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Abstract: The paper considers a neural network with a class of real extended memristors obtained
via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same
rectifying characteristic for the current as that used in relevant models in the literature to account for
diode-like effects at the interface between the memristor metal and insulating material. The paper
proves some fundamental results on the trajectory convergence of this class of real memristor neural
networks under the assumption that the interconnection matrix satisfies some symmetry conditions.
First of all, the paper shows that, while in the case of neural networks with ideal memristors, it is
possible to explicitly find functions of the state variables that are invariants of motions, the same
functions can be used as Lyapunov functions that decrease along the trajectories in the case of
real memristors with rectifying characteristics. This fundamental property is then used to study
convergence by means of a reduction-of-order technique in combination with a Lyapunov approach.
The theoretical predictions are verified via numerical simulations, and the convergence results are
illustrated via the applications of real memristor neural networks to the solution of some image
processing tasks in real time.

Keywords: convergence; diode-like nonlinearities; flux–charge analysis method; image processing;
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1. Introduction

Nowadays, Von Neumann computing architectures are facing severe limitations in
the handling of big data in the Internet of Things (IoT) and cloud computing systems in
real time [1–4]. One of the main problems is the memory bottleneck that occurs because
the central processing unit (CPU) and the memory (e.g., the RAM) have different physical
locations. This implies that the time needed to handle the continuous transfer of data
between the CPU and RAM may be excessively long, and the electronic power requirements
may be demanding. The use of memristors and, more generally, emerging nanoscale
memristive devices is a long-term vision with the aim of overcoming some of the limitations
of Von Neumann computing architectures via the implementation of analog and parallel
neuromorphic computing paradigms akin to some basic principles on which biological
brains operate [5–8]. In particular, memristors enable the implementation of in-memory
computing schemes in which the same device is used to compute as well as store the
computational result, thus overcoming the Von Neumann memory bottleneck [9–11].

Memristors have been classified as ideal, generic, and extended memristors [12–14].
Ideal memristors, which were introduced in the seminal 1971 paper by Prof. Leon Chua [15],
are defined by a nonlinear relation between the flux (the integral of voltage) and charge (the
integral of current). In the voltage–current domain, an ideal voltage-controlled memristor
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satisfies a state-dependent Ohm’s law where the conductance (which is also called the
memductance) is a function of the state, i.e., the flux. Ideal memristors continue to be of
great interest in circuit theory. However, they are often inadequate for accurately modeling
the switching behavior of real electronic memristive devices that are implemented in nan-
otechnology [16–19]. Currently, real devices need to be modeled using generic or extended
memristors, which involve one or more state variables—not necessarily including the
flux—and more general forms of the state-dependent Ohm’s law and state equations [13].

Convergence of trajectories toward equilibrium points (EPs) is one of the most relevant
dynamical properties of a neural network (NN) from both a theoretical and an applied
point of view. Convergent NNs may be used for the implementation of content-addressable
memories (CAMs), where the information is stored in the stable EPs of the NN in order
to solve combinatorial optimization problems in which the local minima of an associated
energy function correspond to the optimal solutions of the problem and to solve several
other signal processing tasks in real time [20–25]. Convergence of NNs has been widely
investigated for traditional NNs without memristors by using various techniques, such
as the Lyapunov method, the dichotomy of omega-limit sets for cooperative systems, the
global consistency of the decision schemes implemented by competitive NNs, and the
Łojasiewicz inequality combined with the concept of trajectories with a finite length for
NNs with analytic nonlinearities. The reader is referred to [20,22,26–31] and the references
therein for an account of some of the main contributions on the convergence of NNs.
On the other hand, only a few papers are available in the literature on the convergence
of memristor neural networks (MNNs). The authors of [32–34] provided results on the
convergence of MNNs with ideal memristors in the case of symmetric interconnections and
in that of cooperative (non-negative) interconnections between neurons. There, convergence
was studied by using the flux–charge analysis method (FCAM) and a reduction-of-order
technique [14]. The authors of [35,36] established results on multistability for MNNs with
ideal memristors while considering delays in the interconnections, and they also used
FCAM. To the authors’ knowledge, so far, only very specific results have been obtained
on the convergence of MNNs with real memristor devices. In this regard, we mention the
paper [37], which established convergence for MNNs with a class of generic memristors
obeying the VTEAM model, as well as [38], in which the convergence of a class of cellular
MNNs with real memristors and second-order cells was analyzed.

In this paper, we consider MNNs with a class of extended memristors that were
introduced in [39] and obtained via the parallel connection of an ideal voltage-controlled
memristor and a voltage-controlled nonlinear resistor. These networks are named real
memristor neural networks (RMNNs). The paper establishes some fundamental results
on the trajectory convergence when the neuron interconnections are symmetric and the
resistor nonlinearity satisfies some sector conditions. It is stressed that such a condition is
met by relevant memristive device models that display rectifying properties for the current
due to the diode-like behavior at the interface of the metal and the insulating material.
The convergence of RMNNs was analyzed by using the Lyapunov approach in relation to
equivalent systems written in the integral flux–charge domain. The main starting point
was the property that, while MNNs with ideal memristors admit functions of the state
variables that are invariants of motion, the same functions can be used as Lyapunov functions
that decrease along the trajectories in the case of RMNNs with rectifying nonlinear resistors.
Numerical simulations concerning RMNNs for image processing are presented in the paper
to verify the theoretical results on convergence.

Notation: Given a column vector x ∈ Rn, x> refers to the transpose of x. We denote
by B(x, R) = {y ∈ Rn : ‖y− x‖ < R} an open ball with radius R > 0 centered at x ∈ Rn.
If U ⊂ Rn, U is the closure of U, while ∂U denotes the boundary of U.

