using PSCAD/EMTDC with real-time measured data 

of the motor load and electrical system of the Bluewater Power headquarters building for 

application of a PV-STATCOM to correct power factor at the terminals of an induction 

motor in the office building. 
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3. To validate the performance of the developed PV-STATCOM controller on a Real-Time 

Digital Simulator (RTDS).  

4. To develop the PV-STATCOM controller in a Digital Signal Processor (DSP) based 

dSPACE system, and test its performance in a Hardware-In-the Loop simulation 

environment. 

5. To investigate the impact of harmonics emanation from both the largest 80MW solar 

farm in Canada, as well as a 10 kW PV solar system on the Bluewater Power utility 

system, and finally, to study the possible network resonance issues along with voltage 

harmonic distortion. 

1.8 OUTLINE OF THESIS 

A chapter-wise summary of this thesis is given below: 

Chapter 2 demonstrates a simulation case study for a PV inverter as a STATCOM, termed as 

PV-STATCOM, for power factor correction of a motor load in the utility premises of 

Bluewater Power. Active power, reactive power, and power factor are measured at the 

terminal of motor load. A PSCAD/EMTDC model is developed with network data, motor 

load with field data, and with a PV system as a DC source for studying this novel application 

of a PV-STATCOM for power factor correction. Finally, the performance of a PV-

STATCOM for power factor correction is demonstrated under various operating conditions 

during night and day.  

Chapter 3 presents a real-time digital simulation of a PV-STATCOM for power factor 

correction of a motor load in RTDS. A system model is developed in RTDS comprised of the 

electrical network of the London Hydro headquarters building, motor load, and PV system. 

The controller is tested at different PV power outputs with different loading conditions 

during night, as well as during the day.   

Chapter 4 deals with the Hardware-in-the Loop simulation of a PV-STATCOM controller. A 

PV-STATCOM control system is taken out from the RTDS simulation environment and 

implemented in a real hardware Digital Signal Processor based controller board.  A network 

model, PV system with inverter switches, and motor load are modeled using the RTDS 



17 

 

 

 

simulation environment. Input/output signals for the control system running on hardware 

controller board are accessed through different input/output cards present in the RTDS 

hardware. A PV-STATCOM control system is tested and compared to the similar operating 

scenarios as that of RTDS simulation. 

Chapter 5 presents a case study of harmonics impact analysis on the Bluewater Power 

distribution network that connects the largest solar farm in North America. This study is 

performed based on harmonics data from a PV solar farm and detailed network data available 

from Bluewater Power Corporation. The network is modeled using PSCAD/EMTDC and 

validated with load flow studies using CYME software and SCADA measurements. The 

validated network model is used for the network resonance study and harmonic analysis in 

the presence of a large solar 20 MW solar farm as well as a small 10 kW PV solar system for 

different loading conditions and short circuit levels.  

Chapter 6 presents the conclusions and the main contributions of this thesis. Future research 

work on a PV-STATCOM is proposed. 
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Chapter 2  

2 PSCAD/EMTDC SIMULATION OF PV-STATCOM FOR 
POWER FACTOR CORRECTION 

 

2.1 INTRODUCTION 
This chapter presents a new control of a Photovoltaic (PV) solar system inverter as 

STATCOM, termed PV-STATCOM, for power factor correction. A PV solar system 

typically generates real power during the day but the entire asset remains idle at night. Thus, 

this expensive system is only partially utilized. This novel concept of PV-STATCOM utilizes 

the entire rated inverter capacity during the night, and the remaining capacity of inverter after 

real power generation during the day to provide reactive power support for power factor 

correction. This new technology allows full utilization of the asset of the PV solar system 

during the entire 24-hr period. This concept of utilizing a PV system as STATCOM is being 

implemented at Bluewater Power Distribution Corporation, Sarnia, where a 10 kW small-

scale photovoltaic solar system is installed on their office premises. This 10 kW PV inverter 

is planned to be operated as PV-STATCOM to correct the power factor of a heat pump used 

in the building for heating and cooling purposes. In this chapter, a model for the 10 kW PV-

STATCOM and the Bluewater Power Distribution Corporation’s main building is developed 

using the commercial grade electromagnetic transient simulation software PSCAD/EMTDC. 

The performance of a PV-STATCOM controller is demonstrated in both steady state and 

transient situation for power factor correction at the heat pump terminal. 

2.2  SYSTEM DESCRIPTION 
Bluewater Power Distribution Corporation is a utility company providing electrical power to 

over 35,000 customers in Southwestern Ontario, Canada. Figure 2.1 depicts the single line 

diagram of the Bluewater Power Distribution network office building. 
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Figure 2.1 Electrical system diagram of Bluewater Power office building 

The Bluewater Power office building is fed from a 14F1 feeder that is connected to the 

Hydro One network from the St. Andrew substation. The operating voltage of the 14F1 

feeder is 4160V. The power supply to the main office building is provided through a step-
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down transformer of rating 1 MVA, 4160/600V. The average load of the building is 

approximately 140 kW. The loads of the building are broadly categorized into two types: 

heating and lighting. Lighting loads are constant throughout the year, while the heating load 

varies over different seasons. As all of the loads inside the building operate at 208/120 V, 

separate smaller transformers are used to supply power to different types of loads in the 

building. There are three heat pumps inside the building for heating and cooling purposes. 

The largest one is a 5 kW heat pump that is fed from a 15 kVA transformer through a 60A 

breaker. The main components of a heat pump are the blower and the compressor, both of 

which are normally composed of squirrel cage induction motors. A 10 kW PV solar system is 

currently being installed in the main office building of Bluewater Power Distribution 

Corporation. In order to showcase the features of the new control, Bluewater Power has 

decided to connect the 10 kW PV solar system at Bus 1, as shown in Figure 2.1, to operate as 

PV-STATCOM to improve the power factor to unity. 

2.3 MODELING OF STUDY SYSTEM  

This section presents the models of the different components in the study system, shown in 

Figure 2.2, using PSCAD/EMTDC software. The Bluewater Power network is modeled as 

Thevenin’s equivalent of the entire Bluewater Power network looking at the left of Bus 1, as 

demonstrated in Figure 2.1.  Ii,a, Ii,b, Ii,c, represent the three-phase inverter output currents of a 

10 kW inverter, whereas IL,a, IL,b, IL,c represent the 5 kW inductor motor terminal currents. 

Vs,a, Vs,b and Vs,c represent the three-phase source voltages at Bus 1 (Point of Common 

Coupling). VDC represents the inverter DC link voltage that is provided by the 10 kW PV 

solar system. Lf and Cf represent the LC filter parameters, whereas CDC represents the DC link 

capacitor. 

2.3.1 Bluewater Power Network 

The Bluewater Power network is modeled at Bus 1 as a voltage source behind a short circuit 

impedance, calculated from the values of short circuit level and X/R ratio, provided by 

Bluewater Power. Bluewater Power network parameters are given in Appendix A.1. 
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Figure 2.2 Study system for Bluewater Power Distribution System 
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2.3.2 Induction Motor  

Figure 2.3 depicts the equivalent circuit of the induction motor [89]. R1, jX1, R2’ and 

jX2’represent the stator resistance, stator reactance, equivalent rotor resistance, and equivalent 

rotor reactance per phase, respectively. Rc and jXm represent core losses and magnetizing 

reactances, respectively. V1 is the per phase supply voltage to the stator circuit and s 

represents slip of the induction motor. The electrical parameters of the induction motor are 

given in Appendix A.2.   

R1  jX1 jX2
‚

R2
‚

R2
‚ (1-s) / sRc jXm 

V1

 

Figure 2.3 Equivalent circuit of an induction motor 

2.3.3 Photovoltaic (PV) System 

Figure 2.4 illustrates the PV system as modeled using a PSCAD/EMTDC software 

simulation. The PV solar system generates DC power at its output with an open circuit DC 

voltage.  As a PV system model is not provided in the PSCAD library, for this study purpose 

all of the PV solar panels are lumped together and represented as a DC voltage source: VDC. 

The DC voltage source model is implemented during the daytime when the PV solar system 

injects active power into the grid. As a constant DC source is used to model the PV solar 

system during the PV mode of operation, no MPPT algorithm is implemented. The DC 

source is able to maintain the desired DC link voltage. During the night, when the PV 

inverter is operated as STATCOM, the solar panels are disconnected, and consequently, the 

dc voltage source is disabled.  
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Figure 2.4 PV solar system model 

2.3.4 Photovoltaic Inverter  

A photovoltaic inverter is modeled using a 2-level, 6-pulse VSI model utilizing IGBT 

switches [19]-[20]. The dc side capacitor CDC serves two purposes: i) during the steady state 

it maintains the dc voltage constant at the DC link, and ii) during the transients, it serves as a 

mini energy storage unit, to temporarily supply real power.  The DC link voltage and DC link 

capacitor values are determined as per the recommendations given in [23]. The minimum DC 

link voltage is calculated using the following equation: 

VDC   ≥ 1.633 VL-L                                                                             (2.1) 

where VDC represents the dc link voltage and VL-L represents the line-line voltage at Bus 1. 

Similarly, CDC  is calculated as follows: 

 CDC = 
2 ×P ×16.7×10−3

VDC
2 × (1− K2)

  F                              (2.2) 

where P represents the maximum real power handled by the capacitor, VDC  represents the 

DC link voltage, and K represents the ratio between the minimum DC link voltage to the 

maximum DC link voltage.  16.7 × 10−3 represents one cycle time at a power frequency of 

60Hz.  

2.3.5 PV-STATCOM Controller  

Figure 2.5 presents the PV-STATCOM controller for power factor correction. The PV 

inverter is controlled in current-control mode, using the hysteresis band modulation 

technique described in [28]-[29]. The current injected by the inverter into the grid is split into 

two separately regulated components: active component (Ia), and reactive component (Ir). 
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During the daytime, when the PV system operates as PV-STATCOM, the DC source is used 

to regulate the DC link voltage and Ia is not regulated by the DC voltage control loop. During 

the night, when the PV system operates as a STATCOM, the DC source is disconnected and 

the DC voltage control loop is used to regulate the DC link of the inverter by controlling Ia. Ir 

is calculated based on the reference given to the power factor control loop during both day 

and night. The different subsystems used in the PV-STATCOM controller are described as 

follows. 
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Figure 2.5 Control circuit of PV-STATCOM for power factor correction 
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2.3.5.1 DC Voltage Control  

VDC is measured at the dc link terminal of the inverter, and a low pass filter is used to remove 

any ripples. The filtered VDC is compared to the reference value, VDC, ref. The error is then fed 

to the PI controller to generate Ia, which helps to regulate the DC link voltage to VDC,ref. The 

best parameters of the PI controller are chosen through step response studies of the controller 

by systematic trial and error [28]. A step input is given to VDC,ref  and the response of VDC  is 

examined. Initially, Kp is kept constant and Ti is varied from 0.05 to 0.5. The best value of Ti 

is selected to be 0.02, which provides the fastest settling time and an overshoot of less than 

10%. Keeping Ti fixed at 0.02, Kp is varied incrementally from 100 to 500, and the best gain 

is determined to be 200. 

2.3.5.2 Phase Locked Loop  

A Phase Locked Loop (PLL) produces an output signal which is synchronized in phase and 

frequency of the input signal [90]. The PLL generates the voltage angle φ at Bus 1 which is 

used to generate three sinusoidal active and reactive reference currents for the Hysteresis 

current controller. 

2.3.5.3 Power Factor Control  

Figure 2.6 presents the fundamental concept behind power factor controller operation. Vs,a  is 

the voltage phasor at Bus 1. The induction motor (heat pump) draws the lagging current IL,a 

at a power factor angle θ. The a-phase current, IL,a, of the induction motor has two 

components: active component IL,a cos(θ), and reactive component IL,a sin(θ).  

vs,aIL,a

IL,a
 sin( )IL,a

cos(  )

 sin(φ1)ILa1

φ1

ILa1

θ

θ

θ

꞊ ILa1

 
cos(φ1)

 

Figure 2.6 Phasor diagram for power factor correction 

In order to improve power factor to the desired value, reactive component IL,a sin(θ) has to be 

decreased from the Bluewater Power supply system based on the desired amount of  power 
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factor correction. PFref  is the required power factor to be achieved at Bus 1. Based on this 

reference, a new power factor angle φ1 and tan (φ1) are calculated using:  

φ1 = cos−1�𝑃𝐹𝑟𝑒𝑓�                                              (2.3) 

tan(φ1) = 𝐼𝐿𝑎1 sin(φ1) 
𝐼𝐿𝑎1 cos(φ1)

                                          (2.4) 

Assuming the motor load is constant during the power factor correction mode, the active 

current before and after power factor correction are the same. Therefore, ILa1 cos(φ1) is equal 

to IL,a cos(θ).  Thus, the new reactive current ILa1 sin(φ1)  drawn from the supply system is: 

  ILa1 sin(φ1) = IL,a cos(θ) × tan(φ1)                                       (2.5)  

This concept is applied in the power factor controller implementation in PSCAD, as 

demonstrated below.   

As illustrated in Figure 2.5, IL,a is the phase-a load current measured at the terminal of the 

induction motor and fed to a Fast Fourier Transformation block [67] in order to extract the 

fundamental current magnitude ILa1 and the angle α. Voltage angle is calculated using PLL, 

as demonstrated in section 2.3.5.1. The power factor angle θ  is then calculated based on the 

angle difference between the fundamental voltage Vs,a  and current IL,a. ILa1 cos θ is the active 

current drawn by the induction motor and  ILa1 sin θ is the reactive current drawn by the 

induction motor. ILa1 cos θ × tan(φ1) is the new reactive current to be drawn by the motor 

from the Bluewater Power supply system, based on PFref.  Hence, the PV-STATCOM 

compensates for the reactive current from the supply by injecting Ir1 into the network: 

 Ir1 = (ILa1 sin θ - ILa1 cos θ × tan(φ1))                          (2.6) 

where Ir1 represents the peak magnitude of the reactive current.  

A filter capacitor is provided at the terminal of the inverter to suppress the high frequency 

switching harmonics [20]-[23]. This filter capacitor also generates reactive power. Ic 

represents the total capacitive reactive current injected from the filter capacitor. Ic for all 

three phases is calculated as: 
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Ic = 3 ×𝜔 ×  𝐶𝑓 ×  𝑉𝑠,𝑎                                                   (2.7) 

It is noted that the reactive power from the PV-STATCOM comes from two sources: the PV 

inverter and the filter capacitor.  

Therefore, Ic is deducted from Ir1 in order to generate the net magnitude of reactive current, 

Ir, to be injected from the PV-STATCOM. 

Ir = Ir1 – Ic                                                               (2.8) 

2.3.5.4 Reference Current Generation 

Hysteresis current controller adopted for this study uses instantaneous currents for control 

purposes [40], [42]. As such, instantaneous active current references Iaa,  Iab,, and Iac  are 

calculated for all three phases: a, b, and c using: 

Iaa = Ia cos(φ)                                                            (2.9) 

Iab = Ia cos(φ− 120°)                                                                          (2.10) 

Iac = Ia cos(φ + 120°)                                                                           (2.11) 

Similarly, instantaneous reactive current references Ira, Irb,, and Irc  are calculated for all three 

phases: a, b, and c using: 

Ira = Ia sin(φ)                                                            (2.12) 

Irb = Ia sin(φ− 120°)                                                                          (2.13) 

Irc = Ia sin(φ + 120°)                                                                           (2.14) 

These currents Iaa, Iab, Iac, and Ira, Irb, Irc  are computed in the Reference current generation 

block, in Figure 2.5. 

2.3.5.5 Summation Blocks (A, B and C) 

Three summation blocks A, B, and C, shown in Figure 2.5, are used for the three phases, a, b, 

and c, respectively.  At summation block A, active current reference Iaa and reactive current 
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reference Ira for phase-a are added to generate the total reference current for phase-a. Ii,a 

represents the phase-a inverter output current which is compared to the reference current to 

generate the instantaneous current error ea. The same procedure is followed for phase-b and 

phase-c to generate instantaneous current error signals eb and ec, which are then fed to the 

hysteresis current controller. 

2.3.5.6 Hysteresis Current Controller 
The hysteresis current controller uses three hysteresis blocks for each of the three phases. 

The hysteresis current controller is based on the fixed band hysteresis control method, with a 

hysteresis band of ± 1 A (3.24 % of the inverter output current) [27]-[30]. Three hysteresis 

blocks for the three phases keep the error signals ea, eb and ec within the band of ± 1 A. As 

long as errors are within the hysteresis band, the inverter output current does not change. 

When the error reaches the upper or lower limit of the hysteresis band, the inverter switches 

are made to change their states to allow the inverter output current to bring the errors within 

the acceptable limit. 

2.3.5.7 LC Filter 

The hysteresis current controller is utilized in the PV-STATCOM controller which generates 

lower order harmonic components. Therefore, LC filter component parameters Lf and Cf are 

determined by analyzing the ITHD and ITDD at different operating scenarios of the PV-

STATCOM. Lf and Cf parameters are selected such that ITHD and ITDD  becomes less than 5% 

at the output of the PV-STATCOM, as per IEEE Standard 1547 [91]  and IEEE Standard 519 

[84].  The values of Lf, Cf, CDC, and VDC used for this simulation study are given in Appendix 

A.3.  

2.3.6 Modeling of Real Time Loading Conditions 

To demonstrate the proposed PV-STATCOM technology, different electrical parameters 

such as: active power, reactive power, and power factor are measured at the terminal of the 5 

kW heat pump, using Fluke power quality analyzer for approximately 72 hrs. After analyzing 

the field test data using Fluke power quality analyzer software [92], it is observed that there 

is a substantial variation between the active and reactive power requirement of the   heat 

pump. Figure 2.7 (a) presents the measured real power at the load (heat pump) terminal for 



29 

 

 

 

24 hrs. To simulate the varying load behavior, the time period 8:00 AM to 10:00 PM is 

chosen. The simulation period of 8 seconds to 22 seconds in PSCAD corresponds to the 8:00 

AM to 10:00 PM period in real time. It is seen that measured real power varies from 0.82 kW 

to 2.08 kW during the period chosen for analysis. The same behavior is simulated using 

PSCAD by varying the torque on the induction motor at a different simulation time with a 5 

kW induction motor model, shown in Appendix A.2. It is noted that the increase and 

decrease in torque of the induction motor increases or decreases the motor power according 

to the toque speed characteristics of the motor [89].  It is shown in Figure  2.7 (b) that 

simulated real power follows the same pattern of measured real data. The variation of 

simulated real power is between 0.76 kW and 2.1 kW.   

