
Test of Preemptive Real-time Systems

Noureddine Adjir 1, 2, 3, Pierre de Saqui-Sannes 1, 2, Kamel Mustapha Rahmouni 4

1 ENSICA, Université de Toulouse, 1 place Emile Blouin- 31056 Toulouse Cedex 5, France
{nadjir, pdss}@ensica.fr

2 LAAS-CNRS, Université de Toulouse, 7 avenue du Colonel Roche- 31077 Toulouse Cedex 4, France
 3 LMMC, Centre Universitaire Moulay Tahar, BP. 138, En-Nasr 20002 Saida, Algérie

 4 Département d’Informatique, Université d’Oran, 31000, Algérie
kamel_rahmouni@yahoo.fr

Abstract

Time Petri nets with stopwatches not only model system/environment interactions and time
constraints. They further enable modeling of suspend/resume operations in real-time systems. Assuming
the modelled systems are non deterministic and partially observable, the paper proposes a test
generation approach which implements an online testing policy and outputs test results that are valid
for the (part of the) selected environment. A relativized conformance relation named rswtioco is defined
and a test generation algorithm is presented. The proposed approach is illustrated on an example.

1. Introduction

In black box testing, also called model-based testing, test cases are generated from

the specification of the system and executed against the system under test (SUT). There

are several works of test case generation from specifications of real-time systems. Real-

time systems are not only characterized by their capacity to interact with their

surrounding environment and to provide the latter the expected outputs at the right time.

They may be interrupted at any time while keeping the capacity to restart later on

without losing their state information. Therefore a real-time specification model should

include a suspend/resume capability. A survey of the literature indicates that reactivity

and timeliness have extensively been discussed by those papers which address timed

test sequence generation. So, much works on model based testing have considered as

formal modelling techniques Alur and Dill’s timed automata [1] or time Petri nets [32].

However, all this models cannot enable to model the suspension and resumption of a

task or any kind of executable portion of code in real-time systems (think, e.g., of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

interrupting a washing machine in order to remove a pencil from a shirt, and closing the

machine immediately after).

This paper addresses timed test sequence generation for a timed formal model which

takes suspend/resume operations into account. We indeed consider Input/Output

Prioritized Time Petri Nets with Stopwatches (I/OPrSwTPN), an extension of Merlin’s

Time Petri Nets [32] with a suspend/resume capability and static priorities. Such

priorities are pervasive in many applications of real-time systems. The proposal

implements an online testing approach and defines a relativized conformance relation

named rswtioco (a stopwatch extension of the rtioco relation defined in [33]). Unlike

other approaches based on offline testing, we do accept unrestricted non-deterministic

and partially observable specifications.

The paper is organized as follows. Section 2 surveys related work. Section 3 presents

the I/OPrSwTPN model (syntax and semantics). The rswtioco relation is introduced in

Section 4. Test generation and execution are discussed in Section 5. Finally, Section 6

concludes the paper.

2. Related Work

2.1. Modeling technique

Much work on timed test sequence generation has considered Alur and Dill’s timed

automata (TA) [1] as formal modeling techniques (see, e.g. [12], [13], [14], [17], [21],

[26], [28], [29], [31], [34], [35], [33] and [36]). This usually requires (symbolic)

analysis of the TA model e.g. [33] and [29]. Several extensions of TA have been

proposed in the literature in order to facilitate and to improve real time system modeling

(e.g. [2], [8], [15], [16], [18], [22] and [24]). We have noticed that:

- Part of these extended TA cannot be analysed using existing tools, particularly using

the forward analysis technique implemented by UPPAAL [9]. Therefore, several

authors (e.g. [3], [6] and [11]) proposed to transform TA into Time Petri nets

(Merlin’s model [32]) and to reuse verification algorithms available for TPNs.

- The extension dedicated to model suspension and resumption of actions, like for

example stopwatch automata [], are not considered at all in timed testing.

Therefore, we decided to select TPN as starting point for test generation. Unlike papers

that limit discussion to Merlin’s TPN [30], this paper addresses Input/Output Prioritized

TPN with Stopwatches. That model enables modelling of suspend/resume operations

and the interactions of the reactive real-time systems.