2. Memristor Models

Let vM(t) (or iM(t)) be the voltage (or current) of the memristor (Figure 1). In addition,
consider the flux ϕM(t) =

∫ t
−∞ vM(σ)dσ and the charge qM(t) =

∫ t
−∞ iM(σ)dσ. An ideal
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flux-controlled memristor is defined by the constitutive relation qM = q̂M(ϕM), where
q̂M ∈ C1(R) is the nonlinear flux–charge characteristic. Differentiating in time, we find that
an ideal memristor satisfies the state-dependent Ohm’s law:

iM = q̂′M(ϕM)vM.

Note that the dot refers to the time derivative, while the prime is used to denote the deriva-
tive of a function with respect to its argument. The state variable is the flux ϕM and q̂′M(ϕM)
is the state-dependent memristor conductance, which is also called the memductance.

q̂M(ϕM)

+

−

vM

iM

i

+

−

v

q̂M(ϕM)

+

−

vM

iM

îR(vR)

+

−

vR

iR

Figure 1. Memristor models: Ideal flux-controlled memristor (left) and real extended memristor given
by the parallel connection of an ideal memristor and a nonlinear voltage-controlled resistor (right).

The authors of [39] introduced a class of real extended memristors obtained through
the parallel connection of an ideal flux-controlled memristor qM = q̂M(ϕM) and a nonlinear
voltage-controlled resistor iR = îR(vR), where vR (or iR) is the voltage (or the current) in
the resistor, îR is locally Lipschitz in R, and îR(0) = 0 (Figure 1). Since i = iM + iR and
v = vM = vR, the extended memristor satisfies

i = q̂′M(ϕ)v + îR(v) (1)

where
ϕ̇ = ϕ̇M = v.

In this paper, we consider one of the next hypotheses.

Assumption 1. We have îR(vR) ≥ 0 for any vR ∈ R.

Assumption 2. There exists γ ≥ 0 such that the function î+R (vR)
.
= îR(vR) − γvR satisfies

Assumption 1.

Clearly, Assumption 1 is more restrictive than Assumption 2. In addition, note that if
îR ∈ C1(R), Assumption 2 is equivalent to îR(v)− î′R(0)v ≥ 0 for any v ∈ R.

Consider, for example, the diode-like piecewise-linear (PWL) function

îR(vR) =

{
0, vR < Vth

ζvR, vR ≥ Vth
(2)

where Vth > 0 is the diode threshold voltage and ζ > 0 is the differential conductance when
the diode is turned on (Figure 2a). The PWL characteristic (2), which satisfies Assumption 1,
is used as an approximation of the Shockley model of a diode given by

îR(vR) = IS

(
exp

(
vR

ηVT

)
− 1
)

(3)
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where IS is the reverse bias saturation current, VT is the thermal voltage, and η is the
ideality factor (Figure 2b). Note that the characteristic (3) satisfies Assumption 2 and
î+R (vR) = iR(vR) − (IS/ηVT)vR. Two more nonlinearities that satisfy Assumption 2 are
depicted in Figure 2c,d.

ζ

1

Vth

vR

iR

(a)

−IS

îR

î+R

vR

iR

(b)

îR
î+R

vR

iR

(c)

î+R

îR

vR

iR

(d)
Figure 2. Characteristics of îR for a nonlinear voltage-controlled resistor. (a) PWL diode satisfying
Assumption 1. (b) Exponential characteristic of a Shockley diode satisfying Assumption 2; the
drawing also shows the tangent to îR at vR = 0 (dashed–dotted) and the function î+R (light gray).
(c) Characteristic with a negative slope at vR = 0 satisfying Assumption 2 and (d) non-monotone
characteristic satisfying Assumption 2.

Rectifying the resistor characteristics of the type introduced here is of importance
in the modeling of real memristor devices. As a relevant example, the authors of [40]
introduced a model with a parallel connection of a memristor and a diode, with the latter
accounting for the rectification effect in the off-state due to the Schottky-like transport at
one of the metal/oxide memristor interfaces. Several analogous models of barrier-type
memristors in which a diode-like nonlinear resistor was introduced for better modeling of
the experimentally observed pinched hysteresis loops in response to a zero-mean sinusoidal
excitation were reviewed, for instance, in [41,42].

When subjected to a zero-mean sinusoidal input, an ideal memristor displays a hystere-
sis loop in the voltage–current plane that is symmetric about the origin. It was demonstrated
in [39] that, through suitable massaging, the nonlinear resistor characteristic model (1)
is capable of reproducing nonsymmetric hysteresis loops that can be observed for some
classes of real memristor devices. On the other hand, it should be noted that model (1)
has the memristor flux as the internal state variable, as it happens for a flux-controlled
ideal memristor. Other types of memristors do not necessarily admit the flux as a state
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variable, or they may have additional state variables, such as the temperature or geometric
quantities that characterize the insulating or conductive part. Finally, it is remarked that
model (1) describes a nonvolatile memristor, while some classes of real memristors are
volatile, such as thermistors [12].

3. Memristor Neural Network Models
3.1. Ideal Memristor Neural Network Model

The authors of [32,33,35,36,43] considered an array of n interconnected dynamical
cells with a structure of an NN. The circuit schematic of a cell is depicted in Figure 3. The
i-th cell is obtained via the parallel connection of an ideal capacitor C > 0 and an ideal
flux-controlled memristor qi = q̂M(ϕi), that is, the cell is obtained by replacing the linear
resistor in a typical cellular neural network (CNN) cell with a memristor (compare Figure 3
with ([23], Figure 3)). This array is called an ideal memristor neural network (IMNN). It
is observed that in the cell of Figure 3, the only nonlinearity is the memristor, while in a
CNN, the nonlinearity corresponds to the piecewise-linear input-voltage/output-voltage
characteristic implemented by an operational amplifier. The interconnection of the j-th cell,
j = 1, . . . , n, with the i-th cell is obtained by means of a linear conductance gij. Actually,
vj is sensed via an operational amplifier operating as a buffer, and a voltage-controlled
current source (VCCS) is used to inject the current gijvj into the i-th cell. A possible circuit
implementation of the buffer and VCCS is discussed in the appendix of [23].