(a) (b)
 

Figure 2.7 (a) Measured Active power and (b) Simulated Active power 

Figure 2.8 (a) depicts the measured reactive power, which varies from 1.21 kvar to 1.42 kvar 

during the period chosen for analysis. The same behaviour is simulated using PSCAD by 

varying the torque on the induction motor at different simulation times, as shown in Figure 

2.8 (b). It is demonstrated that the variation of simulated reactive power is between 1.23 kvar 

and 1.35 kvar. Figure 2.9 (a) shows the variation of measured power factor at the terminal of 

the induction motor. It is also shown that the measured power factor varies between 0.57 and 

0.82. The same pattern of the measured data is achieved in PSCAD where the simulated 

power factor varies between 0.53 and 0.84, as illustrated in Figure 2.9 (b). 
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(a) (b)
 

Figure 2.8 (a) Measured Reactive Power and (b) Simulated Reactive Power 

       

(a) (b)
 

Figure 2.9 (a) Measured Power Factor and (b) Simulated Power Factor 

2.4 SIMULATION RESULTS 

The steady state and transient performance of a PV-STATCOM with power factor control 

mode is discussed in this section. The objective is to achieve a power factor of unity. 

2.4.1 Steady state analysis 

The steady-state performance of the PV-STATCOM controller for power factor correction is 

performed with the simulated real time data measured at the heat pump terminal. To 
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demonstrate the operation of the PV-STATCOM controller for power factor correction, the 

time period of 8:00 AM to 10:00 PM is considered. 

It is noted that the only time the PV-STATCOM will not be able to inject the required 

reactive power, Q, to maintain unity power factor is at noon, around 12:00 PM, when the PV 

system generates its rated real power P of 10 kW. This is due to the unavailability of reactive 

power from PV inverter after rated power generation of 10 kW, since 𝑄 =  �(𝑆2 − 𝑃2). 𝑆 

represents the total kVA of the PV inverter, which is 10 kVA.   

Figure 2.10 demonstrates the power factor correction of the induction motor with and without 

PV-STATCOM for the study period. The motor runs at a power factor varying between 0.53 

and 0.84 during this period, much below the utility recommended power factor of 0.9. It is 

observed that with the PV-STATCOM, power factor is improved to unity for the entire 

period by injecting the required amount of reactive power. This reactive power is contributed 

by both the PV-STATCOM and the filter capacitor. In this study, the filter capacitor of a 10 

kVA PV-STATCOM generates 0.96 kvar continuously.  

 

Figure 2.10 Power factor correction without and with PV-STATCOM 

At noon, the active and reactive power requirement is 1.23 kW and 1.34 kvar. Also at noon, 

the PV system generates its rated real power of 10 kW and, therefore, cannot provide any 

reactive power support. However, the filter capacitor contributes a constant 0.96kvar during 

this time. The remainder of the reactive power, 0.38 kvar, is supplied by this source. During 



32 

 

 

 

this time, as there is high solar generation of 10 kW, there is also a real power flow of -8.77 

kW to the source. Hence, source power factor becomes unity, according to the relation 

cos(tan−1( 0.38
−8.77

 )).  

Table  2.1 presents a summary of the simulation results for steady-state power factor 

improvement at the PCC, at different times of the day. PSource and QSource represent the power 

requirement from the source at Bus 1 (PCC).  Similarly PStatcom, QPV-Statcom, PMotor, and QMotor 

represent the active power and the reactive power of the PV inverter and motor load 

respectively. PFMotor and PFSource represent the load and PCC power factor respectively.  

Table 2.1 Steady-state power factor improvement 

Time PStatcom 
(kW) 

QPV-

Statcom 
(kvar) 

QCap 
(kvar) 

PMotor 
(kW) 

QMotor 
(kvar) 

PFMotor PSource 
(kW) 

QSource 
(kvar) 

PFSource 

8 am 1.68 9.85 0.96 0.86 1.22 0.57 -0.82 0.0 1 
12 noon 10.0 0.0 0.96 1.23 1.34 0.70 -8.77 0.38 1 

4 pm 8.0 5.23 0.96 2.0 1.46 0.80 -6.0 0.0 1 
8 pm 0.1 9.99 0.96 1.22 1.22 0.70 1.12 0.0 1 
 

It is seen that real power generation, PStatcom, from the PV system varies throughout the day. 

QPV-Statcom represents the capability of the PV inverter after real power generation. QCap is a 

constant 0.96kvar throughout the day. As discussed in an earlier section, load on the motor 

varies throughout the day. The load power factor PFMotor varies during the day corresponding 

to different active and reactive power requirements by the load.  The PCC power factor, 

PFSource, is made unity for a 24 hour period due to the PV inverter operating as STATCOM 

and injecting the necessary amount of reactive power, as required by the load.  

 

For the considered loading condition of the heat pump, reactive power availability from the 

PV-STATCOM is enough to compensate the reactive power requirement of the load. 

2.4.2 Transient Analysis 

The transient performance of the PV-STATCOM is studied by giving a step input to the PV-

STATCOM controller at time t = 0.5 seconds for power factor correction during both day and 
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night times. Transient performance is demonstrated with an assumed motor loading condition 

of close to 80% of its rating during the day, and 60% during the night. 

2.4.2.1 Daytime Performance  

At 4:00 PM, a loading condition is considered where real power, PLoad, and reactive power, 

Q_Load, of the load are 4 kW and 2.7 kvar, with a load power factor of 0.83.  

Figure 2.11 depicts the source power at Bus 1 (PCC) and the PV solar system power output 

during the day. During the time period 0.4 to 0.5 seconds, the real power generation from the 

PV solar system, PStatcom, is 8 kW. QStatcom represents the total reactive power from both the 

PV system and the filter capacitor. The filter capacitor provides 0.98 kvar. Thus, with the 

available 0.98 kvar, reactive power drawn from the source QSource becomes 1.72 kvar (QLoad - 

QStatcom), to supply rest of the reactive power requirement of the load. As the motor real 

power requirement is 4 kW during this time, there is also a reverse power flow of -4 kW 

(PLoad - PStatcom) to the Bluewater power network, and PSource becomes -4 kW. At time t= 0.5 

seconds, the PV system is made to operate as a PV-STATCOM in order to regulate the 

power factor to unity by giving a step input to the PV-STATCOM controller. It is seen that 

after t ˃ 5 seconds, QStatcom is 2.7 kvar. Accordingly, QSource becomes zero, thus making unity 

power factor at PCC. 

 

Figure 2.11 PV-STATCOM and source power during transient-daytime 
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Figure 2.12 demonstrates the power factor at Bus 1 with and without the PV-STATCOM. 

During the time period 0.4 to 0.5 seconds, the PCC power factor is 0.91 with PSource of -4 kW 

and QSource of 1.72 kvar, according to the relation cos(tan−1( 1.72
−4

 ) ). At time t= 0.5 

seconds, the PV system is made to operate as a PV-STATCOM to regulate the power factor 

to unity with a PFref =1 reference given to the PV-STATCOM controller. The PV-

STATCOM controller responds within 2 to 3 cycles to regulate the power factor to unity by 

supplying 2.7 kvar to the network.  

 

 

Figure 2.12 Power Factor Correction with PV-STATCOM 

Figure 2.13 describes the voltage and current waveform in the transient state during the day. 

Vs, Is, Igi, and Ig represent the PCC voltage, PCC current, and PV-STATCOM current before 

filter and after filter, respectively. It is seen that the PCC voltage and current waveform are in 

phase during power factor correction mode due to unity power factor at PCC after time t > 

0.5 seconds. 
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Figure 2.13 Transient response of PV-STATCOM at 4:00 PM 

2.4.2.2 Night time Performance 

The nighttime transient performance of the PV-STATCOM is demonstrated at 8:00 PM. The 

real power, PLoad, and reactive power, QLoad, of the load are 3 kW and 2.4 kvar. The load 

operates at a power factor of 0.78.  
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Figure 2.14 depicts the source power at Bus 1 and the PV-STATCOM output power during 

the night.  Between 0.4 and 0.5 seconds, the PV system draws only -50 W from the system to 

provide for the inverter losses. It is seen that QStatcom is 0.93 due to reactive power from the 

filter capacitor.  QSource (QLoad - QStatcom) is 1.47 kvar to supply the rest of the reactive power 

to the load. As there is no real power generation from the PV system, the real power 

requirement of the load is supplied from the source.  Thus, PSource is 3.05 kW (PLoad + PStatcom) 

and QSource is 1.47 kvar. At time t= 0.5 seconds, the PV system is made to operate as a PV-

STATCOM in order to regulate the power factor to unity by providing a step input to the PV-

STATCOM controller. It is seen that during the time t ˃ 5 seconds, QStatcom is 2.39 kvar. 

Accordingly, QSource becomes zero, making unity power factor operation at PCC. 

 

Figure 2.14 PV-STATCOM and source power during transient nighttime 

Figure 2.15 demonstrates the power factor at Bus 1 with and without the PV-STATCOM. 

During the time period 0.4 to 0.5 seconds, PCC power factor is 0.91 due to PSource of 3.05 kW 

and QSource of 1.47 kvar, respectively. At time t= 0.5 seconds, the PV-STATCOM controller 

is given a reference of PFref=1 to regulate the power factor to unity. The PV-STATCOM 

controller responds within 2 to 3 cycles to regulate the power factor to unity by injecting 

2.39kvar to the network. 

Figure 2.16 illustrates the voltage and current waveform in the transient state during the 

night. It is seen that PCC voltage and current waveform are in phase during power factor 

correction mode due to unity power factor at PCC after time t > 0.5 seconds.  
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Figure 2.15 Power factor of PCC with and without PV-STATCOM 

 

Figure 2.16 Transient response of PV-STATCOM at 8:00 PM 
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2.5 CONCLUSION 

This chapter demonstrates a novel application of utilizing a 10 kW PV solar system as a 

STATCOM, termed PV-STATCOM, for power factor correction of a 5 kW induction motor 

in the Bluewater Power Distribution Network. The hysteresis current control scheme is 

employed for the PV-STATCOM controller. The steady-state and transient performance of 

the proposed controller for power factor correction are demonstrated through simulations 

carried out using electromagnetic transient PSCAD/EMTDC. A simulation model for the 

motor load is developed in accordance with the real time data measured at the motor 

terminal. The PV-STATCOM controller performance is illustrated for different loading 

conditions of the motor both during the day and night. 

The following conclusions are made: 

i) The PV-STATCOM is able to regulate the PCC power factor to unity during the 

night, as well as during the day, with the available reactive power after real power 

generation from the PV solar system.  

ii) The proposed hysteresis controller for the PV-STATCOM performs effectively both 

during the night and day times. The response of the PV-STATCOM controller for 

power factor correction during the transient is 2 to 3 cycles for both the cases. 

With such novel functionality of a PV-STATCOM, a PV solar system can help a customer 

avoiding usage penalties while continuing to generate revenues from the sale of real power. 

Thus, such an expensive PV solar system can be entirely utilized for a full 24 hour period.  
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Chapter 3  

3 REAL-TIME DIGITAL SIMULATION OF PV-STATCOM FOR 
POWER FACTOR CORRECTION  

 

3.1 INTRODUCTION 
This chapter presents the real-time digital simulation of a PV-STATCOM for power factor 

correction using a Real Time Digital Simulator (RTDS). RTDS is a digital power system 

simulator, widely used for real-time simulations and Hardware-in-the-loop (HIL) 

applications for different power systems control and protection equipment. The site for PV-

STATCOM operation is chosen at the terminal of an induction motor load at the London 

Hydro headquarters building, the second location selected for demonstrating this technology, 

in addition to Bluewater Power, in Sarnia. A system model is developed using RTDS 

consisting of the electrical network of the London Hydro headquarters building, the PV-

STATCOM, and the motor load. The PV inverter switching circuits are modeled in small 

time step environment and the control system is modeled in a large time step environment. 

The performance of the PV-STATCOM is evaluated for different loading conditions of the 

motor during the night, as well as during the day, at different PV power outputs.  

3.2 OVERVIEW OF REAL-TIME DIGITAL SIMULATOR 

The RTDS is a custom parallel-processing hardware architecture assembled in modular units 

called racks. A rack consists of high power processors capable of power system simulations 

in real-time, along with communication processors. Power system components, along with 

control systems, are modeled using these processors to solve mathematical equations for the 

power system and network models. The RTDS operates with real-time simulation software, 

RSCAD, which has a graphical user interface (GUI) and mathematical solution algorithms 

for network equations and component models. The GUI allows developers to build power 

system models using different power system blocks, and also provides a run time 

environment to analyze the simulation output. RTDS has different types of processor cards 

available in a rack such as: Three Processor Cards (3PC), Risc Processor Cards (RPC), and 
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Giga Processor Cards. RTDS also has various I/O cards such as Giga Transceiver cards, 

Analog I/O cards, and Digital I/O cards. The 3PC card contains three SHARC processors 

(ADSP21062), each operating at 80MHz.  These 3PC cards are used to model power system 

components and control systems with a large time step of 50μs. RPCs contain two RISC 

processors (750CXe), each operating at 600MHz; whereas, the GPC contains two IBM 

PowerPC 750GX RISC processors, each operating at 1GHz. GPCs are typically used to 

model small time step simulations (< 2μs), such as voltage source converters with high 

switching frequency, as well as providing simulation for the standard power system 

components and network models [93]. The RTDS system used in this study has one rack with 

one GPC card, two 3PC cards, one GTDI card, and one DDAC card.  

3.3 STUDY SYSTEM 
London Hydro is a utility company in Southwestern Ontario, Canada. Figure  3.1 depicts the 

London Hydro office building with the induction motor load and the PV solar system 

indicated at the bottom right of the diagram. The power supply to the main building is 

through a 13.8kV feeder. This supply is stepped down through transformers in the basement 

of the building to 600/347 V to feed the 6 kW induction motor and other electrical loads in 

the building. Separate transformers provide a 208/120V supply for lighting and other small 

loads within the building.   

For the real-time simulation studies of the PV-STATCOM in RTDS for power factor 

correction, a 6 kW induction motor in the office building of London Hydro, in the city of 

London, has been selected. The selected induction motor runs as a heat pump in the main 

building in order to provide for the heating and cooling requirements of the building. Due to 

its operation at a low power factor (typically 0.75), this motor load by itself will attract a 

penal tariff. With the objective of demonstrating the new STATCOM control technology on a 

PV solar system and solving a real-time industrial problem, the 5 kW PV solar system is 

connected at the terminals of the 6 kW induction motor to improve power factor to unity. 
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Bus 1

Figure 3.1 Electrical System diagram of London Hydro office building 

3.4 MODELING OF THE STUDY SYSTEM 

This section presents the models of different components of the study system shown in 

Figure  3.2. The London Hydro network is modeled as Thevenin’s equivalent of the entire 

London Hydro network looking at the left of Bus 1, as demonstrated in Figure  3.1.   Iga, Igb, 

and Igc represent three phase inverter output currents of a 5 kW PV inverter; ILa, ILb, and ILc 

represent 6 kW inductor motor terminal currents. Vsa, Vsb, and Vsc represent three phase 

source voltages at Bus1 (Point of Common Coupling). VDC represents the inverter DC link 

voltage which is provided by a 5 kW PV solar system. Lf and Cf  both represent the LC filter 

components, whereas  CDC represents the DC link capacitor. 
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Figure 3.2 Study system in London Hydro headquarters building 
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3.5 SYSTEM MODELING 

3.5.1 London Hydro Network  

The London Hydro network is modeled as a Thevenin equivalent voltage source behind the 

short circuit impedance. The London Hydro network parameters include a short circuit level 

and X/R ratio, both given in Appendix B.1. 

3.5.2 Induction Motor  

The induction motor load model provided by the RSCAD system library is utilized for this 

analysis. For the simulation studies, a 6 kW induction motor is used [89].  The motor model 

demonstrated in Section 2.3.2 of Chapter 2 is used for the modeling of the induction motor 

using RTDS. The electrical parameters of the induction motor are given in Appendix B.2.  

3.5.3 Photovoltaic System  

3.5.3.1 Photovoltaic Array  

The PV Array model is given in the RSCAD library. It has two power system nodes which 

allow it to be interfaced with other components in RTDS. Figure  3.3 demonstrates the output 

positive and negative terminals of the PV array, represented as Nodes P and N, respectively. 

The connections labeled as INSOLATION and TEMPERATURE are the control signal 

inputs of the PV model. Increase in the INSOLATION level increases the current output 

from the PV module, while an increase in TEMPERATURE decreases the voltage output of 

the PV module [93]. 

 

Figure 3.3 Photovoltaic Array model in RSCAD 
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RTDS has two different time step environments: a large simulation time step and a small 

simulation time step environment. PV arrays and the network model are modeled in a large 

time step environment, whereas the inverter is modeled in a small time step environment. In 

order to interface the small time step environment with the large time step environment, 

interface transformer components are used to transfer power system signals. As the output of 

a PV array is effectively DC signals, these interface transformers cannot be used for the PV 

array because DC signals cannot flow through the transformer. Hence, to construct an 

interface between two different simulation environments, voltage and current information are 

used between the two [93]. As demonstrated in Figure  3.4, the voltage signal, Vpv,, from the 

large time step side of the PV array simulation is transferred to the small time step side of the 

PV-STATCOM simulation. The current signal, Ipv, from the small time step side of PV-

STATCOM simulation is brought to the large time step side of the PV-array. These voltage 

and current signals are interchanged between the large and small time step portions of the 

simulation in order to establish the interface between the PV array running in a large time 

step and the inverter circuit running in a small time step environment. 

 

Figure 3.4 Large time step and small time step interaction in RSCAD 
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Due to the unavailability of adequate computing cards on the RTDS system in our lab, an 

MPPT algorithm is not implemented for this research work. Hence, all simulations are based 

on a PV system without MPPT algorithm. PV module parameters are given in Appendix B.3. 

3.5.3.2 Photovoltaic Inverter  

The photovoltaic inverter is modeled using a 2-level, 6-pulse voltage source inverter model, 

given in RSCAD library, with IGBT switches [93]. IGBT switch parameters, DC link 

voltage, and DC link capacitor values are taken from a commercial IGBT switching module 

and are shown in Appendix B.4 [94].   The criteria for designing the DC link voltage and DC 

link capacitor is presented in Section 2.3.4 of Chapter 2. 

