83 research outputs found

    Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing

    Get PDF
    The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n × n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Convergence of Neural Networks with a Class of Real Memristors with Rectifying Characteristics

    Get PDF
    The paper considers a neural network with a class of real extended memristors obtained via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same rectifying characteristic for the current as that used in relevant models in the literature to account for diode-like effects at the interface between the memristor metal and insulating material. The paper proves some fundamental results on the trajectory convergence of this class of real memristor neural networks under the assumption that the interconnection matrix satisfies some symmetry conditions. First of all, the paper shows that, while in the case of neural networks with ideal memristors, it is possible to explicitly find functions of the state variables that are invariants of motions, the same functions can be used as Lyapunov functions that decrease along the trajectories in the case of real memristors with rectifying characteristics. This fundamental property is then used to study convergence by means of a reduction-of-order technique in combination with a Lyapunov approach. The theoretical predictions are verified via numerical simulations, and the convergence results are illustrated via the applications of real memristor neural networks to the solution of some image processing tasks in real time

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    Biologically-inspired Neural Networks for Shape and Color Representation

    Get PDF
    The goal of human-level performance in artificial vision systems is yet to be achieved. With this goal, a reasonable choice is to simulate this biological system with computational models that mimic its visual processing. A complication with this approach is that the human brain, and similarly its visual system, are not fully understood. On the bright side, with remarkable findings in the field of visual neuroscience, many questions about visual processing in the primate brain have been answered in the past few decades. Nonetheless, a lag in incorporating these new discoveries into biologically-inspired systems is evident. The present work introduces novel biologically-inspired models that employ new findings of shape and color processing into analytically-defined neural networks. In contrast to most current methods that attempt to learn all aspects of behavior from data, here we propose to bootstrap such learning by building upon existing knowledge rather than learning from scratch. Put simply, the processing networks are defined analytically using current neural understanding and learned where such knowledge is not available. This is thus a hybrid strategy that hopefully combines the best of both worlds. Experiments on the artificial neurons in the proposed networks demonstrate that these neurons mimic the studied behavior of biological cells, suggesting a path forward for incorporating analytically-defined artificial neural networks into computer vision systems

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology

    Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook

    Get PDF
    peer reviewedWhen fully implemented, sixth generation (6G) wireless systems will constitute intelligent wireless networks that enable not only ubiquitous communication but also high-Accuracy localization services. They will be the driving force behind this transformation by introducing a new set of characteristics and service capabilities in which location will coexist with communication while sharing available resources. To that purpose, this survey investigates the envisioned applications and use cases of localization in future 6G wireless systems, while analyzing the impact of the major technology enablers. Afterwards, system models for millimeter wave, terahertz and visible light positioning that take into account both line-of-sight (LOS) and non-LOS channels are presented, while localization key performance indicators are revisited alongside mathematical definitions. Moreover, a detailed review of the state of the art conventional and learning-based localization techniques is conducted. Furthermore, the localization problem is formulated, the wireless system design is considered and the optimization of both is investigated. Finally, insights that arise from the presented analysis are summarized and used to highlight the most important future directions for localization in 6G wireless systems

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    The problem of hyperbolic discounting

    Get PDF
    corecore