Ci

+

−

vi q̂M(ϕi) gi1v1 ginvn

Figure 3. Circuit schematic for the i-th cell of an IMNN. The cell is obtained by replacing the linear
resistor in a CNN cell with a flux-controlled ideal memristor. The interconnections are obtained via
linear conductances gij. The VCCSs represent the currents gijvj, j = 1, 2, . . . , n, which are injected into
the cell due to the interconnections with the other cells.

An IMNN satisfies the following system of differential equations:

Cv̇i = −q̂′M(ϕi)vi +
n

∑
j=1

gijvj

ϕ̇i = vi

(4)

for i = 1, . . . , n. In vector form, we have

Cv̇ = −Q̂′M(ϕ)v + Gv

ϕ̇ = v
(5)

where we let v = (v1, . . . , vn)> ∈ Rn and Q′M(ϕ) = diag(q̂′M(ϕ1), . . . , q̂′M(ϕn)) ∈ Rn×n,
and G = [gij] ∈ Rn×n is the neuron interconnection matrix (the superscript > refers to the
transpose). This is an autonomous system of 2n differential equations in the state variables
(v, ϕ) ∈ R2n.

Results on the convergence of solutions of (5) are given in [32] under the assumption
that G is symmetric and in [33] when G has non-negative off-diagonal entries, while
conditions ensuring multistability are obtained in [35,36]. The global stability of the EP
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of (5) was established in [43]. The results in these papers were obtained via a reduction-of-
order technique and the use of the flux–charge analysis method developed in [14,44].

3.2. Real Memristor Neural Network Model

Ideal memristors are generally not well suited for modeling real memristive devices
in nanotechnology. In this paper, this leads us to consider a real memristor neural network
(RMNN) in which the ideal memristor in Figure 3 is replaced by a real extended memristor
model that is similar to that discussed in Section 2. A schematic of an RMNN cell is depicted
in Figure 4.

Ci

+

−

vi q̂M(ϕi) îR(vi) gi1v1 ginvn

Figure 4. Circuit schematic for the i-th cell of an RMNN. The cell is obtained by replacing the ideal flux-
controlled memristor in the cell of an IMNN (cf. Figure 3) with a real extended memristor given by the
parallel connection of an ideal flux-controlled memristor and a nonlinear voltage-controlled resistor.

An RMNN satisfies the following system of differential equations:

Cv̇i = −q̂′M(ϕi)vi +
n

∑
j=1

gijvj − îR(vi)

ϕ̇i = vi

(6)

for i = 1, . . . , n. In vector form, we have

Cv̇ = −Q̂′M(ϕ)v + Gv− ÎR(v)

ϕ̇ = v
(7)

where ÎR(v) = (îR(v1), . . . , îR(vn))> ∈ Rn, which is an autonomous system of 2n differen-
tial equations in the state variables (v, ϕ) ∈ R2n.

In this manuscript, we assume, unless stated otherwise, that the nonlinear resistor
characteristic îR satisfies Assumption 1. If, instead, îR satisfies Assumption 2, we are
brought back to the previous case by considering the system

Cv̇i = −q̂′M(ϕi)vi + (gii − γ)vi + ∑
j=1,...,n;j 6=i

gijvj − î+R (vi)

ϕ̇i = vi

(8)

for i = 1, . . . , n, where î+R now satisfies Assumption 1.
The equilibrium points (EPs) of (7) are obtained by letting v̇ = 0 and ϕ̇ = 0. It is seen

that for any ϕ̄ ∈ Rn, (0, ϕ̄) ∈ R2n is an EP. This means that (7) has an n-dimensional plane
of EPs such that the voltages vanish at any EP.

4. Invariants of Motion and Lyapunov Functions

In this section, we establish some basic facts that will be used in the dynamic analysis
of the paper.
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Let us first consider the IMNN (5) and define the following n functions Qi : R2n → R
of the state variables (v, ϕ) ∈ R2n:

Qi(v, ϕ)
.
= Cvi + q̂M(ϕi)−

n

∑
j=1

gij ϕj (9)

for i = 1, . . . , n.

Property 1. Along the solutions of the IMNN (5), we have

Q̇i(v, ϕ) = 0

for any t and any i = 1, . . . , n.

Proof. Since vi = ϕ̇i, we have q̂′M(ϕi)vi =
d
dt q̂M(ϕi). Therefore, we can rewrite the IMNN

equations as
d
dt

(
Cvi + q̂M(ϕi)−

n

∑
j=1

gij ϕj

)
= 0 (10)

for any t and any i = 1, . . . , n.

Property 1 means that the functions Qi are n invariants of motion for the IMNN (5).
The existence of invariants of motion for the IMNN can be predicted on the basis of the
flux–charge analysis method in [44]. However, their explicit expressions were not given in
previous papers [32,35].

Let us now consider the RMNN (7). Now, due to the presence of nonlinear resistors îR
in the neuron cells, Qi are no longer invariants of motion. However, the following holds.

Property 2. Suppose that îR satisfies Assumption 1. Then, along the solutions of the RMNN (7),
we have

Q̇i(v, ϕ) = −îR(vi) ≤ 0

for any t and any i = 1, . . . , n.

Proof. We can rewrite the RMNN equations as

d
dt

(
Cvi + q̂M(ϕi)−

n

∑
j=1

gij ϕj

)
= −îR(vi) (11)

for any t and any i = 1, . . . , n. The result follows, since, according to Assumption 1, we
have îR(vi) ≥ 0.

Of course, an analogous result holds if îR satisfies Assumption 2. Property 2 shows
that if îR satisfies either Assumption 1 or Assumption 2, then Qi are n Lyapunov functions
that decrease along the solutions of the RMNN.

5. RMNNs in the Flux–Charge Domain

In this section, we provide two equivalent representations of the RMNN (7) in the
integral variables of flux and charge (cf. Section 2), which will be useful in analyzing the
convergence of the solutions and for the numerical verification.