3.5.3.3 LC Filter 

An LC filter is used to mitigate the harmonics generated by the switching events in the PV-

STATCOM. The PV-STATCOM uses the Pulse Width Modulated (PWM) current control 

scheme, where the harmonics are generated around the switching frequency. A switching 

frequency of 6 kHz is considered for this study. Hence, the current and voltage harmonics are 

generated in the vicinity of the 6 kHz. Filter parameters Lf and Cf are chosen as per the 

recommendations given by IEEE benchmark system for power system studies for a PV 

system [9].  

As per [9], [23], for a PWM current controlled inverter, Lf should be chosen between 0.1pu 

and 0.25pu in order to reduce the voltage drop across the inductor on the AC side, to provide 

better control of the AC output current of the PV-STATCOM, and to limit the harmonic 

current at the switching frequency to less than 0.3% [23],[84], [91]. Cf is calculated   based on 

the percentage of reactive power supply from the filter capacitor, which is given as follows. 

Cf =   
∝ × P𝑟𝑎𝑡𝑒𝑑
3 ×ω×𝑉𝑝𝑛2                                      (2.1) 

Where, ∝ represents the percentage of reactive power to be injected from the filter capacitor, 

Prated is the rated power of the PV-STACOM. ω represents the system frequency in rad/sec. 

Vpn is the phase-to-neutral voltage of the network.  Based on the value of Lf and Cf, the 

resonant frequency of the filter is calculated such that it is sufficiently larger than the grid 
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nominal frequency of 60Hz, but considerably smaller than the VSC switching frequency of 

6kHz.  The resonant frequency of the LC filter with grid inductance L𝑔 is given as: 

f𝑟𝑒𝑠 = 
1
2𝜋

 × �
L𝑔+L𝑓

L𝑔 × L𝑓 × C𝑓 
                                           (2.2) 

10×𝑓𝑔 ≤  f𝑟𝑒𝑠 ≤ 0.5×𝑓𝑠𝑤                                             (2.3) 

Where 𝑓𝑔 and 𝑓𝑠𝑤 represent the grid frequency and switching frequency of the PV-

STATCOM. The LC filter is effective if proper damping is also provided. Hence, a damping 

resistor is used in conjunction with the capacitor. Resistor size is chosen as one third of the 

capacitor impedance at resonant frequency [9]. The calculated filter parameters Lf, Cf and Rd  

are refined through simulations in order to achieve ITHD, ITDD, and VTHD below 5%, as 

recommended in [84], [91].  The Filter parameters used in the RTDS simulations are given in 

Appendix B.4. The complete system model in RSCAD is given in Appendix B.5. 

3.6 PV-STATCOM CONTROLLER 
The PV-STATCOM is essentially a VSC (Voltage Source Converter) system, in which the 

controller operates in two different modes: power factor correction mode and AC voltage 

regulation mode. Both of these modes are mutually exclusive, which means that the 

controller can operate in any one of the modes at a given time. During power factor 

correction mode and voltage regulation mode, the PV-STATCOM exchanges reactive power 

with the network along with injecting available active power from the PV system to the grid. 

The active power and reactive power are controlled through the phase angle and the 

amplitude of the VSC terminal voltage with respect to the PCC voltage. The proposed PV-

STATCOM controller has one inner current control loop and multiple outer control loops, 

depending upon the application of the PV-STATCOM. The outer control loops can be DC 

voltage control loop, PV solar array output, AC voltage control loop, and power factor 

control loop. In this section, power factor control is discussed in detail as relevant to this 

thesis work, and the rest of the controller design has been taken from my colleague’s work 

[95]. Figure  3.5 depicts the overall PV-STATCOM controller. The different subsystems of 

the PV-STATCOM are explained in next section.  
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Figure 3.5 Control system of PV-STATCOM 

3.6.1 abc  to dq conversion 

The PV-STATCOM controller is modeled in a synchronously rotating d-q reference frame, 

where d represents the direct axis component and q represents the quadrature axis component 

in the d-q reference frame. The abc to dq transformation enables the control system of a 

three-phase converter system to process DC signals rather than sinusoidal voltage and current 

signals, in a three-phase system. In a d-q frame the signals and variables are transformed to 

equivalent DC quantities, allowing the control system to be simple and easy to control [19].  
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Where θ represents the voltage angle at the Point of common coupling.  

If it is assumed that the three-phase quantities are symmetrical, then the zero sequence 

component becomes zero, and active and reactive power in the d-q reference frame is given 

by [19], 

P =  3
2
 ( Vd Id + Vq Iq )                                                        (3.2) 

Q =  3
2
 ( Vq Id − Vd Iq )                                                        (3.3) 

Since the synchronization scheme ensures that the d axis of the d-q frame is aligned with the 

grid voltage reference phasor, that is Vq = 0, then P and Q can be controlled by Id and Iq 

respectively [9]. For the PV-STATCOM controller, three phase voltages at PCC (Vsa, Vsb, 

Vsc), three PV inverter output currents (Iga, Igb, Igc), and three load currents (ILa, ILb, ILc) are 

transformed to their d-q equivalents using the abc-dq transformation method.    

3.6.2 Phase Locked Loop (PLL) 

A Phase Locked Loop (PLL) produces an output signal that is synchronized in phase and 

frequency of the input signal. A PV-STATCOM controller designed using a d-q reference 

frame requires a PLL in order to track the voltage angle of the AC system at the PCC (point 

of common coupling) to synchronize with the grid.  As shown in Figure  3.5, PLL generates 

an angle, θ based on the input grid voltages. The PLL model given in the RSCAD library is 

used in the controller design [90].  

3.6.3 Power Factor Control 

Figure  3.6 depicts the power factor correction unit. This unit generates Iqref based on the 

reference power factor PFref. ILd and ILq represent the real and reactive currents drawn by the 

load. ILqnew represents the new reactive current to be drawn by the load from the London 

Hydro supply system, based on reference power factor PFref . ILqnew is calculated using: 
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ILqnew = ILd × 𝑡𝑎𝑛 (cos−1(𝑃𝐹𝑟𝑒𝑓))                                   (3.8) 

ILqnew is subtracted from ILq to generate ISq, which represents the required reference reactive 

current for the current control module in order to make the desired power factor PFref at the 

PCC. Qc represents the three-phase reactive power generated by the filter capacitor. ICq 

represents the reactive current injected by the filter capacitor in d-q reference frame. As per 

(3.3) in Section 3.5.1, ICq is calculated as follows: 

ICq = 
− 2 × 𝑄𝑐

     3× 𝑉𝑠𝑑  
                                               (3.9) 

Now, ICq is subtracted from ISq in order to generate the required Iqref.  ω represents the system 

frequency in rad/s, and Cf represents the filter capacitance. 
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Figure 3.6 Power factor controller 

3.6.4 AC Bus Voltage Control 

Figure  3.7 describes the AC bus voltage controller. The AC bus voltage control compares the 

PCC bus voltage Vsd with the given reference value Vacref. The error is then fed to an integral 

controller in order to generate Iqref to achieve the desired PCC bus voltage.  Tiac represents 

the integral controller time constant and its parameter, given in Appendix B.6.  
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Figure 3.7 AC Bus voltage controller 

3.6.5 DC Bus Voltage Control 

The DC bus voltage control shown in Figure  3.8 uses a lead-lag compensator in order to 

generate the reference current, Idref,  to control the DC link voltage to a desired value. For this 

study, the desired value of the DC link of the PV inverter is chosen as 400V DC. The DC 

Bus voltage controller parameters G, Tdc, TLd, and TLg parameters are given in Appendix B.6. 

+
−Vdc

Vdcref

IdrefG (1 + s TLd) 
   (1 + s TLg)1/(sTdc)

 

Figure 3.8 DC Bus voltage controller 

3.6.6 PV Solar Output 

The PV solar output module represents the 5 kW PV solar array model given in the 

RSCAD/RTDS library. As an MPPT controller is not implemented in this study, this module 

generates Ipv based on the available solar insolation for the current control unit.  

3.6.7 Current Control 

Figure  3.9 depicts the current control unit for the PV-STATCOM controller. The current 

control unit is the core element of the PV-STATCOM controller. It has two control loops that 

independently control the direct axis and quadrature axis components of the VSC currents Id 

and Iq in the d-q reference frame, to generate the direct axis and quadrature axis voltage 

components (Vsd, Vsq) of the VSC terminal voltage. In each control loop, the inverter output 

current signals, Id and Iq, are taken and fed back to the controller. This is compared to the 

reference values Idref and Iqref, generated from the outer control loops as described above. The 
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error signals are then fed to the PI controllers. These PI controllers with identical gains, 

generate output voltage signals in both direct and quadrature axes, which are added with 

respective direct and quadrature axis components of the grid voltage (Vsd, Vsq) and coupling 

elements ωLf Iq and  ωLf Id  in order to generate inverter terminal voltages (Vtd, Vtq) 

respectively. Vtd and Vtq represent the inverter terminal voltage in the d-q reference frame. 

The current controller, shown in Figure  3.9, is taken from page 126 of [19]. 
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Figure 3.9 Current controller for PV-STATCOM 

The d-axis and q-axis components of the VSC AC side terminal voltages Vtd and Vtq  are 

linearly proportional to the corresponding components of the modulating signals, with a 

proportionality constant of Vdc /2, as given by the following equations [19]: 

  Md = 
𝑉𝑡𝑑
𝑉𝑑𝑐/2

                                                            (3.6) 

Mq = 
𝑉𝑡𝑞
𝑉𝑑𝑐/2

                                                            (3.7)                                                           

These inverter terminal voltages are divided by Vdc/2 in order to generate modulating signals 

(Md, Mq) in the d-q reference frame. The controller parameters Kp and Ti are given in 

Appendix B.6. 
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3.6.8 Pulse Width Modulation Generator 

A pulse width modulation (PWM) generator uses PLL output θ to convert modulating signals 

(Md, Mq) in the d-q reference frame into three sinusoidal modulating signals that are 1200  

apart from one another using dq to abc transformation. These modulating signals are fed to 

the RSCAD firing pulse generation module. This module compares the modulating signals 

with triangular waves at 6 kHz to generate the gating signals for the VSC switches modeled 

in small signal time step environment [93].  Sinusoidal PWM voltage modulation is 

employed for the RTDS simulation due wide range of application of this control method in 

various commercial PV inverters [20]-[22]. 

3.7 SELECTION OF CONTROLLER PARAMETERS 

The best choices of the gain Kp and Ti for the current controller are chosen by studying the 

controller performance for different KP and Ti values during both night and day. Initially, KP = 

0.5 and Ti = 2 ms are chosen for the simulation. Then, KP   is varied over a wide range keeping 

Ti = 2 ms fixed and the PV-STATCOM response is obtained for the different gains. The KP 

value giving the fastest response time is selected for the study system. With this best KP 

value, the controller response is obtained for varying Ti. This process is followed for both 

night and day. The specific Ti value which gives the fastest response is then selected for the 

controller. A similar procedure is followed to find the best gains for the DC voltage control 

loop, Kpd and Tid.  Time constant (Tiac) for the AC Bus voltage control unit and controller 

parameters (G, Tdc, TLd, and TLg) are taken from my colleague’s work [95].  

Figure  3.10 (a)-(e) depict the PV-STATCOM controller response for Kp = 0.5, 2, 10, 18, and 

20, respectively, during the day, at 4 kW PV generation with 50% loading condition of the 

motor. It is shown that the best response is achieved with a KP = 2. With this KP and Ti = 2 ms, 

the controller responds in 10ms.  With high KP values, the response of the controller becomes slower 

and the controller finally becomes unstable at a KP = 19.  Figure  3.11 (a)-(d)  depict the PV-

STATCOM controller response during the day, at 4 kW PV generation with a 50% loading 

condition of the motor. It is shown that best response of 17 ms is achieved at KP = 2 and Ti = 

2 ms.  
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Figure 3.10 PV-STATCOM controller response with varying Kp during the light load 

condition with 4 kW PV generation 
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Figure 3.11 PV-STATCOM controller response with varying Ti during the light load 

condition with 4 kW PV generation 

Figure  3.12 and Figure  3.13 represent current controller response for a wide range of KP and 

Ti during the day, for both light load and peak load conditions with a PV generation of 4 kW. 

It is depicted that during day, for both loading conditions, the best gains are found to be KP = 

2 and Ti = 2 ms, respectively. With these parameters, the response of the controller is 10ms 
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for the light load condition and 17ms for the peak load condition. Figure  3.14 and 

Figure  3.15 demonstrate the response of the current controller during the night when the PV-

STATCOM operates in STATCOM mode. It is seen that during the night, for both loading 

conditions, the best parameters are found to be KP = 2 and Ti = 2ms. With these parameters, 

the best response of the controller is 9.8ms for a light load condition and 10.2ms for a peak 

load condition.   

 

Figure 3.12 Controller parameters with varying Kp and Ti Day time with PV solar generation 
= 4 kW and motor operating at light load 

 

Figure 3.13 Controller parameters with varying Kp and Ti Day time with PV solar generation 
= 4 kW and motor operating at peak load 
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Figure 3.14 Controller parameters with varying Kp and Ti  nighttime with STATCOM mode 
and motor operating at light load 

 

Figure 3.15 Controller parameters with varying Kp and Ti nighttime with STATCOM mode 

and motor operating at peak load 

From the above studies, it is found that the best parameters for the current controller, KP and 

Ti do not change for different operating scenarios of the PV-STATCOM. Hence, KP = 2 and 

Ti = 2ms are chosen for the PV-STATCOM current controller.  
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3.8 PV-STATCOM PERFORMANCE FOR POWER FACTOR 
CORRECTION  

The performance of the PV-STATCOM controller developed using RTDS is demonstrated 

both during night and day; with different PV power outputs of 2 kW and 4 kW during 80% 

and 50% loading scenarios. The PV-STATCOM controller operation is presented for a time 

interval from 0.15 seconds to 0.3 seconds for all of the test scenarios during the night and 

day. During the time 0.15 ≤ t ≤ 0.2, the controller operates in voltage regulation mode (this 

work is done by my colleague which is presented in [95]). At t=0.2 seconds, the PV-

STATCOM controller is given a step input to operate in power factor correction mode. 

3.8.1 Nighttime operation 

Two different loading scenarios are considered for analysis to verify the controller 

performance during the nighttime; one at 80% loading condition and another at 50% loading 

condition. It is noted that the PV-STATCOM operates as STATCOM during the night and it 

draws a small amount of real power from the source to compensate for inverter losses. 

3.8.1.1 Case 1 (80% loading) 

Figure  3.16 depicts power drawn by the motor during a peak load (80%) condition. At 80% 

loading condition, the real power and reactive power drawn by the motor are 5 kW and 3.4 

kvar, respectively. It is seen that real and reactive power of the motor is increased to 5.08 kW 

and 3.5 during the power factor correction mode. This is due to the increase in motor 

terminal voltage from 123.2V (1.026pu) to 125.4V (1.045pu) during power factor correction.  

 
Figure 3.16 Motor power during peak load 
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Figure  3.17 depicts RMS voltage at the PCC before and after power factor correction. 

 
Figure 3.17 PCC voltage before and after power factor correction 

Figure  3.18 shows the PV-STATCOM output power during voltage regulation mode and 

power factor correction mode. As the PV solar system operates as STATCOM during the 

night, it draws only a small amount of real power from the grid to regulate the DC link 

voltage to 400V.  Hence, during the time 0.15 ≤ t ≤ 0.2, the real power from PV system 

P_Statcom is -60 W and the reactive power from the PV inverter Q_Statcom is 250var, to 

regulate PCC voltage. At time t ≥ 0.2 seconds, the controller injects 3.51kvar to entirely 

compensate the load reactive power requirement operating in power factor correction mode. 

At time t ≥ 0.2 seconds, when the transient period dies out, P_Statcom and Q_Statcom are -

80 kW and 3.51 kvar, respectively. The requirement of P_Statcom increases in power factor 

correction mode to compensate for the PV inverter losses. 

 
Figure 3.18 PV-STATCOM power at 80% loading condition during the night 
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Figure  3.19 depicts the source power at PCC. During the time 0.15 ≤ t ≤ 0.2, P_Source 

(P_Load + P_Statcom) and Q_Source (Q_Load - Q_Statcom) are 5.06 kW and 3.15 kvar, 

respectively as the real and reactive power requirement of the load is 5 kW and 3.4 kvar, 

respectively. At time t ≥ 0.2 seconds, P_Load and Q_Load are increased to 5.08 kW and 3.5 

kvar. Hence, P_Source supplies 5.16 kW to the load and to compensate for additional losses 

of the PV-STATCOM. Similarly, Q_Source becomes -10 var due to a 3.51 kvar injection 

from the PV-STATCOM. Figure  3.20 depicts the DC link voltage of the PV inverter, 

maintained at 400V DC during both modes of operation. 

 
Figure 3.19 Source power at PCC at 80% loading condition during the night 

 
Figure 3.20 DC link voltage of PV Inverter at 80% loading condition during the night 

Figure  3.21 depicts the grid PCC power factor during voltage regulation mode and power 

factor correction mode. During the night, there is no PV power and the PV-STATCOM 

works in STATCOM mode to regulate the grid voltage to operate within ± 6%, as per the 

utility requirement. Load power factor at this loading condition is 0.82 (cos(tan−1(Q_Load
P_Load

 ) ). 
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However, PCC power factor improves to 0.85 due to a small amount of reactive power 

injection from the PV-STATCOM during voltage regulation mode. At t=0.2 seconds, the PV-

STATCOM controller is given a reference of PFref =1 to regulate the power factor to unity. It 

is seen that at time t ≥ 0.2 seconds, the controller injects 3.51 kvar within 10.2ms to entirely 

compensate the load reactive power requirement. Thus, PCC power factor improves to unity. 

Figure  3.22 demonstrates the PCC voltage and current waveform during both modes of 

operation. It is observed that during the power factor correction mode at time t ≥ 0.2 seconds, 

PCC voltage and current are in phase, thus confirming the unity power factor at PCC.  

 
Figure 3.21 PCC Power factor correction at 80% loading condition during the night 

 

Figure 3.22 PCC voltage and current waveform at 80% loading condition during the night 

Figure  3.23 demonstrates the PV-STATCOM output current; which is sinusoidal in nature. 

To verify the harmonics output from the PV-STATCOM output current, the total voltage 

harmonics distortion and the total current demand distortion are calculated at PCC, and are 
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found to be 1.9% and 5.8% respectively which are within the  specified limits of IEEE 519 

[84] . 