2.2. Online vs. offline testing

The test generation algorithm proposed in Section 5 implements an online (on the fly)

policy. Given that real-time systems are intrinsically non deterministic and because of

dense time, a timed test case cannot be represented by a finite tree in offline testing;

indeed, test cases and their verdicts are calculated a priori and before execution. Several

authors brought solutions that consist in determinizing explicitly the specification (see,

e.g., [17], [27]); although [1] demonstrated that (1) TA cannot be determinized in

general, and (2) that it is sometimes impossible to withdraw internal actions [20]. The

result is that [14], [21], [25], [29] and [36] only address a subclass of TA. A solution to

address a model with full expressiveness is to use online test. The latter indeed enables

working with non deterministic specifications. Non deterministic specifications can be

used if the cause of some decision in unknown or the details that determine the decision

are abstracted away. Online testing (1) combines test generation and execution and the

specification is determinized implicitly on the fly, (2) dramatically lowers the state

explosion risk, since only a subset of the states needs to be stored at any point of time

and (3) it may run for several hours or days, and consequently it may exhibit complex

and long test sequences.

2.3. Relativized Conformance relation

Often, the SUT operates in specific environments, and it is only necessary to establish

correctness under the modelled environment assumptions. Therefore, and as in [33] and

[], we make a distinction between the specified system that is called controller and the

environment of the system that is called environment. The assumptions about the

environment are modeled explicitly and will be taken into account during test sequence

generation. So, modeling the environment explicitly and separately from the system

makes it possible to synthesize only those scenarios which are relevant and realistic for

the given type of environment. This in turn reduces the number of required tests and

improves the quality of the test suite (see [33] for other advantages). Otherwise, it is

possible to create a fully open environment for the controller. This is achieved if the

environment can send (and receive) any stimuli at any time i.e. a completely

unconstrained one that allows all possible interaction sequences (such environment can

at any time synchronise with the external actions of the system). We assume than that

the test specification is given as a closed system partitioned into one I/OPrSwTPN

modelling the behaviour of the SUT (the controller) and one I/OPrTPN modelling the

behaviour of its environment. The upper part of figure 1. shows the model partitioned as

described above and the lower part shows the system under test (SUT) and the tester.

Therefore, conformance between an implementation and its specification is heavily

dependent on the environment. Test verdicts obtained for a specific environment remain

valid for more restrictive environments. Overall, the conformance addressed by the

paper is said to “relativized” since results are obtained for the considered environment.

Following [33], the paper considers a relativized conformance relation (rswtioco)

which extends the tioco relation proposed by [31], itself relying on Tretman’s ioco

relation [37]. The relation’s name includes “sw” by reference to Stopwatch TPN.

 Model of System and Environment

 System during Test case execution

Fig. 1. Model-based testing

3. Input/Output prioritized time Petri nets with stopw atches

During a test process, it is useful to know whether the execution of an action is to be

made at the initiative of the system environment (case of input or reception), or whether

the system itself activates the execution (case of output or emission). To make the

difference between emission and reception of actions, the set of all actions A is

partitioned in two disjoint sets of input actionsinA and output actionsoutA . An input

(output) is post fixed by ? (!). In addition, we assume the existence of a specific action

named internal or unobservable action and denoted byτ ()A∉τ . It models the internal

events of a system witch are not observed by the tester. They may result from an

abstraction of low level details made to facilitate the modelling or to allow a certain

freedom to the implementor or more to events which we do not want that the tester to

Controller Environment out

in

out

in

 SUT

 Tester

observe them to facilitate its task. τA abbreviates { }τ∪∪ outin AA . 0≥R and 0≥Q are

the sets of nonnegative real and rational numbers, respectively.

3.1. Timed Input Output Transitions

Timed Input/Output Transition systems (TIOTS) describe systems which combine

discrete and continuous transitions. They will be used to describe the semantics of

I/OPrSwTPN.