We denote by (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) the solution of the RMNN (7) with initial
conditions (ICs) (v0, ϕ0) ∈ R2n at t = 0 and assume that it is defined for t ≥ 0. Under
Assumption 1, due to Property 2, we have

d
dt

Qi(v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) = −îR(vi(t; v0, ϕ0)) ≤ 0
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for any t and any i = 1, . . . , n; so,

Qi(v(t; v0, ϕ0), ϕ(t; v0, ϕ0))−Qi(v0, ϕ0) = −qR,i(t; v0, ϕ0) ≤ 0 (12)

where

qR,i(t; v0, ϕ0)
.
=
∫ t

0
îR(vi(σ; v0, ϕ0))dσ. (13)

Note that since iR,i ≥ 0, −qR,i is a monotonically decreasing function of time.
Let us now consider the system of differential equations

Cφ̇i = −q̂M(φi) +
n

∑
j=1

gijφj + Qi(v0, ϕ0)− qR,i(t; v0, ϕ0)

= −q̂M(φi) +
n

∑
j=1

gijφj + Qi(v(t; v0, ϕ0), ϕi(t; v0, ϕ0))

(14)

for i = 1, . . . , n. In vector form, we have

Cφ̇ = −Q̂M(φ) + Gφ + Q(v0, ϕ0)−QR(t; v0, ϕ0)

= −Q̂M(φ) + Gφ + Q(v(t; v0, ϕ0), ϕ(t; v0, ϕ0))
(15)

where φ = (φ1, . . . , φn)> ∈ Rn and QR(t; v0, ϕ0) = (qR,1(t; v0, ϕ0), . . . , qR,n(t; v0, ϕ0))
> ∈

Rn. Note that (15) is a non-autonomous system of n differential equations in the state
variables φ ∈ Rn and that the time-dependent forcing term −QR depends on v0 and ϕ0.

We denote by φ(t; ϕ0) the solution of (15) with IC ϕ0 ∈ Rn at t = 0 and assume that it
is defined for t ≥ 0. The next result gives a link between the solutions of (15) and (7).

Property 3. We have
φ(t; ϕ0) = ϕ(t; v0, ϕ0)

and, conversely,
(v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) = (φ̇(t; ϕ0), φ(t; ϕ0))

for any t ≥ 0.

Proof. Integrating both sides of the first equation of (7), we get

Cϕ̇− Cv0 =− Q̂M(ϕ) + Q̂M(ϕ0) + Gϕ− Gϕ0 −
∫ t

0
ÎR(v(σ; v0, ϕ0))dσ

where we consider that∫ t

0
Q̂′M(ϕ(σ))v(σ)dσ =

∫ ϕ(t)

ϕ0

Q̂M(θ)dθ = Q̂M(ϕ(t))− Q̂M(ϕ0)

and v = ϕ̇. Taking (9) into account, we have Q(v0, ϕ0) = Cv0 + Q̂M(ϕ0)− Gϕ0; hence,

Cϕ̇ = −Q̂M(ϕ) + Gϕ + Q(v0, ϕ0)−QR(t; v0, ϕ0).

Let (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) be the solution of (7) with ICs (v0, ϕ0) ∈ R2n. Due to the
uniqueness of the solution to a Cauchy problem, it can be easily checked that ϕ(t; v0, ϕ0) is
also the solution of (15) with the IC ϕ0, i.e., φ(t; ϕ0) = ϕ(t; v0, ϕ0).

Differentiating both sides of (15), denoting w = φ̇, and taking (13) into account,
we obtain

Cẇ =− Q̂′M(φ)w + Gw− ÎR(w)

φ̇ =w.
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Now, let φ(t; ϕ0) be the solution of (15) with the IC ϕ0 ∈ Rn. Then, (φ̇(t; ϕ0), φ(t; ϕ0)) is
the solution of (7) with the ICs (φ̇(0, ϕ0), ϕ0). From (14), we have Cφ̇(0; ϕ0) = −Q̂M(φ(0; ϕ0))
+ Gφ(0; ϕ0) + Q(v0, ϕ0) and, since φ(0, ϕ0) = ϕ0 and Q(v0, ϕ0) = Cv0 + Q̂M(ϕ0)− Gϕ0,
we obtain ϕ̇(0; ϕ0) = v0. Therefore, we have verified that (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) =
(φ̇(t; ϕ0), φ(t; ϕ0)).

Consider now

Cψ̇ = −Q̂M(ψ) + Gψ + Q(v0, ϕ0)−QR

Q̇R = ÎR

(
1
C
(−Q̂M(ψ) + Gψ + Q(v0, ϕ0)−QR)

) (16)

where ψ,QR ∈ Rn. This is an autonomous system of 2n differential equations in the state
variables (ψ,QR) ∈ R2n.

Let (ψ(t; ϕ0, 0),QR(t; ϕ0, 0)) denote the solution of (16) with ICs (ϕ0, 0) ∈ R2n. The
next results establish links between the solutions of (16) and (15) and those of (16) and (7).

Property 4. We have

(ψ(t; ϕ0, 0),QR(t; ϕ0, 0)) = (φ(t; ϕ0),
∫ t

0
ÎR(φ̇(σ; ϕ0))dσ)

and, conversely,
φ(t; ϕ0) = ψ(t; ϕ0, 0)

for any t ≥ 0.