 

Figure 3.23 PV-STATCOM output current at 80% loading condition during the night 

3.8.1.2 Case 2 (50% loading) 

Figure  3.24 shows the real and reactive power drawn by the motor at a 50% loading 

condition with a load power factor of 0.69. The real and reactive power values at a 50% 

loading condition are 3 kW and 3.1 kvar, respectively.  It is seen that real and reactive power 

drawn by the motor increases to 3.16 kW and 3.26 kvar, respectively, during the power factor 

correction mode. This is due to the increase in motor terminal voltage from 124V (1.031pu) 

to 126.6V (1.055pu) during power factor correction. Figure  3.25 depicts the RMS voltage at 

the PCC before and after power factor correction.  

Figure  3.26 demonstrates the PV-STATCOM output power during voltage regulation mode 

and power factor correction mode. During the voltage regulation mode, it injects Q_Statcom 

of 180var to the grid in order to regulate the grid voltage. During power factor correction 

mode, it injects 3.27 kvar to compensate for the load reactive power to make PCC power 

factor unity. P_Statcom is -80W during voltage regulation mode and becomes -100W in 

power factor correction mode, to compensate for the PV inverter losses.   

Figure  3.27 depicts the source power at PCC at a 50 % loading condition.  During the time 

0.15 ≤ t ≤ 0.2, P_Source (P_Load + P_Statcom) and Q_Source (Q_Load - Q_Statcom) are 

3.08 kW and 2.92 kvar, respectively, as the real and reactive power requirement of the load is 

3 kW and 3.1 kvar, respectively. At time t ≥ 0.2 seconds, P_Load and Q_Load are increased 
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to 3.16 kW and 3.26 kvar. Hence, P_Source supplies 3.26 kW to the load, and  to compensate 

for additional losses of the PV-STATCOM. Similarly, Q_Source becomes -10 var due to a 

3.27 kvar reactive power injection from the PV-STATCOM. 

 

Figure 3.24 Motor power during light load 

 

Figure 3.25 PCC voltage before and after power factor correction 

 

Figure 3.26 PV-STATCOM output power at 50% loading condition during the night 
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Figure 3.27 Source power at PCC at 50% loading condition during the night 

Figure  3.28 depicts the DC link voltage of PV inverter, maintained at 400V DC during both 

modes of operation. 

Figure  3.29 describes the PCC power factor during voltage regulation mode and power factor 

correction mode. During 0.15 ≤ t ≤ 0.2, the controller is in voltage regulation mode, and the 

grid power factor improves to 0.72 due to a small reactive power injection from the PV 

inverter.  At t=0.2 seconds, the PV-STATCOM controller is given a reference PFref =1 to 

regulate the power factor to unity. It is shown that controller responds within 9.8ms to 

regulate the power to unity by injecting 3.27 kvar to the load. 

 

Figure 3.28 DC link voltage of PV Inverter at 50%  loading condition during the night 
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Figure 3.29 PCC Power factor correction at 50% loading condition during the night 

Figure  3.30 demonstrates the PCC voltage and line current. It is observed that during the 

power factor correction mode, at time t ≥ 0.2 seconds, PCC voltage and current are in phase, 

thus confirming the unity power factor at PCC. Figure  3.31 demonstrates the PV-STATCOM 

output current, which is sinusoidal in nature.  

 

Figure 3.30 PCC voltage and current at 50% loading condition during the night 

 

Figure 3.31 PV-STATCOM output current at 50% loading condition during the night 
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To verify the harmonics output from the PV-STATCOM output current, the total voltage 

harmonics distortion and the total current demand distortion are calculated at PCC and are 

found to be 2% and 5.98% respectively, during this 50% loading condition which are 

considered acceptable as per IEEE 519 [84]. 

3.8.2 Day time operation 

The PV-STATCOM controller performance is demonstrated with two different PV power 

outputs of 2 kW and 4 kW for 80% and 50% loading scenarios respectively. It is noted that 

the PV system used for this study does not have an MPPT controller due to the unavailability 

of computing cards in RTDS. As such, the DC link voltage of the PV inverter is not 

maintained to the reference value of 400V DC.  It is noted that during the day, the PV system 

generates real power, so that the real power requirement of the motor load is fulfilled by both 

the PV system and the source.  

3.8.2.1 2 kW PV power output 

During the day, the PV-STATCOM controller injects real power from the PV array to the 

grid, while also operating in either voltage regulation mode or power factor correction mode, 

utilizing the remaining reactive power capacity after real power generation.  At 2 kW PV 

power output from a 5 kVA PV inverter, the reactive power availability is 4.58kvar based, on 

the relation Q = �(𝑆2 −  𝑃2 ). 

Case 1: 80% Loading 
Figure  3.32 demonstrates the 80% loading condition of the motor, where the real and reactive 

powers drawn by the motor are 5 kW and 3.4kvar, respectively, with motor load operating at 

a power factor of 0.82. It is shown that power drawn by the motor increases to 5.1 kW and 

3.52kvar during the power factor correction mode. This is due to the improvement in the 

motor terminal voltage from 123.4V (1.027 pu) to 126.1V (1.05 pu) after t > 0.2 seconds 

during power factor correction.  Figure  3.33 illustrates the RMS voltage at the PCC before 

and after power factor correction.  

Figure  3.34 demonstrates the PV-STATCOM output power during the day at an 80% loading 

condition. During the time 0.15 ≤ t ≤ 0.2, the real power from the PV system P_Statcom is 2 
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kW, and the reactive power Q_Statcom from the PV inverter is 150 var to regulate PCC 

voltage. At time t ≥ 0.2 seconds, the PV-STATCOM controller operates in power factor 

correction mode and Q_Statcom becomes 3.58 kvar. At time t ≥ 0.2 seconds, when the 

transient period dies out, P_Statcom and Q_Statcom are 1.9 kW and 3.58 kvar, respectively. 

The decrease in P_Statcom is attributed to the PV inverter losses of 100 W, due to the high 

injection of reactive power during power factor correction mode. It is also observed that the 

response of real power P_Statcom is slow compared to the response of the reactive power 

during the transient period, due to slow response of the  DC link voltage of the PV-

STATCOM.   

Figure  3.35 demonstrates DC link voltage of PV-STATCOM during the day, at 2 kW PV. It 

is seen that after the PV-STATCOM controller is given a step input to change to power factor 

correction mode, the DC link voltage takes around 0.1 second to stabilize to 386 V DC, from 

363 V DC in voltage regulation mode.  It is shown that there is a variation in the DC link 

voltage from 363 V DC to 386 V DC due to the absence of an MPPT controller, which 

affects the response of the real power P_Statcom. As the DC link voltage takes longer to 

stabilize due to the unavailability of an MPPT controller, the DC link voltage is simulated 

from 0.15 seconds to 0.45 seconds.  

Figure  3.36 depicts the power requirement from the source during this interval. During the 

time 0.15 ≤ t ≤ 0.2, P_Source (P_Load - P_Statcom) and Q_Source (Q_Load - Q_Statcom) 

are 3 kW and 3.25 kvar respectively, as the real and reactive power requirements of the load 

are 5 kW and 3.52kvar. At time t ≥ 0.2 seconds, the motor’s real and reactive power are 

increased to 5.1 kW and 3.52 kvar, respectively. Hence, source power P_Source and 

Q_Source become 3.2 kW and -60 var due to 3.58 kvar from the PV-STATCOM. As 

P_Statcom is decreased to 1.9 kW due to more losses in the PV inverter, P_Source 

compensates for the additional losses of 100 W. It is noted that, when the PV-STATCOM 

injects more reactive power, extra real power is needed from the source to compensate for the 

PV inverter losses.  
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Figure 3.32 Motor power during the day time at 80 % load with 2 kW PV generation  

 
Figure 3.33 PCC voltage before and after power factor correction during the day 

 
Figure 3.34 PV-STATCOM output power at 2 kW PV and 80% loading condition 
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Figure 3.35 DC link voltage at 2 kW PV and 80% loading condition 

 

Figure 3.36 Source power at PCC at 2 kW PV and 80% loading condition 

Figure  3.37 presents the PCC power factor during both voltage regulation mode and power 

factor correction mode. During the time 0.15 ≤ t ≤ 0.2, power factor at PCC becomes 0.67 

according to the relation cos(tan−1( Q_Source
P_Source

 ) ). At t=0.2 seconds, the PV-STATCOM 

controller is given a reference PFref=1 to regulate the power factor to unity. It is seen that 

controller responds within 9.8ms to regulate the power factor to unity by injecting 3.58 kvar 

to system. It is clarified that the reactive power from the PV-STACOM system is a 

combination of reactive power from the PV-STATCOM and the filter. Figure  3.38 shows the 

reactive power  Q_Filter of 1.46kvar from the filter capacitor. 
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Figure 3.37 PCC power factor at 2 kW PV and 80% loading condition 

 

Figure 3.38 Reactive power output from filter capacitor 

Figure  3.39 depicts the PCC voltage and current waveform during both modes of operation. 

It is observed that during the power factor correction mode at time t ≥ 0.2 seconds, PCC 

voltage and current are in phase, thus confirming the unity power factor at PCC. Figure  3.40 

demonstrates the PV-STATCOM output current. An increase in the PV-STATCOM output 

current is noted during power factor correction mode, compared to during voltage regulation 

mode. This is attributed to high reactive current injection from the PV-STATCOM during 

power factor correction mode, at time t ≥ 0.2 seconds. To check the harmonics content from 

the PV-STATCOM output current, total voltage harmonics distortion and total current 

demand distortion at PCC are calculated and found to be 1.9% and 4.9% respectively, which 

is within the specified limit, as per IEEE 519 [84]. 
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Figure 3.39 PCC voltage and current waveform at 2 kW PV and 80% loading condition 

 

Figure 3.40 PV-STATCOM output current at 2 kW PV and 80% loading condition 

Case II: 50% Loading 

Figure  3.41 depicts the 50% loading condition where the real and reactive powers drawn by 

the motor are 3 kW and 3.1 kvar, respectively.  In this loading scenario, the load operates at a 

power factor of 0.69.  It is shown that real and reactive power drawn by the motor increases 

to 3.16 kW and 3.25 kvar, respectively, due to the increase in motor terminal voltage from 

124.3 V (1.027pu) to 126.7 V (1.05pu) during the power factor correction mode. Figure  3.42 

depicts the RMS value of the PCC voltage. Figure  3.43 presents the PV-STATCOM output 

power during the day, when the motor operates at a 50% loading condition. During the time 

0.15 ≤ t ≤ 0.2, P_Statcom is 2 kW and Q_Statcom is 50 var. Similarly, at t ≥ 0.2 seconds, 

P_Statcom is 1.9 kW due to a 100 W loss in the PV inverter, and Q_Statcom is 3.4 kvar as 

the PV-STATCOM operates in power factor correction mode. 
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Figure 3.41 Motor power during the day at 2 kW PV and 50% loading condition 

 
Figure 3.42 PCC voltage before and after power factor correction at 50% loading condition 

 
Figure 3.43 PV-STATCOM output power at 2 kW PV and 50% loading condition 

Figure  3.44 depicts the power requirement from the source at a 50% loading condition. It is 

seen that P_Source (P_Load - P_Statcom) and Q_Source (Q_Load - Q_Statcom) are 1 kW 

and 3.05 kvar respectively, at PCC during voltage regulation mode due to a 50var injection 

from the PV-STATCOM.  At time t ≥ 0.2 seconds, P_Load and Q_Load are increased to 3.16 
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and 3.25 kvar, respectively. Hence, P_Source becomes 1.26 kW to supply an additional load 

power requirement and Q_Source becomes -150 var due to the reactive power injection of 

3.4 kvar from the PV-STATCOM. 

Figure  3.45 demonstrates the PCC power factor during both voltage regulation mode and 

power factor correction mode. During the time 0.15 ≤ t ≤ 0.2, PCC power factor becomes 

0.32 cos(tan−1(Q_Source 
P_Source

 ) ). At t=0.2 seconds, the PV-STATCOM controller is given a 

reference PFref=1 to regulate the power factor to unity. It is seen that controller responds 

within 9.6 ms to regulate the power to unity due to full reactive power support of 3.4 kvar 

from both the PV inverter and the filter capacitor. The variations of power output of the PV-

STATCOM and source power at PCC during the transient follow the same pattern due to the 

absence of an MPPT controller as in the 80% loading condition.  

 
Figure 3.44 Source Power at PCC with 2 kW PV and 50% loading condition 

 

Figure 3.45 PCC Power factor at 2 kW PV and 50% loading condition 
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Figure  3.46 depicts the PCC voltage and line current that confirms the unity power factor at 

PCC. DC link voltage and PV-STATCOM output currents are similar in both cases of 80% 

and 50% loading. Total voltage harmonics distortion and total current demand distortion are 

calculated at PCC and found to be 1.8% and 4.5%, respectively, both of which are considered 

acceptable as per IEEE 519 [84]. 

 

Figure 3.46 PCC voltage and current waveform at 2 kW PV and 50% loading condition 

3.8.2.2 4 kW PV power output 

At 4 kW PV power output from a 5kVA PV inverter, the reactive power availability is 3kvar 

based on the relation Q = �(𝑆2 −  𝑃2 ). the PV-STATCOM controller is tested with 80% 

and 50% loading conditions at 4 kW PV output. 

Case 1: 80% Loading 

Figure  3.47 demonstrates the 80% loading condition of the motor; where the real and reactive 

powers drawn by the motor are 5 kW and 3.4 kvar respectively, with the load operating at a 

power factor of 0.82.  It is shown that power drawn by the motor increases to 5.2 kW and 

3.58 kvar during the power factor correction mode, due to the increase in motor terminal 

voltage as demonstrated in previous cases.  
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Figure 3.47 Motor power during the day at peak load 

Figure  3.48 depicts the PV-STATCOM output power during the day at 4 kW PV with 80% 

loading condition of the motor. During the time 0.15 ≤ t ≤ 0.2, P_Statcom is 4 kW and 

Q_Statcom is 150 var. At time t ≥ 0.2 seconds, during power factor correction mode, 

Q_Statcom is 3.6 kvar, to compensate for the reactive power requirement of the load. 

P_Statcom is decreased to 3.8 kW due to inverter losses. The decrease in P_Statcom is 

related to the losses of the PV inverter. It is seen that response of real power P_Statcom is 

slow, due to the variation in the DC link voltage. Figure  3.49 depicts the DC link voltage Vdc 

at 4 kW PV. During the voltage regulation mode, Vdc is 385V and it increases to 403V DC 

during power factor correction mode due to the unavailability of an MPPT controller. 

Figure  3.50 depicts the power requirement from the source during a 4 kW PV generation at 

80% loading condition of the motor. It is seen that P_Source (5 kW - 4 kW) and Q_Source 

(3.4 kvar – 0.15 kvar) are 1 kW and 3.25 kvar, respectively, at PCC during the time 0.15 ≤ t 

≤ 0.2. At time t ≥ 0.2 seconds, P_Load and Q_Load both are increased to 5.2 kW and 3.58 

kvar, respectively. Hence, P_Source becomes (5.2 kW - 3.8 kW) 1.4 kW and Q_Source 

becomes (3.58 kvar- 3.6 kvar) -20 var.   

Figure  3.51 demonstrates the PCC power factor during both voltage regulation and power 

factor correction mode.  During the time, 0.15 ≤ t ≤ 0.2, power factor at PCC is 0.29 

(cos(tan−1( 3.25
1

 ) ). At t=0.2 seconds, the PV-STATCOM controller is given a reference 

PFref=1 to regulate the power factor to unity, operating in power factor correction mode. The 

PV inverter and filter capacitor both contribute 3.6kvar to compensate for the load reactive 
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power requirement. Variation of power output of the PV-STATCOM and source power at 

PCC during the transient follows the same pattern due to the absence of an MPPT controller.  

 

Figure 3.48 PV-STATCOM output power at 4 kW PV and 80% loading condition 

 

Figure 3.49 PV-STATCOM DC link voltage at 4 kW PV and 80% loading condition 

 

Figure 3.50 Source power at PCC during 80% loading condition at 4 kW PV 
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Figure 3.51 Power factor at PCC during 80% loading condition at 4 kW PV 

Figure  3.52 depicts the PCC voltage and line current, which are in phase, thus confirming 

unity power factor mode of operation at time t ≥ 0.2 seconds. Figure  3.53 demonstrates the 

PV-STATCOM output current. Total voltage harmonics distortion and total current demand 

distortion at the PCC are calculated and are found to be 2.1% and 4.5% respectively which 

are considered acceptable as per IEEE 519 [84].  

 

Figure 3.52 PCC voltage and current waveform at 4 kW PV and 80% loading condition 

 
Figure 3.53 PV-STATCOM output current at 4 kW PV power and 80% loading condition 
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Case II: 50% Loading 

Figure  3.54 depicts a 50% loading condition where the real and reactive powers drawn by the 

motor are 3 kW and 3.1 kvar respectively, and the load operates at a power factor of 0.69 

(cos(tan−1( 3.1
3

 ) ). It is seen that the real and reactive power values are increased to 3.16 and 

3.28 kvar, respectively.   

Figure  3.55 demonstrates the PV-STATCOM real and reactive power at 4 kW PV power 

output and a 50% loading condition. During the time 0.15 ≤ t ≤ 0.2, P_Statcom is 4 kW and 

Q_Statcom is 100 var. At time t ≥ 0.2, the PV-STATCOM operates in power factor mode.  

At steady state, P_Statcom is 3.85 kW and Q_Statcom is 3.3 kvar to compensate for the load 

reactive power requirement.   

Figure  3.56 depicts the power requirement from the source at a 50% loading condition. 

During the time 0.15 ≤ t ≤ 0.2, PV power output is 4 kW, and the load power requirement is 

3 kW, hence there is a reverse power flow of -1 kW to the source. Thus, P_Source is -1 kW 

(3 kW- 4 kW).  As Q_Statcom is 100var and Q_Load is 3.1kvar, Q_Source is 3 kvar (3.1 

kvar - .1 kvar).  At time t ≥ 0.2, P_Load and Q_Load are 3.16 kW and 3.28 kvar, 

respectively. P_Source is -690 W (3.16 kW – 3.85 kW) during the steady state and Q_Source 

becomes -20 var (3.28 kvar - 3.3 kvar) due to the reactive power support from the PV 

inverter and filter capacitor.  

