16,153 research outputs found

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Formal and efficient verification techniques for Real-Time UML models

    Get PDF
    The real-time UML profile TURTLE has a formal semantics expressed by translation into a timed process algebra: RT-LOTOS. RTL, the formal verification tool developed for RT-LOTOS, was first used to check TURTLE models against design errors. This paper opens new avenues for TURTLE model verification. It shows how recent work on translating RT-LOTOS specifications into Time Petri net model may be applied to TURTLE. RT-LOTOS to TPN translation patterns are presented. Their formal proof is the subject of another paper. These patterns have been implemented in a RT-LOTOS to TPN translator which has been interfaced with TINA, a Time Petri Net Analyzer which implements several reachability analysis procedures depending on the class of property to be verified. The paper illustrates the benefits of the TURTLE->RT-LOTOS->TPN transformation chain on an avionic case study

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    Mapping RT-LOTOS specifications into Time Petri Nets

    Get PDF
    RT-LOTOS is a timed process algebra which enables compact and abstract specification of real-time systems. This paper proposes and illustrates a structural translation of RT-LOTOS terms into behaviorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore possible to apply Time Petri nets verification techniques to the profit of RT-LOTOS. Our approach has been implemented in RTL2TPN, a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN. The latter is verified using TINA, a TPN analyzer developed by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has been positively benchmarked against previously developed RT-LOTOS verification tool

    Enhancing workflow-nets with data for trace completion

    Full text link
    The growing adoption of IT-systems for modeling and executing (business) processes or services has thrust the scientific investigation towards techniques and tools which support more complex forms of process analysis. Many of them, such as conformance checking, process alignment, mining and enhancement, rely on complete observation of past (tracked and logged) executions. In many real cases, however, the lack of human or IT-support on all the steps of process execution, as well as information hiding and abstraction of model and data, result in incomplete log information of both data and activities. This paper tackles the issue of automatically repairing traces with missing information by notably considering not only activities but also data manipulated by them. Our technique recasts such a problem in a reachability problem and provides an encoding in an action language which allows to virtually use any state-of-the-art planning to return solutions

    Classification of Subsystems for Local Nets with Trivial Superselection Structure

    Get PDF
    Let F be a local net of von Neumann algebras in four spacetime dimensions satisfying certain natural structural assumptions. We prove that if F has trivial superselection structure then every covariant, Haag-dual subsystem B is the fixed point net under a compact group action on one component in a suitable tensor product decomposition of F. Then we discuss some application of our result, including free field models and certain theories with at most countably many sectors.Comment: 31 pages, LaTe

    Superselection Theory for Subsystems

    Full text link
    An inclusion of observable nets satisfying duality induces an inclusion of canonical field nets. Any Bose net intermediate between the observable net and the field net and satisfying duality is the fixed-point net of the field net under a compact group. This compact group is its canonical gauge group if the occurrence of sectors with infinite statistics can be ruled out for the observable net and its vacuum Hilbert space is separable.Comment: 28 pages, LaTe

    Test of preemptive real-time systems

    Get PDF
    Time Petri nets with stopwatches not only model system/environment interactions and time constraints. They further enable modeling of suspend/resume operations in real-time systems. Assuming the modelled systems are non deterministic and partially observable, the paper proposes a test generation approach which implements an online testing policy and outputs test results that are valid for the (part of the) selected environment. A relativized conformance relation named rswtioco is defined and a test generation algorithm is presented. The proposed approach is illustrated on an example
    • 

    corecore