Proof. Let φ(t; ϕ0) be the solution of (15) with the IC ϕ0 at t = 0. We have

φ̇ =
1
C
(Q̂M(φ) + Gφ + Q(v0, ϕ0)−QR(t; v0, ϕ0)). (17)

Due to Property 3, v(t; v0, ϕ0) = φ̇(t; ϕ0). Differentiating both sides of (13), we ob-
tain Q̇R(·; v0, ϕ0)) = ÎR(φ̇(·; ϕ0)). Taking into account (17) and Property 3, we obtain the
Cauchy problem:

Cφ̇ =− Q̂M(φ) + Gφ + Q(v0, ϕ0)−QR

Q̇R = ÎR

(
1
C
(Q̂M(φ) + Gφ + Q(v0, ϕ0)−QR)

)
with the IC (ϕ0, 0). As a consequence, (φ(t; v0),

∫ t
0 ÎR(φ̇(σ; ϕ0))dσ) is the solution of (16)

with the IC (ϕ0, 0).
Now, let (ψ(t; ϕ0, 0),QR(t; ϕ0, 0)) be the solution of (16) with the ICs (ϕ0, 0). By noting

that QR(t; ϕ0, 0) = 0, taking (13) into account, we can rewrite the first equation of (16) as

ψ̇ = −Q̂M(ψ) + Gψ + Q(v0, ϕ0)−
∫ t

0
ÎR(ψ̇(σ; ϕ0, 0))dσ.

As a consequence, ψ(t; ϕ0, 0) is also a solution of (15) with the IC ϕ0.

Property 5. We have

(ψ(t; ϕ0, 0),QR(t; ϕ0, 0)) = (ϕ(t; v0, ϕ0),
∫ t

0
ÎR(v(σ; v0, ϕ0))dσ)

and, conversely,
(v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) = (ψ̇(t; ϕ0, 0), ψ(t; ϕ0, 0))

for any t ≥ 0.
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Proof. The result is a straightforward consequence of Properties 3 and 4.

6. Main Results on the Convergence of RMNNs

Suppose that Assumption 1 is satisfied and consider a solution (v(t; v0, ϕ0), ϕ(t; v0, ϕ0))
of the RMNN (7) that is defined for t ≥ 0. Since −qR,i in (13) is monotonically non-
increasing, for any i = 1, . . . , n, we have that either −qR,i(t; v0, ϕ) → −∞ as t → ∞ or
−qR,i(t; v0, ϕ)→ −q∞

R,i(v0, ϕ0) > −∞ as t→ ∞.

Property 6. If the solution (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) of the RMNN (7) is defined and bounded for
t ≥ 0, then we have

lim
t→∞

(−qR,i(t; v0, ϕ)) = −q∞
R,i(v0, ϕ0) > −∞

for i = 1, . . . , n.

Proof. From Properties 3–5, ϕ(t; v0, ϕ0) = φ(t; ϕ0) = ψ(t; ϕ0, 0) and v(t; v0, ϕ0) =
ϕ̇(t; v0, ϕ0) = φ̇(t; ϕ0) = ψ̇(t; ϕ0, 0). Additionally, QR(t; v0, ϕ0) = QR(t; ϕ0, 0). Now, con-
sider (16). Since (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) is bounded for t ≥ 0, and ψ(t; ϕ0, 0), ψ̇(t; ϕ0, 0),
Q̂R(ψ(t; ϕ0, 0)), and Gψ(t; ϕ0, 0) are bounded for t ≥ 0; this implies that QR(t; ϕ0, 0) and
Q(t; v0, ϕ0) are bounded for t ≥ 0. Since Q(t; v0, ϕ0) is monotonically non-increasing for
t ≥ 0, there exists Q∞

R (v0, ϕ0) > −∞ such that limt→∞ QR(t; v0, ϕ0) = Q∞
R (v0, ϕ0).

Under the assumptions of Property 6, we can consider the following asymptotic
system in the flux–charge domain:

CΦ̇ = −Q̂M(Φ) + GΦ + Q0(v0, ϕ0)−Q∞
R (v0, ϕ0)

= −Q̂M(Φ) + GΦ + Q∞(v0, ϕ0)
(18)

where

Q∞
R (v0, ϕ0) = (q∞

R,1(v0, ϕ0), . . . , q∞
R,n(v0, ϕ0))

> =
∫ ∞

0
ÎR(v(σ; v0, ϕ0))dσ ∈ Rn

and Q∞(v0, ϕ0) = limt→∞ Q(t; v0, ϕ0) ∈ Rn.
The next theorem gives the main convergence result in the paper.

Theorem 1. Assume for the RMNN that the interconnection matrix G is symmetric. In addition,
suppose that the solution (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) of the RMNN (7) is defined and bounded for
t ≥ 0 and that the EPs of the asymptotic system (18) are isolated. Then:

(1) φ(t; ϕ0) converges to η ∈ Rn as t→ ∞, where η is an EP of (18);
(2) (v(t; v0, ϕ0), ϕ(t; v0, ϕ0)) converges to the EP (0, η) ∈ R2n of (7) as t→ ∞;
(3) (ψ(t; ϕ0, 0),QR(t; ϕ0, 0)) converges to the EP (η, Q∞

R (v0, ϕ0)) of (16) as t→ ∞.

We provide some remarks before giving the proof of the theorem.

1. Theorem 1 can be considered an extension of the convergence results obtained in [32]
for IMNNs to NNs with real memristors. Basically, Theorem 1 states that the presence
of rectifying nonlinear resistors in the neuron model does not destroy the property of
convergence that holds for symmetric IMNNs.

2. It is worth remarking that the assumption of isolated EPs for the asymptotic sys-
tem (18) is not restrictive. Indeed, in the case in which the system has non-isolated
EPs, the vector field defining (18) can be changed by an arbitrarily small amount to
obtain isolated EPs. This can be shown via an argument based on the Sard theorem
analogous to that used to prove ([32], Property 2) (details are omitted).

3. The convergence result in Theorem 1 has been proven via a Lyapunov approach
applied to the system describing the RMNN in the flux–charge (integral) domain. A
crucial property is that the functions Qi, i = 1, . . . , n, in (9) can be used as Lyapunov
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functions that decrease along the RMNN equations in the voltage–current domain.
This enables an association of an asymptotic system in the flux–charge domain—to
which the Lyapunov approach can be effectively used to prove convergence—with
an RMNN.