 

Figure 3.54 Load power during 4 kW PV and 50% loading condition 
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Figure 3.55 PV-STATCOM output power at 4 kW PV and 50% loading condition 

 

Figure 3.56 PCC power at 4 kW PV and 50% loading condition 

Figure  3.57 depicts the power factor at PCC during the day at 4 kW and a 50% loading 

condition. It is seen that during the time, 0.15 ≤ t ≤ 0.2, the PCC power factor is 0.32 

according to this relation (cos(tan−1( 3
1
 )). At time t ≥ 0.2, the PV-STATCOM controller 

operates in power factor correction mode. It is seen that controller responds within 10ms by 

supplying 3.3 kvar to the network, thus regulating the power to unity. From Figure  3.57, it is 

also seen that power factor becomes zero at two instances; one at 0.205 seconds, and the 

other at 0.248 seconds. This is due to zero crossing of P_Source during the transient state, 

which is explained below. During the time 0.15 ≤ t ≤ 0.2, P_Source is -1 kW. At time t = 0.2 

seconds, the controller changes its state from voltage regulation mode to power factor 

correction mode. During the transient, P_Statcom drops from 4 kW to 2 kW and again comes 

back to 3.8 kW in steady state. It is seen from Figure  3.56 that P_Source changes from -1 kW 

to 1 kW; making a zero crossing at t=0.205 seconds, to supply the load power of 3 kW. 
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Figure 3.57 Power factor at PCC at 4 kW PV and 50% loading condition 

Another instance at t=0.248 seconds, when P_Statcom stabilizes to 3.8 kW, there is a zero 

crossing of P_Source from a positive value to -690 W, making the power factor zero again 

due to the relationship (cos(tan−1( 3.4
0

 ) ). These two scenarios of change of P_Source makes 

P_Source become zero; thus making the power factor zero momentarily, according to the 

relation (cos(tan−1( Q_Source
P_Source

 ) ).   

The DC link voltage and PV inverter output current are similar in both cases of 80% and 

50% loading. Total voltage harmonics distortion and total current demand distortion are 

calculated at PCC and found to be 2% and 4.2% respectively, during the 50% loading 

condition at 4 kW PV output which are within the limits specified in IEEE 519 [84]. 

3.9 CONCLUSIONS 
A real-time digital simulation in RTDS of the PV-STATCOM controller for power factor 

correction for both night and day is presented. A system model of the London Hydro 

network, 5 kVA PV-STATCOM, and 6 kW motor load is developed using RTDS. The Pulse 

Width Modulated control method is employed for the PV-STATCOM controller.  Due to the 

hardware limitation of RTDS in our laboratory, an MPPT could not be modeled. The PV 

system without the MPPT controller is considered for this study. The PV-STATCOM 

controller for power factor correction is demonstrated for both 80% and 50% loading 

conditions during the night, and at two different PV power outputs of 4 kW and 2 kW during 

the day.  The following conclusions are made: 
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i) The PV-STATCOM controller responds in approximately one cycle during both night 

and day, for different loading conditions at different PV power outputs of 2 kW and 4 

kW.  

ii) When the PV-STATCOM injects both real power and reactive power during the day, 

the inverter losses are seen to increase.  

iii) During the night, when the PV-STATCOM operates as STATCOM, the response of 

both real and reactive power during switching to power factor correction mode is 

exactly the same. However, during the day, the response of reactive power and real 

power are less than one cycle and 6 cycles, respectively. The slow response of real 

power is due to the absence of an MPPT controller to stabilize the DC link voltage.  

From the studies, it is confirmed that the developed PV-STATCOM controller works 

effectively for different PV outputs and during different loading conditions.  
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Chapter 4  

4 HARDWARE IN THE LOOP SIMULATION OF PV-STATCOM 
CONTROLLER FOR POWER FACTOR CORRECTION 

 

4.1 INTRODUCTION 
This chapter presents a Hardware-in-the-Loop (HIL) simulation of the PV-STATCOM 

controller developed using the Real Time Digital Simulator (RTDS), as discussed in Chapter 

3. The objective of the HIL simulation is to verify the performance of the PV-STATCOM 

controller in a real hardware system. The PV system, London Hydro network, induction 

motor load, and the PV Inverter are all modeled internally using RTDS. The PV-STATCOM 

controller is implemented external to RTDS using a digital signal processor based dSPACE 

controller [73]. The dSPACE system is interfaced to RTDS through interface circuits. The 

performance of the PV-STATCOM controller is evaluated for power factor correction during 

both day and night, for different loading conditions.  A comparison of the real time software 

simulation and hardware simulation of the PV-STATCOM controller is also presented. 

4.2 HIL SIMULATION ENVIRONMENT FOR PV-STATCOM 
CONTROLLER IN RTDS AND dSPACE  
Figure  4.1 depicts the HIL simulation environment of the PV-STATCOM controller. The 

interfacing of the external controller with the RTDS is illustrated in Figure  4.1. Ten input 

signals for the controller are sent from the RSCAD run time simulation environment through 

the Digital-Digital Analog Converter (DDAC) card present in RTDS. dSPACE reads these 

signals and performs appropriate control actions to generate six output signals for the PV-

STATCOM IGBT switches modeled in the RSCAD run time environment. These signals are 

brought into the RTDS simulation environment using a Giga Transceiver Digital Interface 

(GTDI) card.  The dSPACE controller board and RTDS used in the laboratory for HIL 

simulation are shown in Appendix C.1 and C.2 respectively. 
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Figure 4.1 HIL simulation of PV-STATCOM controller using dSPACE and RTDS 
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4.3 dSPACE PLATFORM  

4.3.1 Overview of dSPACE Software 

Different types of real time controller platforms are used in the Controller-Hardware-In- 

Loop (CHIL) simulation, such as dSPACE [73], xPC targets [96], and National Instruments 

[97], for rapid prototype developments. dSPACE is one of the popular platforms used in 

various industrial applications because of its several advantages such as: extensive array of 

software, visualization tools, and different hardware options. Hence, the dSPACE hardware 

platform is chosen for the implementation of the PV-STATCOM controller. 

 

Figure 4.2 Block Diagram of dSPACE software system 

Figure  4.2 demonstrates the dSPACE software system. MATLAB/Simulink provides 

different block sets to create a model for the PV-STATCOM controller. Simulink Coder then 

translates the model into custom C code specific to the dSPACE controller board. PPC 

Compiler combines the C code with RTI libraries information in order to execute the 

developed model on the dSPACE controller board using the MATLAB library functions 

MLIB/MTRACE. To enable a model to run in a specific dSPACE hardware platform, RTI 

libraries provide Simulink/dSPACE blocks as well as an input/output interface between 

Simulink and the dSPACE controller. Similarly, Control Desk is a GUI (Graphical User 
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Interface) used to monitor the program variables during the run time of the simulation.   

Device Driver provides an interface to access the dSPACE controller board from the 

MATLAB/Simulink environment, or from the Control Desk software, running on the 

workstation PC. The detailed software architecture is provided in the dSPACE software 

manual [73]. 

4.3.2 Overview of dSPACE Controller Board 

Figure  4.3 demonstrates the dSPACE Controller hardware subsystems. The dSPACE 

controller board is comprised of a DS1103 controller card,  link boards (DS817 and DS814) 

to communicate between host PC and the PX4 expansion box, and a connector panel 

(CLP1103). The detailed hardware architecture is outlined in the dSPACE hardware manual 

[73]. Ethernet crossover cable is used to connect the host PC to the dSPACE system. 

Similarly, different adapter cables are used to connect the DS1103 controller board to the 

CLP1103. 

4.3.2.1 PX4 Expansion Box 

A PX4 expansion box houses the power supply units, the DS1103 controller card, and the 

DS814 link board. 

4.3.2.2  DS1103 controller card 

The DS1103 controller card is the main controller card where PV-STATCOM controller 

runs. It is comprised of two controllers: the master controller, and a slave Digital Signal 

Processor (DSP) subsystem. The master controller is a Motorola Power PC (PPC) processor 

running at a clock rate of 333MHz. The slave DSP is a Texas Instrument based DSP 

microcontroller (TMS320F240) which operates at 20MHz.  

4.3.2.3 DS817 Link Board 

The DS817 is a PCI interface card installed in the PC. It is used to communicate between the 

PC and the DS814 link board installed in the PX4 expansion box, housing the DS1103 

controller card. 
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Figure 4.3 Block Diagram of dSPACE hardware system 

4.3.2.4 DS814 Link Board 

The DS814 is an ISA bus interface card installed in the expansion box [73]. It is used to 

communicate between the DS1103 located in PX4, and the DS817 card installed in the PC. 

4.3.2.5 CLP1103 Connector Panel 

The CLP1103 provides analog and digital input and output signals to access I/O units of the 

DS1103 controller board. The connector panel is equipped with BNC connectors to provide 

connections for the analog signals. Similarly, digital signals and serial interface signals are 

accessed by Sub-D connectors.    

4.4 SIMULINK MODEL OF PV-STATCOM CONTROLLER 

The PV-STATCOM controller is developed using the Simulink software environment, with 

MATLAB-dSPACE block sets. These block sets are available from RTI1103 and from 

MATLAB libraries. These libraries are initialized in the MATLAB/Simulink environment 

once MATLAB starts running [54]. 

              Connector Panel 
CLP1103

DS817 Link Board

Control Desk 

MATLAB/
SIMULINK

Host PC

DS814 Link Board

PX4 Expansion Box

DS1103 Controller Card

Power 
Supply

Unit

Analog/
Digital 

Interface

LED

LED

Ethernet  crossover cable

Adapter Cables



86 

 

 

 

 Figure  4.4 depicts the Simulink model of the PV-STATCOM controller. This model is 

developed with Simulink block sets along with dSPACE real time interface library block 

sets. Simulink block sets are used for the PLL module and for three abc to dq conversion 

modules such as: Vs, and abc2dq to calculate bus voltages, Iinv abc2dq to calculate inverter 

currents, and ILoad abc2dq to calculate load currents in the d-q reference frame, for control 

purposes. Similarly, current control, power factor control, DC bus voltage controllers, and 

voltage regulation modules are developed using Simulink block sets. These modules and 

their operations are discussed in Chapter 3 (Sec. 3.5). The components related to Simulink 

and dSPACE block sets are discussed in this section.  

Analog to Digital Converter (ADC) blocks are used to read analog signals from RTDS to 

dSPACE hardware. “MUXADC” is used to read up to four channels of one of the 4 parallel 

A/D converters. Input voltage ranges of these blocks are between ±10V, and output signals 

are between ±1V.  Hence, appropriate scaling factors are used to obtain the required values at 

the output of the ADC block in the Simulink model of the controller. In this study, ADC 

blocks are used to read three Point of Common Coupling (PCC) bus voltages and one DC 

link voltage from RTDS. Similarly, MUXADC blocks are used to read three load currents 

and inverter output currents.  As such, ten voltage sensors are connected to different ADC 

channels of the connector panels (CLP1103) to forward these signals from RTDS into the 

DS1103 controller hardware. 

Configuration parameters for the Simulink model are chosen as per the dSPACE user manual 

[73]. The controller developed using RTDS operates at a fixed time step of 50µs, hence  a 

50µs time step is used in the Simulink model, to validate the controller performance. A 

DS1103_DSP_PWM2 block is used to generate three phase pulse width modulated (PWM) 

signals for the IGBT switches in RTDS.  6kHz of PWM frequency is chosen for this 

simulation. This block generates 6PWM signals with original and inverted outputs, which are 

then sent through the Sub-D type connector on the slave I/O to the RTDS simulation 

environment. 
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Figure 4.4 Simulink model of PV-STATCOM controller 

4.5 HIL TEST SET UP  
In the HIL test setup, the network, the photovoltaic system, and the inverter with IGBT 

switches are all implemented in RTDS and the PV-STATCOM controller is implemented in 

the dSPACE controller board.  As described in the previous section, the PV-STATCOM 

controller requires ten input signals to generate PWM firing pulses for the IGBT switches of 

the PV-STATCOM.   

Figure  4.5 presents the DDAC card, a 12-channel output block in RTDS, which is used to 

send ten analog signals out from the RTDS simulation environment to the dSPACE 

controller board. 
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Figure 4.5 DDAC card used to send signals from RTDS to dSPACE Controller 

It is noted that the DDAC channel output gives the peak values of all of the voltage and 

current signals sent from the RTDS simulation environment. The voltage ranges of DDAC 

analog channels are ±10V.  These ten signals are divided into four different groups: GROUP 

#1, GROUP #2, GROUP #3, and VDC, due to the different amplitude of the signals. GROUP 

#1 represents three PCC bus voltages. GROUP #2 represents three inverter output currents. 

GROUP #3 represents three load currents, and finally, VDC represents the PV inverter DC 

link voltage. Each group is applied with a different scaling factor to match the ±10V voltage 

level of the DDAC output channels.  

Figure  4.6 illustrates the scaling factors used for the grid voltage.  A scaling factor of 100 is 

applied to GROUP #1 to match the grid voltage of 169.831V (peak value of grid phase 

voltage) to the ±10 V range of the DDAC analog channel.  From  Figure  4.6, it is shown that 

a value of 100V in the RTDS simulation environment corresponds to 5V at the output of the 

DDAC channel. Thus, 169.831V corresponds to 8.49V at the output of the DDAC channel. 

Similarly, a scaling factor of 20 is applied to both GROUP #2 and GROUP #3 signals, which 
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represent a PV inverter output current (19.62A) and the induction motor current (23.55A), 

respectively. A factor of 225 is applied for the DC link voltage (400V).  

 

Figure 4.6 Scaling factors used for grid voltage 

Figure  4.7 depicts the HIL simulation set up. The output of the DDAC channels are 

connected to the analog channels of the connector panel (CLP1103) of the dSPACE 

controller board. These DDAC analog channels are used to bring ten analog signals from 

RTDS to the dSPACE hardware. Control software running on the DS1103 controller card 

reads these signals from CLP1103 and internally processes these signals based on different 

modes of operation (either power factor correction mode or voltage control mode) of the 

controller and finally, generates six firing pulses.  

These firing pulses are sent to RTDS through a Sub-D type connector. To transfer six PWM 

pulses from the dSPACE controller board to the RTDS environment, a Giga Transceiver 

Digital Input (GTDI) card on RTDS is used. The GTDI card provides 64 optically isolated 

digital input channels that operate at 5V. The GTDI card is connected to the Giga Processor 

Card (GPC) on the RTDS. GPC is responsible for small time step simulation where the PV-

STATCOM switches (IGBTs) are modeled. Figure  4.7 shows the GTDI card on the rear end 

of RTDS, used to retrieve PWM pulses from dSPACE board into the GPC card of RTDS. 

The control compiler running on RTDS software reads these signals from GPC and generates 

the proper firing sequence for the PV-STATCOM IGBT switches. 
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Figure 4.7 HIL simulation environment  
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4.6 HIL TEST RESULTS 
This section presents the results from the HIL simulation of the PV-STATCOM controller 

during the day with PV power output of 2 kW, as well as during the night, with 80% and 

50% loading conditions. As described in Sections 4.4 and 4.5, the PV-STATCOM controller 

needs ten input signals for power factor control and generates six firing pulses for the IGBT 

switches modeled in RTDS. Hence, these input/output signals, along with the results from the 

RTDS real time environments, are presented in this section. 

4.6.1 Daytime operation 

4.6.1.1 Case 1: 80% loading 

The measurements have been performed using a Tektronix oscilloscope (TDS2024). The number 

of Volts/div, A/div, and time/div are specified below each photograph. Figure  4.8 demonstrates 

the experimental results for the PV-STATCOM controller during a 2 kW power output from the 

PV system at an 80% loading condition of the induction motor. 

Figure  4.8 (a), (b), (c) and (d) present three phase PCC bus voltages, three phase inverter output 

currents, three phase load currents, and DC link voltages, respectively. These 10 analog signals 

are sent through the DDAC card of RTDS to the PV-STATCOM controller, running on the 

dSPACE board. Three phase bus voltages (125.86V rms phase to ground) at the PCC are applied 

with a scaling factor of 100.  These voltage signals are sent to the DDAC output channel. The 

measured values at the DDAC channels for three phase voltages are 8.9V. Three phase inverter 

output currents of 13A rms values are applied with a scaling factor 20. These signals are sent to 

the DDAC output channel and the measured values at the DDAC channels for three phase 

currents are 4.6V.  Three phase motor load currents of magnitude 16.97A rms values are applied 

with a scaling factor of 20. The measured values for motor load currents at the DDAC channel 

are found to be 6V. Similarly, a DC bus voltage of 400V DC is applied with a scaling factor of 

225. The corresponding value measured at the DDAC output channel is found to be 8.8V. The 

PV-STATCOM controller, running in the dSPACE controller board to generate six firing pulses, 

processes these ten signals from the DDAC card of RTDS. Figure  4.8 (e) demonstrates the 

inverter output current before and after filter, which demonstrates the effectiveness of the filter. 

Figure  4.8 (f) depicts that the PCC voltage and current are in phase, thus, confirming the unity 

power factor operation at PCC.  Figure  4.8 (g), (h), and (i) present the firing pulses coming out 
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from the PV-STATCOM controller to the GTDI card on RTDS. These firing pulses are 5V 

signals that come to the input of the GTDI card. The control compiler running in RTDS reads 

these signals and generates proper firing sequences for the PV-STATCOM IGBT switches.  

 
Figure 4.8 HIL Experimental results at 80% loading during PV- STATCOM mode 

 

Figure 4.9 RTDS Measurements during PV-STATCOM mode at 80% loading condition 
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Figure  4.9 demonstrates the meter readings of motor load, PCC, and PV-STATCOM output 

power, along with PCC power factor in RTDS simulation environment in watts and vars, 

respectively. These values are then compared with the RTDS simulation result in Section 

3.7.2.1 of Chapter 3, during the power factor correction mode described below.  

The real and reactive power values of the motor load were 5100 watt and 3520 var, 

respectively, in the RTDS software simulation and are shown to be 5049 watt and 3347 var 

in the HIL simulation, respectively.  The real and reactive power values from the PV inverter 

were 1900 watt and 3580 var, respectively, in the RTDS software simulation, and are 

demonstrated to be 1970 watt and 3560 var in the HIL simulation. The real and reactive 

power values of the source were found to be 3200 watt and -60 var in the RTDS software 

simulation and are shown to be 3269 watt and -113var in the HIL simulation, respectively. 

The power factor is demonstrated to be unity. It is thus seen from the meter reading that the 

steady-state performance of the PV-STATCOM controller is similar in both the RTDS 

simulation and the HIL simulation.  