4. From an the point of view of applications, an RMNN can be used to process signals
and images in the flux–charge domain, i.e., the dynamics of the memristor fluxes can
be used instead of using the dynamics of capacitor voltages, as happens for traditional
memristor-less NNs operating in the voltage–current domain. A simple application to
an image processing task will be illustrated in Section 7. We stress that in an RMNN,
memristors are used in the analog computation, but they are also able to store the
computational result, i.e., the asymptotic values of fluxes, in accordance with the
principle of in-memory computing.

Proof of Theorem 1. (1) Suppose, for simplicity, that C = 1. Let us consider for (15) the
candidate Lyapunov function

E(φ) =
n

∑
i=1

∫ φi

0
q̂M(σ)dσ− 1

2
φ>Gφ− φ>(Q0(v0, ϕ0)−Q∞

R (v0, ϕ0))

where Q∞
R (v0, ϕ0) is defined in Property 6. Since, by assumption, ϕ(t; v0, ϕ0) is bounded

for t ≥ 0, due to Property 3, we have that φ(t; ϕ0) is bounded for t ≥ 0 and, since E is
continuous, E(φ(t; v0)) is bounded from below for t ≥ 0.

Accounting for the symmetry of G, we have

∇E(φ) =Q̂M(φ)− Gφ−Q(v0, ϕ0) + Q∞
R (v0, ϕ0). (19)

Hence, (15) can be written as

φ̇ = −∇E(φ)−QR(t; v0, ϕ0) + Q∞
R (v0, ϕ0) (20)

while the asymptotic system (18) is

Φ̇ = −∇E(Φ). (21)

Then, the time derivative of E along the solutions of (20) is given by

Ė(φ) = ∇E(φ)>(−∇E(φ)−QR(t; v0, ϕ0) + Q∞
R (v0, ϕ0))

= −‖∇E(φ)‖2 −∇E(φ)>(QR(t; v0, ϕ0)−Q∞
R (v0, ϕ0)).

(22)

We choose r > 0 such that φ(t; φ0) ∈ B(0, r) for any t ≥ 0. Let us first show that (21)
has at least an EP in B(0, R), where R > r. The EPs of (21) are the points where ∇E = 0.
Suppose, for contradiction, that (21) has no EPs in B(0, r). Since ∇E is continuous and
∇E 6= 0, then −‖∇E(Φ)‖2 ≤ −m2 < 0 for any Φ ∈ B(0, r). Moreover, ‖∇E(Φ)‖ ≤ M if
Φ ∈ B(0, r). Since QR(t; v0, ϕ0) is monotonically non-increasing for t ≥ 0 and it tends
towards Q∞

R (v0, ϕ0) as t → ∞, there exists t̄ such that ‖QR(t; v0, ϕ0) − Q∞
R (v0, ϕ0))‖ <

m2/(2M) for any t ≥ t̄. Then, for t ≥ t̄, Ė(φ(t; ϕ0)) ≤ −‖∇E(φ(t; ϕ0))‖2 + ‖∇E(φ(t; ϕ0))‖
‖QR(t; v0, ϕ0) − Q∞

R (v0, ϕ0)‖ < −m2/2 < 0. Therefore, E(φ(t; ϕ0)) → −∞ as t → ∞,
which is a contradiction.

Since the EPs of (18) are isolated, it follows that there exist finite EPs η1, . . . , ηp of (18)
in B(0, R). We choose ε̄ > 0 such that B(ηi, ε̄) ⊂ B(0, R) and B(ηi, ε̄) ∩ B(ηj, ε̄) = ∅ for any
i, j = 1, . . . , p. We want to prove that there exists ī ∈ {1, . . . , p} such that for any 0 < ε ≤ ε̄,
there exists tε ≥ 0 such that φ(t; ϕ0) ∈ B(ηī, ε) for any t ≥ tε. This, in turn, implies the
convergence of φ(·; ϕ0) to the EP ηī.

For any λ > 0, we let
Iλ = ∪p

i=1B(ηi, λ) ⊂ B(0, R)
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and
Oλ = B(0, R)\Iλ.

Let us show the next preliminary property.

Property 7. Suppose that the assumptions of Theorem 1 are satisfied. Then, for any 0 < λ < ε̄,
the following hold:

(a) There exist α2(λ) > 0 and tλ ≥ 0 such that for t ≥ tλ, we have

Ė(φ) ≤ −α2(λ) < 0

if φ ∈ Oλ;
(b) we have

max
φ∈Iλ

E(φ)− min
φ∈Iλ

E(φ) ≤ β2(λ)

where β2(λ)→ 0 as λ→ 0.

Proof. (a) Since ∇E is continuous and there is no EP of (18) in Oλ, there exists α2(λ) > 0
such that −‖∇E(φ)‖2 ≤ −2α2(λ) < 0 if φ ∈ Oλ. Taking into account (19), we have, for
any φ ∈ Oλ,

‖∇E(φ)‖ ≤ M̂λ + R‖G‖+ ‖Q(v0, ϕ0)‖+ ‖Q∞
R (v0, ϕ0)‖

where M̂λ = maxφ∈Oλ
Q̂M(φ) < ∞. Since QR(t; v0, ϕ0) is monotonically non-increasing for

t ≥ 0 and it tends towards Q∞
R (v0, ϕ0) as t→ ∞, there exists tλ such that

‖QR(t; v0, ϕ0)−Q∞
R (v0, ϕ0))‖ < α2(λ)/(M̂λ + R‖G‖+ ‖Q(v0, ϕ0)‖+ ‖Q∞

R (v0, ϕ0)‖)

for any t ≥ tλ. Then, taking (22) into account, we obtain

Ė(φ) ≤ −‖∇E(φ)‖2 + ‖∇E(φ)‖‖QR(t; v0, ϕ0)−Q∞
R (v0, ϕ0)‖ < −α2(λ) < 0

for all t ≥ tλ.
(b) Since φ ∈ Iλ, there exists j̄ ∈ {1, . . . , p} such that φ = η j̄ + ∆ j̄, with ∆ j̄ ∈ B(0, λ).

We can write E(φ) as

E(η j̄ + ∆ j̄) =
n

∑
i=1

∫ η j̄,i+∆ j̄,i

0
q̂M(σ)dσ− 1

2
(η j̄ + ∆ j̄)

>G(η j̄ + ∆ j̄)

− (η j̄ + ∆ j̄)
>(Q0(v0, ϕ0)−Q∞

R (v0, ϕ0)).

The following inequalities hold true:

max
∆ j̄∈B(0,λ)

E(η j̄ + ∆ j̄) ≤
n

∑
i=1

∫ η j̄,i

0
q̂M(σ)dσ + λ

n

∑
i=1

max
σ∈[η j̄,i−λ,η j̄,i+λ]

|q̂M(σ)|

− 1
2

η>̄j Gη j̄ + ρ(G)λ‖η j̄‖+
1
2

ρ(G)λ2

− η>̄j (Q0(v0, ϕ0)−Q∞
R (v0, ϕ0)) + λ‖Q0(v0, ϕ0)−Q∞

R (v0, ϕ0)‖

and

min
∆ j̄∈B(0,λ)

E(η j̄ + ∆ j̄) ≥
n

∑
i=1

∫ η j̄,i

0
q̂M(σ)dσ− λ

n

∑
i=1

max
σ∈[η j̄,i−λ,η j̄,i+λ]

|q̂M(σ)|

− 1
2

η>̄j Gη j̄ − ρ(G)λ‖η j̄‖ −
1
2

ρ(G)λ2

− η>̄j (Q0(v0, ϕ0)−Q∞
R (v0, ϕ0))− λ‖Q0(v0, ϕ0)−Q∞

R (v0, ϕ0)‖
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where ρ(G) is the spectral radius of G. These imply that

max
∆ j̄∈B(0,λ)

E(η j̄ + ∆ j̄)− min
∆ j̄∈B(0,λ)

E(η j̄ + ∆ j̄)

≤ λ

(
2‖η j̄‖ρ(G) + 2

n

∑
i=1

max
σ∈[η j̄,i−λ,η j̄,i+λ]

|q̂M(σ)|
)

+ λ(ρ(G)λ + 2‖Q0(v0, ϕ0)−Q∞
R (v0, ϕ0)‖)

.
= β2

j̄ (λ).

It can be easily checked that β2
j̄ (λ) → 0 as λ → 0. To complete the proof, it suffices

to pick

β2(λ) = 2λ max
j̄=1,...,p

(
ρ(G)‖η j̄‖+

n

∑
i=1

max
σ∈[η j̄,i−λ,η j̄,i+λ]

|q̂M(σ)|
)

+ λ(ρ(G)λ + 2‖Q0(v0, ϕ0)−Q∞
R (v0, ϕ0)‖).

For any i ∈ {1, . . . , p}, we consider B(ηi, ε), B(ηi, ε/2), and B(ηi, ρ), where ρ ≤ ε/2.
Moreover, we consider the sets Oε/2 and Oρ. By applying Property 7 with λ = ε/2, we
find that there exists tε/2 such that t ≥ tε/2 implies Ė(φ) ≤ −α2(ε/2) < 0 if φ ∈ Oε/2.
In particular, this is true if φ ∈ B(ηi, ε)− B(ηi, ε/2) and i = 1, . . . , p. Since β2(λ) → 0 as
λ→ 0, we can choose ρ and δ > 0 such that

ε

Υ
α2
( ε

2

)
> β2(ρ) + δ

where we let

Υ .
= sup

φ∈B(0,R),t≥0‖φ̇(t)‖
≤ ‖∇E(φ)‖+ 2‖Q∞

R (v0, ϕ0)‖
≤ M̂ε/2 + ‖G‖R + ‖Q(v0, ϕ0)‖+ 3‖Q∞

R (v0, ϕ0)‖

where M̂ε/2 = maxφ∈Oε/2
‖Q̂M(φ)‖. Due to Property 7, with λ = ρ, we have that there

exists tρ ≥ 0 such that for t ≥ tρ, we have Ė(φ) ≤ −α2(ρ) < 0 if φ ∈ Oρ. In particular, this
is true if φ ∈ B(ηi, ε/2)− B(ηi, ρ) and i = 1, . . . , n.

We say that φ(·, ϕ0) undergoes an input–output event if for some i ∈ {1, . . . , p}, there
exist tin < t+ < tout such that φ(tin, ϕ0) ∈ ∂B(ηi, ε), φ(t+, ϕ0) ∈ B(ηi, ρ), and φ(tout, ϕ0) ∈
∂B(ηi, ε). We assume that t ≥ max{tε/2, tρ}. Then, it can be easily verified that any input–
output event leads to a net decrease in E(φ(t, ϕ0)). Indeed, E(φ(t, ϕ0)) decreases as long
as φ(t, ϕ0) ∈ B(ηi, ε)− B(ηi, ρ), while it might increase if φ(t, ϕ0) ∈ B(ηi, ρ). Property 7b
provides β2(ρ) as an upper bound to this increase. On the other hand, the decrease in
E(φ(·, ϕ0)) when φ(t, ϕ0) ∈ B(ηi, ε)− B(ηi, ρ) will be larger than the one it undergoes
when φ(t, ϕ0) ∈ B(ηi, ε)− B(ηi, ε/2), with the latter variation satisfying the condition

|∆E(φ(t, ϕ0))| ≥
ε

Υ
α2
( ε

2

)
.

Then, we obtain

E(φ(tout, ϕ0))− E(φ(tin, ϕ0)) ≤ −
ε

Υ
α2
( ε

2

)
+ β ≤ −δ < 0.

To conclude the proof, note that there are two possibilities.
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(a) The solution φ(·, ϕ0) undergoes infinite input–output events. For any event, we
have a net decrease in E(·, ϕ0) that is equal at least to−δ. Moreover, since Ė(φ) < −α2(ρ) <
0 in Oρ, we arrive at the conclusion that E(φ(t; φ)) → −∞ as t → ∞. However, this is
a contradiction.