4.6.1.2 Case 2: 50% loading 

Figure  4.10  (a), (b), (c), and (d) demonstrate ten signals sent from RTDS to the dSPACE 

controller board. These are three phase PCC bus voltages, three phase inverter output currents, 

three phase load currents, and the DC link voltage. Three phase bus voltages (127V rms phase to 

ground) at PCC are applied with a scaling factor of 100, and are sent to the DDAC output 

channel.  The measured value at the DDAC channels for three phase voltages are 8.98V.  Three 

phase inverter output currents of 12.4A rms values are applied with a scaling factor 20 and sent 

to the DDAC output channel.  The values measured at the DDAC channels for three phase 

voltages are 4.4V. Three phase motor load currents of magnitude 13A rms values are applied 

with a scaling factor of 20, and the measured values for the motor load currents at the DDAC 

channel are 4.6V. Similarly, a DC bus voltage of 396V DC is applied with a scaling factor of 

225, and the measured value for the DC bus voltage at the DDAC output channel is 8.8V. An 

increase in PCC voltage is noted, caused by the light load condition of motor load. Figure  4.10 

(e) demonstrates the inverter output current.  Figure  4.10 (f) demonstrates the PCC voltage and 

current waveform. It is seen that both PCC voltage and current are in phase, which ensures unity 

power factor operation.  Similarly, Figure  4.10 (g), (h), and (i) represent the firing pulses 

coming out from the PV-STATCOM controller to the GTDI card on RTDS. The control compiler 
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generates proper firing sequences for the PV-STATCOM IGBT switches, based on the firing 

pulses received at the GTDI input.  

 

Figure 4.10 HIL Experimental results at 50% loading during PV- STATCOM mode 

 

Figure 4.11 RTDS Measurements during PV-STATCOM mode at 50% loading condition 
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Figure  4.11 demonstrates the meter reading of load, PCC, and PV-STATCOM output power, 

along with the PCC power factor in RTDS simulation environment.   These values are 

compared to the RTDS simulation results in Section 3.7.2.1 of Chapter 3 during the power 

factor correction mode, described below.  

The real and reactive power of the motor load were 3160 watt and 3250 var, respectively, in 

the RTDS software simulation and are shown to be 3076 watt and 3089 var in the HIL 

simulation, respectively.  The real and reactive power from the PV inverter were 1900 watt 

and 3400 var, respectively, in the RTDS software simulation and are demonstrated to be 

1976 watt and 3169 var in the HIL simulation, respectively. The real and reactive power of 

the source were 1260 watt and -150 var, respectively, in the RTDS software simulation, and 

are shown to be 1188 watt and -81 var in the HIL simulation. The power factor is 

demonstrated to be unity. It is thus seen from the meter reading that the steady-state 

performance of the PV-STATCOM controller is similar in both the RTDS simulation and the 

HIL simulation.  

4.6.2 Nighttime operation 

4.6.2.1 Case 1: 80% loading 

Figure  4.12  (a), (b), (c), and (d) present three phase bus voltages at PCC, three phase inverter 

output currents, three phase load currents, and DC link voltages, respectively. Three phase bus 

voltages (125.8V rms phase to ground) at PCC are applied with a scaling factor of 100. The 

measured values at the DDAC channels for three phase voltages are 8.9V. Three phase inverter 

output currents of 11.8A rms values are applied with a scaling factor 20 and sent to the DDAC 

output channel. The values measured at the DDAC channels for three phase voltages are 4.2V. 

Three phase motor load currents of magnitude 16.97A rms values are applied with a scaling 

factor of 20, and the measured values for motor load currents at the DDAC channel are found to 

be 6V. Similarly, a DC bus voltage of 400.5V DC is applied with a scaling factor of 225, and the 

measured value for the DC bus voltage at the DDAC output channel is 8.9V. These ten signals 

from the DDAC card in RTDS are processed by the PV-STATCOM controller running on the 

dSPACE controller board, to generate six firing pulses. Firing pulses during the STATCOM 

mode are found to be similar to those produced during the day. Figure  4.12 (e) demonstrates the 

inverter output current before and after the filter, demonstrating the satisfactory performance of 
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the filter. Figure  4.12 (f) shows that PCC voltage and current are in phase, thus confirming the 

unity power factor operation at PCC. Figure  4.13 demonstrates the meter reading of the load, 

PCC, and PV-STATCOM output power, along with PCC power factor in the RTDS 

simulation environment. These values are compared with the RTDS simulation results in 

Section 3.7.1.1 of Chapter 3, during power factor correction mode, described below. 

 
Figure 4.12 HIL Experimental results at 80% loading during STATCOM mode 

 

Figure 4.13 RTDS Measurements during STATCOM mode at 80% loading condition 
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The real and reactive power values of the motor load were 5080 watt and 3500 var, 

respectively, in the RTDS software simulation, and are shown to be 5067 watt and 3391 var 

in the HIL simulation.  The real and reactive power values from the PV inverter were -80 

watt and 3510 var, respectively, in the RTDS software simulation, and are demonstrated to 

be -271 watt and 3434 var in the HIL simulation. The values of real and reactive power of the 

source were 5160 watt and -10 var, respectively, in the RTDS software simulation, and are 

shown to be 5387 watt and -90 var in the HIL simulation. The power factor is demonstrated 

to be unity. It is thus seen from the meter reading that the steady-state performance of the 

PV-STATCOM controller is similar in both the RTDS simulation and the HIL simulation.  

4.6.2.2 Case 2: 50% loading 

Figure  4.14 (a), (b), (c), and (d) demonstrate ten signals sent from RTDS to the dSPACE 

controller board: three phase PCC bus voltages, three phase inverter output currents, three phase 

load currents, and the DC link voltage. Three phase bus voltages (127.2V rms phase to ground) at 

PCC are applied with a scaling factor of 100 and are sent to the DDAC output channel.  The 

measured values at the DDAC channels for three phase voltages are found to be 9V.  Three phase 

inverter output currents of 11.8A rms values are applied with a scaling factor 20 and sent to the 

DDAC output channel.  The values measured at the DDAC channels for the three phase voltages 

are 4.2V. Three phase motor load currents of magnitude 13A rms values are applied with a 

scaling factor of 20. The measured values for motor load currents at the DDAC channel are 4.6V. 

Similarly, a DC bus voltage of 400.5V DC is applied with a scaling factor of 225, and the 

measured value for the DC bus voltage at the DDAC output channel is 8.9V.  Firing pulses going 

into RTDS from dSPACE are similar to those seen during the day.  The control compiler 

generates proper firing sequences for the PV-STATCOM IGBT switches based on the firing 

pulses received at the GTDI input. Figure  4.14 (e) and (f) demonstrate the inverter output 

current and unity power factor operation at PCC. Figure  4.15 demonstrates the steady state 

meter reading of the load, PCC, and PV-STATCOM output power, along with PCC power 

factor in the RTDS simulation environment. These values are compared to the RTDS 

simulation results in Section 3.7.1.2 of Chapter 3, during power factor correction mode as 

discussed below.  

The real and reactive power of the motor load were 3166 watt and 3260 var, respectively, in 

the RTDS software simulation, and are shown to be 3051 watt and 3081 var in the HIL 
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simulation.  The real and reactive power from the PV inverter were -100 watt and 3270 var, 

respectively, in the RTDS software simulation, and are demonstrated to be -180 watt and 

3178 var in the HIL simulation. The real and reactive power of the source were 3266 watt 

and -10 var, respectively, in the RTDS software simulation, and are shown to be 3299 watt 

and -120 var in the HIL simulation. The power factor is demonstrated to be unity. It is thus 

seen from the meter reading that the steady-state performance of the PV-STATCOM 

controller is similar in both the RTDS simulation and the HIL simulation.  

 
Figure 4.14 HIL Experimental results at 50% loading during STATCOM mode 

 
Figure 4.15 RTDS simulation during STATCOM mode results at 50% loading condition 
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4.7 CONCLUSION 
This Chapter presents a Hardware-in-the Loop simulation of the PV-STATCOM controller, 

developed in dSPACE, to test the controller performance for power factor correction. 

dSPACE has two main controllers: a master controller and a slave DSP controller.  The PV-

STATCOM controller developed in the RTDS simulation environment is taken out and 

implemented in dSPACE hardware, while the London Hydro network, 5 kW PV panel with a 

PV Inverter and motor load are simulated in the RTDS environment. Ten input signals for the 

controller are sent from the RSCAD run time simulation environment through the Digital-

Digital Analog Converter (DDAC) card present in RTDS. dSPACE reads these signals and 

performs appropriate control actions to generate six output signals for the PV inverter,  

modeled in RSCAD run time environment.  The real-time simulation in RTDS and the 

experimental HIL simulation are both carried out during the time when PV is generating 2 

kW and also during the night, at 80% and 50% loading conditions of the motor. The power 

factor correction performance of the PV-STATCOM controller designed in the RTDS 

environment is validated by the dSPACE-based PV-STATCOM controller developed in the 

HIL simulation.  

From the HIL simulation, it is confirmed that the PV-STATCOM controller works 

effectively during different operating scenarios. The performance of the PV-STATCOM 

controller for power factor correction is demonstrated by the PV-STATCOM generating 

active power during the day, and acting as a STATCOM during the night.  
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Chapter 5  

5 HARMONIC IMPACT STUDIES OF LARGE SCALE SOLAR 
FARM 

5.1 INTRODUCTION 
This chapter presents a unique case study of harmonics impact and network resonance in the 

Bluewater Power distribution network which connects the largest solar farm in North 

America of 80 MW. IEEE 519 recommends a power quality analysis for the system as it has 

a large number of dispersed generators that inject harmonics to the network. Large scale PV 

solar farms use a substantial number of power electronic converters. Therefore, a detailed 

harmonic analysis is performed on the Bluewater Power network in order to study the impact 

of this large scale solar farm on its distribution system. In addition to this analysis, the impact 

of harmonics from a 10 kW PV solar system is also presented. This study is performed based 

on the detailed network data, central Geographical Information System (GIS) database, and 

Supervisory Control and Data Acquisition (SCADA) infrastructure made available by 

Bluewater Power Corporation. The network is modeled in detail using PSCAD/EMTDC, 

which is validated with load flow studies using the CYME software and SCADA 

measurements. The validated network model is used for the network resonance study and 

harmonic analysis in the presence of a large solar farm for different operating scenarios of 

the network. This study is conducted for the steady state operating conditions neglecting any 

presence of ambient harmonics in the network. 

5.2 SYSTEM DESCRIPTION 

5.2.1 Sarnia Solar Farm 

The Sarnia solar farm is the largest solar farm in Canada, with a total size of 80 MW. This 

solar farm is connected to the Bluewater Power (BWP) distribution network at a 27.6 kV 

voltage level. There are four different feeders: 96M23, 96M27, 96M28, and 18M14 that are 

connected to the solar farm; each feeder being fed with 20 MW solar generation. Feeders 

96M23, 96M27, and 96M28 are connected to the Modeland station and feeder 18M14 is 

connected to the St. Andrews substation. Both substations are connected to the Hydro One 
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network. For this harmonic impact study requiring two feeders connected to the Modeland 

substation, 96M23 and 96M27 are chosen.   

5.2.2 Modeland Substation 

The Modeland substation is connected to the Hydro One Inc. network at a 230 kV voltage 

level through two 125 MVA tap changer transformers. The nominal voltage at the low 

voltage side of the BWP network is 27.6 kV. Although the nominal voltage is 27.6 kV, the 

operating voltage at the Modeland station varies throughout the day from 28 kV to 29 kV, 

depending on the loading conditions on the feeder. This substation does not have an installed 

feeder capacitor.  

5.2.3  Feeders  

5.2.3.1 Feeder 96M23  

Figure  5.1 depicts the geographical illustration of feeder 96M23, with BWS-1 and BWS-2 

solar farms of 10 MW each; as per the GIS (Geographical Information System) software used 

in the Bluewater Power (BWP) network. Hence, the maximum generation on this feeder is 

20MW. The longest distance on the feeder is from the Modeland station to the BWS-2 

location, which is approximately 7.5 km. This feeder mostly feeds residential and 

commercial consumers, such as shopping malls, through both overhead lines and 

underground cables. There are no industrial customers on the M23 feeder. The total number 

of distribution transformers connected with a 27.6 kV system on this feeder are 239, feeding 

both residential and commercial customers. Overhead lines and underground cables are used 

to connect these distribution transformers to the main feeder operating at 27.6 kV. There is 

no power factor correction capacitor installed on this feeder.  

5.2.3.2 Feeder 96M27  

Figure  5.2 depicts the geographical illustration of feeder 96M27 with Solar 3 and Solar 6 

solar farms, each 10 MW, as per the GIS data. Therefore, the maximum generation on this 

feeder is 20 MW. The longest distance on the feeder is between the Modeland station and the 

Solar 6 location, approximately 6.5 km. The total number of distribution transformers 

connected with a 27.6 kV system on this feeder are 165, feeding both residential and 

commercial customers. There are no industrial customers on the M27 feeder. Underground 
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cables are mainly used to connect these distribution transformers to the main feeder operating 

at a 27.6 kV voltage level. There is no power factor correction capacitor installed on this 

feeder. 

Bluewater Solar 2 
(BWS-2)

Bluewater Solar 1 
(BWS-1)

Modeland 
Substation

 

Figure 5.1 Feeder 96M23 model in GIS software 
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Figure 5.2  Feeder 96M27 model in GIS software 
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5.3 NETWORK DATA ACQUISITION SYSTEM 
Network data such as feeder information, data related to solar farms, and substations are 

obtained from Supervisory Control and Data Acquisition System (SCADA), installed at the 

BWP office, GIS, central database, and the BWP control room personnel.  

5.3.1 SCADA system 

The SCADA system is a centralized monitoring and control system. It gathers data from the 

monitoring equipment, or from the sensors on the network, and controls the system based on 

the sensor data. Bluewater Power uses the SCADA system to monitor online power flow, 

voltages, currents, power factor, and the status of switches at different substations, solar farm 

locations, and other critical locations in its network [98]. 

5.3.2 GIS system 

The GIS system is used to capture, store, and manage all types of geographical data. It stores 

the technical parameters of an electrical network, such as the location of loads, line lengths, 

and transformers (underground or overhead), switches, and breakers, along with their 

specifications laid out on a geographical map [99]. 

5.4 SYSTEM MODELING 

The CYMDIST and PSCAD/EMTDC software applications are used for this research work. 

The CYMDIST software is used at BWP for the load flow, voltage profile, and short circuit 

studies of BWP [100]. CYMDIST is used to construct the network model from the GIS data 

and SCADA information in order to simulate the steady state load flow study. As CYMDIST 

does not have the capability to perform harmonic resonance studies, the network is modeled 

using PSCAD/EMTDC, which has this capability. Hence, CYMDIST is used to validate the 

steady state load flow results of the PSCAD/EMTDC model. After the steady state load flow 

is validated using PSCAD/EMTDC, a network model developed in PSCAD/EMTDC and is 

used for the network resonance harmonic impact studies. 
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5.4.1 Grid/Source Model  

5.4.1.1 CYME Model 

In CYMDIST, the Modeland substation is modeled as a voltage source behind the short 

circuit impedance according to the short circuit data available from BWP on the low voltage 

side of the substation transformer, given in Table  5.1. Based on this data, CYMDIST 

calculates the equivalent short circuit impedance.  

Table  5.1 Short Circuit Data at Low Voltage side of Modeland Station 

Substation  3-ph Fault MVA 3-ph 
Fault kA 

 
3-ph X/R 

Modeland 633.7 13.25 35.5 

5.4.1.2 PSCAD/EMTDC Model 

In PSCAD/EMTDC, the grid is modeled as per the short circuit data given in Table  5.1 and 

depicted in Figure  5.3.  

 

Figure 5.3 Grid model in PSCAD/EMTDC software 

5.4.2 Feeder Model 

5.4.2.1 CYME Model 

Each overhead line and cable are modeled based on the data collected from these sources: 

a. Bluewater Power material list document for underground cables and overhead line 

conductors. 
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b. Conductor manufacturer’s datasheet 

c. Engineering design team information 

d. BWP stock room and control room personnel 

Based on the above information, resistance (R), inductive reactance (XL), and capacitive 

reactance (XC), for both positive and zero sequence networks, are calculated and used for the 

modeling of each segment on the network. Cables and overhead conductor lengths are taken 

from the GIS system used in BWP.  

5.4.2.2 PSCAD Model 

Figure  5.4 depicts the model of overhead lines and underground cables in PSCAD/EMTDC. 

The R, XL, and XC parameters used in the CYMDIST model for both positive and zero 

sequence are used in PSCAD/EMTDC to model the entire feeder. In PSCAD/EMTDC, each 

cable and overhead conductor is modeled as a nominal PI section. Cables and overhead 

conductor lengths are used as per the GIS data.  

 

Figure 5.4 Overhead line and underground cable model of the feeder in PSCAD/EMTDC 
software 

5.4.3 Load Model 

The distribution system analysis software uses different types of load models such as 

constant power, constant impedance, and constant current load models [112]. In a 

distribution system, incandescent lighting, cooking stoves, and water heaters are classified as 



107 

 

 

 

constant impedance loads; electric motors and switched mode power supplies (SMPS) are 

classified as constant power loads. Whereas, welding units and smelters used in industries are 

considered as constant current loads. Figure  5.5 shows the variation of demand on different 

types of loads with voltage profiles of the system [101].  For this study, as both feeders 

supply mainly residential and commercial loads, the loads are modeled as an aggregation of 

both constant impedance and constant power loads. Different load allocation methods are 

employed for the analysis of a distribution system such as daily consumption (kWh) data 

[101]-[103], monthly consumption (kWh) data, transformer kVA rating (connected kVA) 

[103], and the REA (Rural Electrification Allocation) [103] method. For this study, the 

transformer kVA rating load allocation method is chosen for load allocation for both feeders, 

as transformer loading information is readily available from the BWP metering units, 

SCADA data, and BWP control room personnel. The connected kVA method assigns the 

metered load demand defined at the substation among the different loads, in proportion to the 

distribution transformer capacity [101]-[104].  

 

Figure 5.5 Variation of load demand with system voltage for different types of load 

5.4.3.1 CYME Model 

In CYMDIST, all transformers in Feeder 1 and Feeder 2 are considered to be spot loads and 

are modeled as an aggregation of both constant impedance and constant power loads. For the 

allocation of kW and kvar on the transformers, a power factor of 0.92 is chosen for Feeder 1 
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and a power factor of 0.94 is chosen for the Feeder 2, as per the SCADA (Supervisory 

Control and Data Acquisition System) system and BWP control room personnel.  

5.4.3.2 PSCAD Model 

Figure  5.6 shows the modeling of three-phase and single-phase loads using 

PSCAD/EMTDC. In PSCAD/EMTDC, the loads in Feeder 1 and Feeder 2 are considered to 

be spot loads and are modeled as an aggregation of both constant impedance and constant 

power loads in order to validate the steady state load flow model in both software 

applications. The power factor for both models are chosen as per the CYMDIST model of 

0.92 for Feeder 1 and 0.94 for Feeder 2.  

 

Figure 5.6 Load Model in PSCAD/EMTDC 

5.4.4 PV Model 

Distributed generators are not allowed to control the voltage at the point of common coupling 

and usually control the output current in order to operate at unity power factor, as per IEEE 

1547 [91],[105]. Hence, for this study purpose, these PV inverters are modeled as an 

equivalent P-Q bus for load flow validation purposes only. However, for a detailed 

harmonics analysis, the inverter based DGs are represented as current sources with an 
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aggregation of multiple harmonic current sources [105]. For load flow studies and for 

harmonic analysis, each of the 10 MW PV systems is modeled as a single aggregated source, 

both in CYMDIST and PSCAD/EMTDC software applications. 

5.4.4.1 CYME Model 

The PV system is modeled as an electronic coupled generator, as provided in the CYME 

library. 

5.4.4.2 PSCAD Model 

Figure  5.7 demonstrates the current source model to represent the PV system. This PV model 

represents the PV system as a P-Q bus by injecting active power in to the grid at unity power 

factor. ANG is the voltage angle at the PCC in order to control both active and reactive 

power injection to the grid, to operate the PV system at unity power factor.  

 

Figure 5.7 PV modeled as a current source 
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PV inverters are a source of different harmonics. Hence, for the harmonic resonance studies, 

the PV system is modeled as an aggregation of harmonic current sources at different 

frequencies. Figure  5.8 illustrates different harmonics injections from a typical PV system. 

The line impedance between the PCCs of the two 10 MW PV systems is very small and 

therefore does not create any significant phase differences between the current sources of the 

same order of two 10 MW PV units.  

 

Figure 5.8 PV system as harmonic current source 
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5.4.5 Complete System Modeling 

A complete system model for both Feeders 96M23 and Feeder 96M27 using 

PSCAD/EMTDC are given in Appendix D.1, D.2 and D.3, respectively. 

5.5 STEADY STATE LOAD FLOW VALIDATION 
Steady state load flow results for both feeders are verified using PSCAD/EMTDC and 

CYME, with real time SCADA data for one peak load and light load condition. Although 

PSCAD/EMTDC is electromagnetic transient simulation software, the load flow results can 

be validated with its steady state simulation output. This validation is performed in terms of 

voltages at different points on the feeder, with corresponding power flow. 

5.5.1 Feeder 96M23 

Figure  5.9 presents the load pattern of feeder 96M23 for two days. It is seen that the peak 

load occurs during the day, from 9:00 AM until 8:00 PM in the evening, with a peak load of 

approximately 12 MW to 16 MW. Similarly, light load occurs during the night, from 8:00 

PM until 9:00 AM, with a load of approximately 6 MW to 9 MW.  For load flow validation, 

one peak load scenario is chosen during the daytime, at 4:06 PM, and one light condition is 

chosen during the night, at 11:00 PM. Load flow results for active power, reactive power, 

and rms line to line voltages are verified at the Modeland station and at the solar farm 

(Bluewater Solar 1 and Bluewater Solar 2) locations. As SCADA data is available only at the 

Modeland station and at two solar farm locations (Bluewater Solar 1 and Bluewater Solar 2), 

these locations are taken into account to match the steady state load flow. Table  5.2 and 

Table  5.3 depict the load flow results on feeder 96M23 for both peak load and light load 

conditions respectively. It is observed from both tables that load flow results from 

CYMDIST closely match with the real time SCADA data, with an error rate of less than 

0.6%. The close correlation of load flow results confirms the accuracy of the feeder model 

built in CYMDIST. It is further seen that the load flow results of PSCAD/EMTDC matches 

very well with that of the CYMDIST model, with an error rate of less than 0.6%, thus, 

validating the PSCAD/EMTDC model of feeder 96M23 for both peak load and light load 

conditions. 
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Figure 5.9 Load profile of 96M23 

Table  5.2 Load flow validation during peak load  

Location Real Time 
SCADA data 

CYME PSCAD Deviations 
(%) 

SCADA vs. 
CYME 

Deviations 
(%) CYME 
vs. PSCAD 

Voltage (kV) 

Modeland Substation 28.71 28.71 28.71 0 0 

Bluewater Solar 1 28.92 28.82 28.84 0.34 0.06 

Bluewater Solar 2 28.98 28.83 28.85 0.51 0.07 

Active Power (MW)  

Modeland Substation -1.70 -1.71 -1.70 0.58 0.58 

Bluewater Solar 1 8.15 8.14 8.14 0.12 0 

Bluewater Solar 2 8.01 8.01 8.00 0 0.12 

Reactive Power (MVAR) 

Modeland Substation 7.71 7.70 7.69 0.12 0.12 

Bluewater Solar 1 0.02 -0.05 -0.0004 - - 

Bluewater Solar 2 0.01 -0.08 -0.0003 - - 
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Table  5.3 Load flow validation during light load  

Location Real time  
SCADA 

data 

CYME PSCAD Deviations (%) 
SCADA vs. 

CYME 

Deviations 
(%) CYME 
vs. PSCAD 

Voltage (kV) 

Modeland Substation 28.57 28.57 28.57 0 0 

Bluewater Solar 1 28.40 28.44 28.43 0.14 0.03 

Bluewater Solar 2 28.52 28.44 28.43 0.28 0.03 

Active Power (MW)  

Modeland Substation 9.20 9.21 9.21 0.10 0 

Bluewater Solar 1 0.00 0.00 0.00 - - 

Bluewater Solar 2 0.00 0.00 0.00 - - 

Reactive Power (MVAR) 

Modeland Substation 3.90 3.89 3.91 0.25 0.51 

Bluewater Solar 1 0.00 0.00 0.00 - - 

Bluewater Solar 2 0.00 0.00 0.00 - - 

5.5.2 Feeder 96M27 

Figure  5.10 demonstrates the load pattern of feeder 96M27 for two days.  

 
Figure 5.10  Load profile of 96M27 
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It is observed that the peak load occurs during the day, from 10:00 AM until 8:00 PM at 

night, with a peak load of approximately 6 MW to 7 MW. Similarly, light load occurs during 

the night until 8:00 AM, with a load between 3 MW to 5 MW. To validate the load flow, one 

peak load scenario is chosen during the day, at 5:00 PM, and one light condition is chosen 

during the night, at 12:00 AM. Table  5.4 and Table  5.5 depict the load flow results on feeder 

96M27 for both peak load and light load conditions respectively. Load flow results for active 

power, reactive power, and rms line-to-line voltages are verified at the Modeland station and 

at the solar farm (Solar 3 and Solar 6) locations. It is observed from both tables that load flow 

results from CYMDIST closely match with the real time SCADA data, with an error rate of 

less than 0.8%. The close correlation of load flow results confirms the accuracy of the feeder 

model built in CYMDIST. It is further seen that the load flow results of PSCAD/EMTDC 

match very well with that of the CYMDIST model, with an error rate of less than 0.6%, thus 

validating the PSCAD/EMTDC model of feeder 96M27 for both peak load and light load 

conditions. 

Table  5.4 Load flow validation during peak load  

Location Real Time 
SCADA 

data 

CYME PSCAD Deviations 
(%) SCADA 
vs. CYME 

Deviations 
(%) CYME 
vs. PSCAD 

Voltage (kV) 

Modeland Substation 28.17 28.28 28.20 0.39 0.28 

Solar 3 28.35 28.37 28.37 0.07 0 

Solar 6 28.38 28.40 28.40 0.07 0 

Active Power (MW)  

Modeland Substation -6.10 -6.10 -6.07 0 0.49 

Solar 3 6.07 6.07 6.06 0 0.16 

Solar 6 6.25 6.29 6.24 0.64 0.79 

Reactive Power (MVAR) 

Modeland Substation 2.70 2.68 2.69 0.74 0.37 

Solar 3 0.03 -0.04 -0.0003 - - 

Solar 6 0.01 -0.07 -0.0004 - - 
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Table  5.5 Load flow validation during light load  

Location Real Time 

SCADA data 

CYME PSCAD Deviations 

(%) SCADA 

vs. CYME 

Deviations 

(%) CYME 

vs. PSCAD 

Voltage (kV) 

Modeland Substation 29.02 28.96 28.92 0.20 0.13 

Solar 3 29.01 28.91 28.85 0.34 0.20 

Solar 6 29.01 28.91 28.85 0.34 0.20 

Active Power (MW)  

Modeland Substation 4.00 3.98 3.99 0.5 0.25 

Solar 3 0.00 0.00 0.00 - - 

Solar 6 0.00 0.00 0.00 - - 

Reactive Power (MVAR) 

Modeland Substation 1.40 1.37 1.39 2.14 1.45 

Solar 3 0.00 0.00 0.00 - - 

Solar 6 0.00 0.00 0.00 - - 

5.6 NETWORK IMPEDANCE AND RESONANCE ANALYSIS 
Every electrical network exhibits resonance at certain frequencies due to the presence of 

inductive and capacitive elements in the system. This resonance behavior of the network 

varies with different loading conditions, short circuit level, and line outages. The frequency 

scan technique is adopted in PSCAD/EMTDC models for feeders, 96M23 and 96M27, to 

analyze the network resonance in the presence of PV. The frequency scan technique [106] 

calculates the Thevenin equivalent network impedance as a function of frequency, as 

observed from a particular bus/location on the system. By plotting the impedance magnitude 

versus frequency obtained from the frequency scan, the network resonance frequency can be 

identified where the impedance is maximum.  
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5.6.1 Feeder 96M23 

Network resonance analysis is performed on feeder 96M23 for different operating conditions 

at different buses in the network. Three major locations are chosen: the Modeland substation 

(Station) and two solar farm locations - Bluewater Solar 1 (BWS-1) and Bluewater Solar 2 

(BWS-2), as SCADA sensors are connected at these locations. The results of the network 

impedance analysis at different operating conditions of the network are presented below.  

5.6.1.1 Base Case at actual Short Circuit Level (633.7 MVA) 

Figure  5.11 depicts the frequency scan for the actual short circuit level (SCL) at the 

Modeland substation for different loading conditions, taken as a base case scenario. It is 

observed that network resonance occurs above the 33rd harmonics at three locations for both 

peak load and light load conditions. The peak magnitude of impedance varies for different 

loading conditions. 

 

Figure 5.11 Network impedance vs harmonics frequency for 96M23 at SCL 

5.6.1.2 Variation of Short Circuit Level and loading condition 

As network resonance varies with different SCLs of the source, the SCL of the source is 

varied and the frequency scan of the network is conducted for three different short circuit 

levels. A strong system with two times SCL is selected. Further, two weak systems, with half 

and one fifth SCL, are selected for the study.  
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Figure  5.12 demonstrates the network impedance at 2×SCL. It is observed that resonant 

frequency occurs above the 41st harmonic for both the loading conditions at three different 

locations for 2×SCL. Similarly, Figure  5.13 and Figure  5.14 depict the network resonance at 

1/2×SCL and 1/5×SCL respectively. It is seen that at 1/2×SCL, resonance occurs around the 

25th harmonic for different loading conditions. It is also observed that resonance occurs at the 

17th harmonic for a short circuit level of 1/5×SCL. As such, it is thus confirmed that, when 

the SCL decreases, the system becomes weak and the resonant frequency shifts toward lower 

frequencies. Similarly when SCL increases, the resonant frequency shifts towards higher 

order frequency. Although not presented here, the effects of line outages and their associated 

impacts on the system’s harmonic performance are evaluated at different arbitrary locations 

on the M23 feeder. It is observed that resonant frequency occurs around the 31st and 41st   

harmonics for different outage conditions. Based on this analysis, it is evident that resonant 

frequency on 96M23 lies between the 17th harmonic and the 41st harmonic, for different 

SCLs at different loading conditions. It is also observed that peak impedance is lower during 

peak loading condition compared to during a light load condition. 

 
Figure 5.12 Network impedance vs harmonics frequency for 96M23 at 2×SCL 
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Figure 5.13 Network impedance vs harmonics frequency for 96M23 at 1/2×SCL 

 

Figure 5.14 Network impedance vs harmonics frequency for 96M23 at 1/5×SCL 
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5.6.2.1 Base Case at actual Short Circuit Level (633.7 MVA) 

Figure  5.15 depicts the frequency scan at the actual short circuit level (SCL) at the low 

voltage side of the Modeland substation for different loading conditions. 

 
Figure 5.15 Network impedance vs harmonics frequency for 96M27 at SCL 

This condition is taken as a base case scenario. It is observed that network resonance occurs 

above the 28th harmonic at three locations for both loading conditions. The peak impedance 

magnitude varies for different loading conditions. 

5.6.2.2 Variation of Short Circuit Level and different loading condition 

Figure  5.16, Figure  5.17, and Figure  5.18 present the frequency scan at 2×SCL, 1/2×SCL, 

and 1/5×SCL respectively. It is seen that resonance occurs around the 35th harmonic for 

2×SCL, around the 23rd harmonic for 1/2×SCL, and around the 15th harmonic for 1/5×SCL. 

Thus, it is concluded that resonant frequency on 96M27 lies between the 15th harmonic and 

the 36th harmonic for this feeder, for various operating scenarios of the network. It is also 

observed that peak impedance is lower during a peak loading condition as compared to light 

load condition. 
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Figure 5.16 Network impedance vs harmonics frequency for 96M27 at 2×SCL 

 
Figure 5.17 Network impedance vs harmonics frequency for 96M27 at 1/2×SCL 

 

Figure 5.18 Network impedance vs harmonics frequency for 96M27 at 1/5×SCL 
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5.7 HARMONICS INJECTIONS FROM A 10MW PV SOLAR 
FARM  

The harmonics injection from a 10 MW solar farm is recorded for the month of June, 2012 

and analyzed at different power outputs from the PV inverters. Figure  5.19, Figure  5.20, 

Figure  5.21, and Figure  5.22 depict the harmonics injection at 9.98 MW, 5.33 MW, 2.71 

MW, and 0.65MW power output from a 10MW PV system, respectively. As the harmonics 

datasets are available up to the 25th order, only this range of harmonics is chosen for the 

analysis. It is observed that the 5th, 7th, 11th, 13th, 17th, and 19th harmonics are the dominant 

harmonics and maximum individual harmonic distortion occurs at 2.71 MW power output. 

Similarly, the minimum individual harmonics occur at a power level of 0.65 MW.  It is also 

noticed that individual harmonics distortion at a rated power output of 9.98 MW is less than 

that at 5.33 MW and 2.71 MW power output, but more than at 0.65 MW.  

 
Figure 5.19 Harmonics injection at 9.98 MW power level from a 10 MW PV solar farm  

 
Figure 5.20 Harmonics injection at 5.33 MW power level from a 10 MW PV solar farm 
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Figure 5.21  Harmonics injection at 2.71 MW power level from a 10 MW PV solar farm 

 
Figure 5.22 Harmonics injection at 0.65 MW power level from a 10 MW PV solar farm 

Figure  5.23 shows the calculated Total Demand Distortion (TDD) for the output current 

harmonics (ITDD) at different power levels from a 10MW PV system.  The variation in 

individual harmonics distortions at different power levels is attributed to the design of the PV 

inverter, and for this 10MW solar farm, maximum distortion occurs at approximately 25-30% 

of power output.  It is observed that ITDD satisfies the IEEE standard 519 and remains within 

the specified limits for a wide range of power generation [84]. 
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Figure 5.23 Total Current Demand Distortion at different power level  

5.8 IMPACT OF 20MW PV SOLAR FARM HARMONICS ON 
THE NETWORK  
This section presents the voltage harmonic distortion studies for the two feeders, for both 

peak load and light load conditions with the presence of 20MW solar farms. 

5.8.1 Feeder 96M23 

5.8.1.1 Peak load Condition  

Peak load normally occurs between 10:00 AM and 8:00 PM, as demonstrated in Section 5.5. 

As such, noon is considered for this analysis, where the load is 14 + j7.7MVA. During this 

time, the PV solar farm generates different power depending upon the availability of the sun. 

On a full sunny day, it generates rated power of 10MW; whereas, on a cloudy day, power 

output from a solar farm varies depending upon the availability of the solar insolation. 

Hence, to study the voltage distortion at different location in the network, three different 

possible power outputs during peak load condition are examined. 

Figure  5.24, Figure  5.25, and Figure  5.26 demonstrate the VTHD at three locations in the 

feeder with a short circuit level varying between 127 MVA (1/5 × nominal SCL) and 3168 

MVA (5×nominal SCL) for different PV power outputs of 9.98 MW, 5.33 MW, and 2.71 

MW, respectively.  
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Figure 5.24 VTHD at different locations at PV Solar output = 9.98 MW 

 
Figure 5.25 VTHD at different locations at PV Solar output = 5.33 MW 

 

Figure 5.26 VTHD at different locations at PV Solar output = 2.71 MW 
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In each of these cases, it is observed that VTHD is less than 2% at all locations for three 

different PV power outputs; which is well below the acceptable voltage distortion rate of 5%, 

as per IEEE standard 519 [84]. Maximum voltage distortion VTHD occurs at 1/5 of the 

nominal short circuit level of 127MVA, whereas VTHD is minimal when the short circuit level 

is 5 times that of the nominal value of 633.7MVA. It is further noted that the voltage 

harmonic distortion is highest at the terminals of solar farms, and is much lower at the 

Modeland substation.  

5.8.1.2 Light load condition  

Light load normally occurs between 8:00 PM and 9:00 AM, as demonstrated in Section 5.5. 

Hence, 8:00 AM is chosen for this study, where the load is 8.7 + j3.8 MVA. At this time, the 

PV solar farm can only generate 20-30% of its rated power, as demonstrated in Section 2.2.1 

in Chapter 2. Hence, to investigate the VTHD, a power output of 2.71 MW is considered. 

Figure  5.27 demonstrates VTHD at three locations in the feeder with the short circuit level 

varying between 127 MVA and 3168 MVA for a PV power output of 2.71 MW. It is 

observed that VTHD is less than 2.5% at all three locations for a PV power output of 2.71 

MW, which satisfies IEEE standard 519 [84]. 

 

Figure 5.27 VTHD at different location at PV Solar output = 2.71 MW 
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5.8.2 Feeder 96M27 

5.8.2.1 Peak load condition  

Peak load for 96M27 is chosen at noon, or 12:00 PM. During this time, the load on the feeder 

is 6 + j2.7 MVA. To verify the voltage distortion at a different location in the network, three 

different possible power outputs from the PV solar farm are chosen during the peak load 

condition, as in the study of feeder 96M23. 