(b) The solution φ(·, ϕ0) undergoes finite input–output events. Now, we have two
possibilities. (b1) φ(t; ϕ0) belongs to Oρ for all large times t ≥ t̂. However, since Ė(φ) ≤
−α2(ρ) in Oρ, we have that E(φ(t; ϕ0))→ −∞ as t→ ∞, which is a contradiction. (b2) For
some ī, we have φ(t; ϕ0) ∈ B(ηī, ε) for all large t.

This concludes the proof that φ(t; ϕ0)→ ηī for some ī ∈ {1, . . . , n} as t→ ∞.
(2) First, note that, since φ(·; ϕ0) converges to an EP of (18), then from (15), we obtain

that φ̇(t; ϕ0)→ 0 as t→ ∞. Then, the result is a direct consequence of Property 3.
(3) This follows directly from (1) and Propertiess 4 and 6.

7. Numerical Simulations and Application

Let us consider a two-dimensional cellular neural network (CNN) array with N × N
cells and real memristors, as in (1). After ordering the cells row-wise or column-wise, the
CNN can be described by the RMNN (7) with n = N×N. Suppose that the ideal memristor
characteristic q̂M is a C1 approximation of the PWL function

qM = q̂M(ϕM) = bϕM +
1
2
(a− b)(|ϕM + 1| − |ϕM − 1|)

with a = 1 and b = 4. Moreover, we assume that the rectifying nonlinear resistor is the
PWL diode (2) with Vth = 0.7 and λ = 0.2, and we let C = 0.1.

We consider the application of the CNN to a simple image processing task, i.e., the
extraction of the horizontal lines of a 2D image. In particular, we use the symmetric
cloning template

A = [0.6 1.2 0.6]

which is a slight variant of that proposed in [45] for horizontal line detection. This leads to
a symmetric matrix G for the RMNN (7), which can be explicitly found via the technique
in ([32], App. C).

We simulated the dynamics of the CNN using MATLAB. The initial image, which
is given in Figure 5a, was provided as the input to the CNN via the initial conditions ϕ0
for the ideal memristor fluxes. A white pixel corresponds to ϕ0,i ≥ 1, while a black pixel
denotes ϕ0,j ≤ −1. Gray pixels represent levels of flux between −1 and 1. The initial
voltages v0,i of the capacitors were chosen so that Q(v0, ϕ0) = 0 (cf. [39]), i.e., from (9),

v0 =
1
C
[Gϕ0 − Q̂M(ϕ0)].

Figure 5 shows snapshots of the time evolutions of the CNN fluxes obtained through
numerical simulation of (16). It was seen that the CNN was able to correctly extract
the horizontal lines of the initial image. There was only one error in the pixel (13, 13).
Figure 6a (or Figure 6b) depicts the time evolution of the fluxes ψi(·; ϕ0, 0) (or nonlinear
resistor charges QR,i(·; ϕ0, 0)) for the 13th row of the CNN. It was seen that the fluxes
were convergent, as predicted by Theorem 1, while −QR,i(·; ϕ0, 0) = Qi(v0, ϕ0) were
monotonically nondecreasing, as predicted by Property 2. Finally, Figure 6c shows the
memristor fluxes ϕi(·; v0, ϕ0), while Figure 6d shows the capacitor voltages vi(·; v0, ϕ0)
obtained via the numerical simulation of (7). Note that, in agreement with Theorem 1, all
voltages vanished asymptotically. Furthermore, we showed in Property 5 that ϕi(·; v0, ϕ0)
coincides with ψi(·; ϕ0, 0). The validity of this result can be checked by noting that the
time-domain behaviors in Figure 6a,c are the same.
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Figure 5. Numerical simulation with MATLAB of a memristor CNN for horizontal line detection.
(a) Initial image at t = 0; (b) snapshot of the transient at t = 0.1; (c) snapshot at t = 0.15; (d) final
image at t = 1.
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Figure 6. Numerical simulation with MATLAB of a memristor CNN for horizontal line detection.
(a) Time evolution of fluxes ψi(·; ϕ0, 0) for the 13th row of the CNN; (b) evolution of nonlinear
resistor charges QR,i(·; ϕ0, 0); (c) evolution of fluxes ϕi(·; v0, ϕ0); (d) evolution of capacitor voltages
vi(·; v0, ϕ0).

In order for interested readers to verify the presented results in detail, the MATLAB
code used in the numerical simulations in this paper has been made available on Code
Ocean platform (DOI: 10.24433/CO.4341689.v1).

8. Conclusions

The paper studied trajectory convergence for a class of NNs with real extended mem-
ristors with rectifying characteristics (RMMNs). The memristors, which were originally
proposed in [39], are given by the parallel connection of an ideal flux-controlled memristor
and a voltage-controlled nonlinear resistor. The paper established some fundamental results
on trajectory convergence under the assumption that the interconnection matrix satisfies a
symmetry condition. This result generalizes previous results on convergence for memristor
NNs with ideal memristors to the considered class of real memristors [32]. To the authors’
knowledge, the obtained results are the only available ones on the convergence of feedback
NNs with real memristors. The main idea in proving convergence is to use the functions of
the state variables that are invariants of motion in the ideal memristor case as Lyapunov
functions for RMNNs. This, in combination with a reduction-of-order technique in which
the RMNN dynamics are expressed in the integral (flux–charge) domain, has enabled us to
show that when the interconnection matrix is symmetric, any bounded solution necessarily
converges toward an equilibrium point. The convergence results have been illustrated by
applying RMNNs to the solution of some simple image processing tasks. Future work
will be devoted to investigating whether we can also obtain convergence results for the
considered RMNNs for some classes of nonsymmetric interconnection matrices. Moreover,
we will investigate whether it is possible to address convergence for NNs with other classes
of real memristors for which the flux is not the internal state variable.
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