Figure  5.28, Figure  5.29, and Figure  5.30 demonstrate the VTHD at three locations in the 

feeder with a short circuit level for different PV power outputs. In all cases, the VTHD is about 

2.5%, which is within 5%, as specified in IEEE 519 [84].  

 
Figure 5.28 VTHD at different location at PV Solar output = 9.98 MW 

 
Figure 5.29 VTHD at different location at PV Solar output = 5.33 MW 
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Figure 5.30 VTHD at different location at PV Solar output = 2.71 MW 

It is also found that maximum VTHD occurs at a short circuit level of 127 MVA, where the 

minimum VTHD occurs at a short circuit level of 3168 MVA, as demonstrated in the previous 

case. It is further noted that the voltage harmonic distortion is highest at the terminals of solar 

farms, and is much lower at the Modeland substation.  

5.8.2.2 Light load condition  

A light load condition of 4 + j1.7 MVA is chosen during the morning at 8:00 AM, the same 

as that of feeder 96M23. This loading condition is considered with a PV power output of 2.71 

MW for voltage harmonic distortion study at three different locations. It is observed that the 

VTHD is less than 3% at all three locations for a PV power output of 2.71 MW, which is 

within 5%, as specified in IEEE standard 519 [84].  

 

Figure 5.31 VTHD at different location at PV Solar output = 2.71MW 
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5.9 IMPACT OF A 10 KW PV SOLAR SYSTEM HARMONICS 
ON NETWORK RESONANCE 

This section presents the harmonic impact of a small scale 10 kW PV solar farm on the BWP 

network. Figure  5.32 depicts a 10 kW PV solar system connected to a commercial shopping 

complex on Feeder 96M23. This 10 kW PV system is considered to be connected to a 600V 

bus and is connected to 96M23 through a step-up transformer operating at a voltage level of 

600/27600V. A 20 MW PV solar farm is also connected on the feeder. 

Bluewater Solar 2 
(BWS-2)

Bluewater Solar 1 
(BWS-1)

Modeland 
Substation

10 kW PV Solar 
System

 

Figure 5.32 Feeder 96M23 with a 10 kW PV Solar System 
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Figure  5.33 demonstrates the worst case harmonics output from the commercial 10 kW PV 

solar system. It is observed that the worst case harmonics occurs at a power level of 4 kW. 

For this case, ITDD is found to be 5.1%. The prominent harmonics generated from this PV 

system are the 3rd, 5th, 7th, 9th, 11th, 13th, 17th, and 19th harmonics. The magnitude of 

individual harmonics is shown in Figure  5.33. 

Figure  5.34 demonstrates the VTHD at the Modeland station and at the location where the 

10kW PV system is connected with a varying short circuit level. It is seen that the maximum 

VTHD occurs at a SCL level of 127 MVA. Even at this SCL, the VTHD  is much below 5%. 

 
Figure 5.33 Harmonics output from a 10kW PV Solar System 

 

Figure 5.34 VTHD at different location with worst-case harmonic injection  
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Table  5.6 describes the increase in VTHD at the Modeland substation with the addition of a 

10kW PV system to the feeder, with a 20 MW PV Solar System. It is seen that maximum 

increase in VTHD is 0.1 for the weak system, and 0.03 at a nominal short circuit level of 633.7 

MVA at the Modeland substation with the addition of a 10 kW PV Solar system. 

Table  5.6 VTHD with and without 10 kW PV Solar System 

Short Circuit 

Level (MVA) 

VTHD  at Modeland Station 

without 10kW  PV system (%) 

VTHD  at Modeland Station 

with 10 kW PV system (%) 

Increase in 

VTHD 

126.7 1.31 1.41 0.10 
316.8 0.65 0.81 0.16 
633.7 0.40 0.43 0.03 
1267.4 0.20 0.23 0.03 
3168.5 0.08 0.09 0.01 

 

5.10 CONCLUSIONS 
In this chapter, a detailed system model using PSCAD/EMTDC software is developed for the 

two feeders of the Bluewater Power network connected to the 20 MW solar farm in Sarnia, 

for the harmonics impact studies. The model is developed with extensive Bluewater Power 

network data and actual harmonics injections from the 10 MW solar farm, provided by 

Hydro One. This network model is validated with the load flow studies conducted using 

CYMDIST load flow software and real time SCADA data. The resonance behavior of the 

Bluewater Power network is analyzed using frequency-scanning studies with the developed 

model in PSCAD/EMTDC for feeders 96M23 and 96M27, with different loading conditions 

and varying short circuit levels. The measured harmonics data at a different power level from 

a 10MW solar farm is analyzed. Three different harmonics datasets corresponding to three 

different power levels are chosen for the harmonics impact studies in the presence of a large 

scale solar farm. These individual harmonics are injected from the solar farm model 

developed using the PSCAD/EMTDC model and voltage THDs are calculated at solar farm 

locations and the Modeland substation feeding these two feeders. The impact of a small scale 

10kW PV system is also investigated. 
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The following conclusions are made: 

i) Both feeders connected to solar farms exhibit parallel resonance caused by cable 

capacitance. Network resonance occurs above the 25th harmonic for the nominal 

short circuit level for both feeders. When the short circuit capacity decreases, the 

resonant frequency shifts toward lower order frequencies. However, when the 

short circuit capacity increases, resonant frequency shifts towards higher order 

frequencies. 

ii) The highest voltage distortion is observed for the case with high harmonics 

injection from the solar farm, where VTHD  is found to be less than 3% for both 

feeders, for different loading conditions.  This is within the 5% VTHD limit 

specified by IEEE Standard 519. 

iii) Based on this study, it can be concluded that the 20 MW large scale solar farm 

may not cause significant voltage distortion on feeders 96M23 and 96M27 during 

steady state operating conditions. 

This study has been conducted with a large set of data provided by Bluewater Power 

Corporation, Hydro One Inc., and with the cooperation of Enbridge and First Solar who are 

all sincerely acknowledged.  
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Chapter 6  

6 CONCLUSIONS AND FUTURE WORK 

6.1 INTRODUCTION 

This thesis presents a novel utilization of a PV inverter as a STATCOM, termed PV-

STATCOM for power factor correction of an induction motor load in two utility premises 

and harmonic impact studies on a utility distribution network in the presence of the largest 

solar farm and 10 kW PV system in Canada. The PV-STATCOM controller is designed and 

tested on the networks for Bluewater Power, Sarnia and London Hydro, who have kindly 

offered to showcase this novel technology in their power systems.   

The main conclusions of the thesis are summarized below and also further studies on this 

research work are also proposed. 

6.2 PSCAD/EMTDC SIMULATION OF PV-STATCOM FOR 
POWER FACTOR CORRECTION 

In Chapter 2, a novel application for utilizing a 10 kW PV-STATCOM for power factor 

correction of a 5 kW induction motor in Bluewater Power Distribution network is 

demonstrated. The Bluewater power network, the motor load, hysteresis based PV-

STATCOM controller and 10 kW PV system are developed using PSCAD/EMTDC 

software.  

A simulation model for the motor load is developed in accordance with the real time data 

measured at the motor terminal. The steady-state and transient performance of the proposed 

PV-STATCOM controller for power factor correction is demonstrated with different loading 

conditions of the motor both during the day time and night time. The PV-STATCOM is able 

to regulate the PCC power factor to unity during the night time as well as during the day time 

with the available reactive power after real power generation. The proposed Hysteresis 

controller for the PV-STATCOM performs effectively both during night time and the day 
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time. The response time of the PV-STATCOM controller during the transient is 2 to 3 cycles 

in both the cases.  

6.3 REAL-TIME DIGITAL SIMULATION OF PV-STATCOM 
FOR POWER FACTOR CORRECTION 

In Chapter 3, a real-time simulation of a PV-STATCOM controller for power factor 

correction during both night time and day time on the Real Time Digital Simulator (RTDS) is 

presented. This study is conducted on the network of London Hydro. The London Hydro 

network, 5 kVA PV inverter as STATCOM and a 6 kW motor load are modeled in RTDS.  

The PV-STATCOM controller operation for power factor correction is demonstrated for both  

80%  and 50% loading conditions during the night time as well as during the day time at 2 

kW and 4 kW PV power outputs.  The PV-STATCOM controller uses PWM control method 

to generate firing pulses for the inverter and operates at a switching frequency of 6 kHz.  

When the PV-STATCOM injects both real power and reactive power during the day time, 

the inverter losses are seen to increase. During the night time, when PV-STATCOM operates 

as STATCOM, the response of both real and reactive power is exactly the same. However 

during the day time, response of reactive power and real power are less than one cycle and 6 

cycles, respectively. The slow response of active power is due to the absence of an MPPT 

controller for stabilizing the DC link voltage. From the RTDS studies, it is confirmed that the 

developed PV-STATCOM controller works effectively for different PV outputs and at 

different loading conditions, both during night time and day time. 

6.4 HARDWARE IN THE LOOP SIMULATION OF PV-
STATCOM CONTROLLER FOR POWER FACTOR 
CORRCETION 
Chapter 4 presents the Hardware-In-the Loop (HIL) simulation of the developed PV-

STATCOM controller for London Hydro system. The London Hydro network, the 5 kW PV 

Inverter and the motor load are modeled in RTDS and the PV-STATCOM controller is 

implemented on a Digital Signal Processor (DSP) based dSPACE platform. The dSPACE 

platform is comprised of  two controllers: Master controller and a Slave DSP controller. The 
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HIL simulation of PV-STATCOM controller is performed for the day time at 2 kW PV 

power output and at night time for 80% and 50% loading conditions of the motor. 

Ten analog signals for the PV-STATCOM controller are taken out from run time simulation 

environment in RTDS with a DDAC card and fed into the dSPACE controller. The PV-

STATCOM controller running in dSPACE performs appropriate control actions to generate 

six firing pulses. These firing pulses generated by the PV-STATCOM controller are sent to 

the run time simulation environment through GTDI card present on RTDS. The same time-

step, switching frequency, and the controller parameters for the PV-STATCOM controller 

used in the RTDS simulation are utilized in the HIL simulation.  

The power factor correction performance of the PV-STATCOM controller designed in RTDS 

environment is validated by the dSPACE based PV-STATCOM controller developed in the 

HIL simulation. From the HIL simulation, it is confirmed that the PV-STATCOM controller 

works effectively during different operating scenarios. The performance of PV-STATCOM 

controller for power factor correction is demonstrated with PV-STATCOM generating active 

power during the day time and acting as a STATCOM during the night time.  

6.5 HARMONIC IMPACT STUDIES OF LARGE SCALE 
SOLAR FARM 
Chapter 5 presents a novel study of the impact of harmonics on two distribution feeders in 

the Bluewater power network in the presence of a large scale solar farm in Canada of 80 MW  

and also of a 10 kW PV solar system. Two feeder models are developed with extensive 

Bluewater Power network data and actual harmonics injections from two 10 MW solar farms 

and a 10 kW PV system using PSCAD/EMTDC. This network model is validated with the 

load flow studies conducted with CYMDIST load flow software and real time  (Supervisory 

Control and Data Acquisition System) SCADA data.  

Frequency scan studies with the developed model in PSCAD/EMTDC are conducted to 

analyze the resonance behavior of both the feeders 96M23 and 96M27 with different loading 

conditions and varying short circuit levels. It is observed that when the short circuit capacity 

decreases, the resonant frequency shifts toward lower order frequencies. Similarly when 

short circuit capacity increases, the resonant frequency shifts towards higher order 
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frequencies.  It is found that both the feeders 96M23 and 96M27 connected to the solar farm 

exhibit parallel resonance. Network resonance occurs above the 25th harmonic for the 

nominal short circuit level for both the feeders. 

To study the impact of harmonics from the PV solar farm on these two feeders, harmonics 

data at different power level from a 10 MW solar farm at different power outputs are 

analyzed. Three different worst case harmonics datasets corresponding to three different 

power levels are chosen for the harmonics impact studies. These individual harmonics are 

injected from the solar farm model developed in the PSCAD/EMTDC model and voltage 

THDs are calculated at solar farm locations and the Modeland substation feeding these two 

feeders. The highest voltage distortion is observed for one of the above mentioned three 

cases with high harmonics injection from the solar farm where VTHD  is found to be less than 

3% for both the feeders for different loading conditions.  This is within the 5% VTHD limit 

specified by IEEE Standard 519. Based on this study, it is concluded that the 20 MW large 

scale solar farm and the 10 kW PV system may not cause significant voltage distortion on the 

feeders during steady state operating conditions. The impact of a small scale 10 kW PV 

system is also investigated with real-time measurements data. The highest voltage distortion 

is observed at different locations and found to be within the 5% VTHD limit specified by IEEE 

Standard 519.  

6.6 CONTRIBUTIONS 
The main contributions of this thesis are the following: 

i) This study presents a novel application of a PV inverter as STATCOM during the 

night and day. PSCAD/EMTDC simulation of PV inverter as STATCOM is presented 

for power factor correction of an induction motor in a utility premise with real time 

data measured data. 

ii) The performance of the developed PV-STATCOM controller is demonstrated on a 

Real Time Digital Simulator both during night and day.  

iii) The RTDS developed PV-STATCOM controller is physically implemented in DSP 

based dSPACE platform and its performance is validated in a  Hardware-In-the Loop 
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simulation The controller will be implemented in the utility network of London 

Hydro. 

iv) Harmonic impact studies of a large scale 20 MW solar farm on a distribution network 

is presented. Such a study has been performed for the first time in the world on any 

large scale PV solar farm.  

6.7 FUTURE WORK 

Further research works on PV-STATCOM may be performed as follows:  

• Implementation of an MPPT along with validation of the PV-STATCOM controller 

performance for all of the cases demonstrated in this thesis 

• Implementation of the prototype controller developed in dSPACE hardware with a 

DSP based Texas Instrument controller board TMS320F28335 and Interfacing the 

controller with the inverter of the 10 kW PV solar system to make it a complete PV-

STATCOM.  

• Field installation and testing of PV-STATCOM in the network of Bluewater Power 

Corporation and London Hydro. 
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APPENDIX A 

A.1 Bluewater Power Headquarters Building Network Parameter 

AC Source Voltage VL-L = 208 V 

AC Source Thevenin Impedance R = 0.15 Ω, L = 1.2 mH 

System X/R Parameters X/R = 4 

A.2 Heat Pump Electrical (Induction Motor) parameters 

Rated Stator Voltage VL-L = 208 V 

Rated kVA S= 5 kVA 

Rated Frequency f= 60 Hz 

Stator Resistance RS= 0.02 pu 

Stator Leakage Reactance XS= 0.08 pu 

Magnetizing Reactance Xm= 4 pu 

First Cage Rotor Resistance Rr=0.025 pu 

First Cage Rotor Reactance Xr=0.08 pu 

A.3 PV Inverter Parameters 

IGBT ON State Resistance RON = 0.01 Ω 

IGBT Off State Resistance ROFF = 1e6 Ω 

IGBT Forward Voltage Drop VD = 0 V 

Snubber Resistance RSnubber= 5000 Ω 

Snubber Capacitance CSnubber= 0.05 µF 

DC link Capacitor  CDC = 2000 µF 

DC link Voltage VDC = 400V DC 

Filter Parameters Lf = 1.5 mH, Cf = 30 µF 
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APPENDIX B 

B.1 London Hydro System Parameters 

AC Source Voltage VL-L = 208 V 

AC Source Thevenin Impedance R = 0.083Ω, L = 0.88 mH 

System Parameters X/R = 4 

B.2 Induction Motor Parameters 

Rated Stator Voltage VL-L = 208 V 

Rated kVA S= 6 kVA 

Rated Frequency f= 60 Hz 

Stator Resistance RS= 0.02 pu 

Stator Leakage Reactance XS= 0.08 pu 

Magnetizing Reactance Xm= 2 pu 

First Cage Rotor Resistance Rr= 1 pu 

First Cage Rotor Reactance Xr=0.05 pu 

B.3 PV Module Parameters 

Open Circuit Voltage VOC = 21.7 V 

Short Circuit Current ISC = 3.35 A 

Voltage at Maximum Power VMPP = 17.4 V 

Current at Maximum Power IMPP= 3.05 A 

PV Modules in Series NS= 23  

PV Modules in Parallel NP = 8 
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B.4 PV Inverter Parameters 

IGBT ON State Resistance RON = 0.05 Ω 

IGBT Off State Resistance ROFF = 1e5 Ω 

IGBT Forward Voltage Drop VD = 0 V 

Snubber Resistance RSnubber= 1000 Ω 

Snubber Capacitance CSnubber= 0.002 µF 

DC link Capacitor  CDC = 14000 µF 

DC link Voltage VDC = 400V DC 

Filter Parameters Lf = 1 mH, Cf = 20 µF, Rdamping = 2 Ω 

Switch rating Vrating = 600 V, Irating = 100 A 

B.5 Complete System Model in RSCAD Software 
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B.6 PWM Controller parameter 

Current Control Kp = 2, Ti = 2 ms 

DC Bus Voltage Control G= -14  , Tid = 1sec, Tld = 0.067 , Tlg = 0.0015 

AC Bus Voltage Control Tiac = 19.8 µs 

Switching Frequency fSW= 6 kHz 

Controller Sampling Frequency fSampling= 20 kHz  
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APPENDIX C 

C.1 dSPACE Hardware System 

PX4 Expansion Box

Connector Panel 
(CLP1103)

DS1103
DS1103

dSPACE Controller

 

 

C.2 RTDS Hardware 
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APPENDIX D 

D.1 Feeder M23 model in PSCAD 

Modeland Substation 

Bluewater Solar 
1 and 2Feeder Line Segment

Spot Load
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D.2 Snapshots of Different Segments of 96M23Feeder Modeled in 

PSCAD 

 

Figure D.1 Modeland Station Feeding 96M23 

 

Figure D.2 London Line Area 
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                                                  Figure D.3 Lambton Mall  

 

Figure D.4 Finch Residential Area-1  
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Figure D.5 Finch Residential Area-2 

 

Figure D.6 Two Solar Farm connected to 96M23 
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Figure D.7 Confederation area  

 

Figure D.8 Sarnia Airport  
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Figure D.9 Park Highland Residential Area  

 

Figure D.10 PV Solar Farm as a harmonic current source  
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D.3 Feeder M27 model in PSCAD 

Modeland Substation 

Solar 3

Solar 6

Feeder Line Segment

Spot Load
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