Definition 1. A TIOTS over a finite set of actions, which distinguishes between inputs

and outputs, is a quintuplet Q ()→= ,,,, outin AAqQ 0 where Q is a possibly infinite set

of states, Qq ∈0 is the initial state and the transition relation () QRAQ ×∪×⊆→ ≥0τ is

decomposed into discrete transitions →a
 (with τAa∈) and continuous (delay)

transitions →d
 (with 0≥∈ Rd). The continuous relation satisfying the following

properties:

- Nul-Delay: if qqqq ′=→ then
0

,

- Additivity: if d d, with and 0≥
′′ ∈′′′→′′→ Rqqqq

dd then qq
dd ′′ → ′′+′

- Continuity: () 

 ∧′′→′′∃′ → ′′′+′

qqqqq
ddd

 then if ,

′→′′ ′′

qq
d

- Temporal determinism: qqqq
dd ′′→∧′→ if qqRd ′′=′∈ ≥ then with 0 .

Let 000 ,...,, ..., , ≥∪∈∈∈ RAAAaaa nk ττ ααα ,, and On Rdd ≥+ ∈10 ,..., . An

execution ρ of a TIOTS Q is a finite sequence of continuous and discrete transitions.

It can be written as an alternation of continuous transitions (possibly of duration 0) and

discrete transitions: n
d

n
dd

qqqqqq n ′→→′→→′→= ...1100
1100

ααρ .

The transition relation ⇒ is the relation → where internal actions were abstracted

(()∗≥∪⇒∈ 0RA). We have: qqqq aa
′→→→′⇒ ** ττ iff , and

→′⇒
τqqq

d
iff qnddd ′→→→→→→→ ***** ττττ ... 10 where

ndddd +++= ...10 . The relation ⇒ is extended to sequences of delays and actions.

We write: qqq ′→→ αα iff and qqq →′→ αα iff for someq′ .

Definition 2. An observable timed trace of an execution ρ is the timed word

()∗≥∪∈ 0RAσ which is of the form () 100 ... +== kkdaadTraceρσ

We assume that the TIOTS Q is strongly input enabled and non-blocking. It is

strongly input enabled iff →i
q for all states q and all the input actions i and non-

blocking iff for any state q and any 0≥∈ Rd there is a timed output trace

111 ... += nndoodσ such that⇒
σ

s and ddi i ≥∑ . That Q will not block time in any input

enabled environment.

We define the timed observable traces of a state q as:

() (){ }σσ ⇒
∗

≥∪∈= qRAq 0TTr

For a state q, and subset QQ ⊆′ and a timed traceσ , σafterq is the set of states

which can be reached afterσ : { }qqqq ′′= ⇒
σσafter , U

Q
Q

′∈
=′

q
q σσ afterafter

3.2. Input/Output Prioritized Time Petri nets with Stopwatches

Time Petri Nets with Stopwatches (SwTPN) [7], extend Merlin’s Time Petri Nets [32]

by stopwatch arcs that control the progress of transitions to express suspension and

resumption of actions. TPN’s are obtained from PN’s by associating a temporal interval

[Tmin, Tmax] with each transition, specifying firing delays ranges for the transitions.

Tmin and Tmax respectively denote the earliest and latest firing times of the transition

(after the latter was enabled). Prioritized Time Petri Nets with Stopwatches (PrSwTPN)

extend SwTPN with a priority relation on the transitions; so a transition is not allowed

to fire if some transition with higher priority is firable at the same instant. Such

priorities increase the expressive power of SwTPN, and in particular Prioritized Time

Petri nets can be considered equivalent to timed automata, in terms of weak

bisimulation []. Since we address the test of reactive systems, we also add an alphabet

of actions A and a labelling function for transitions. A is partitioned in two separate

subsets: inputs actions inA and outputs actionsoutA . Inputs are the stimuli received by

the system from the outside environment. Outputs are the actions sent by this system to

the environment. Let +I be the set of nonempty real intervals with nonnegative rational

endpoints. For +∈ Ii , i↓ represent its lower endpoint, and i↑ its superior endpoint (if it

exists) or∞ . For any θθ −∈ +
&iR , denotes the interval { }θθ ≥∧∈− xixx .

Definition 3. An Input/Output Prioritized Time Petri Net with Stopwatches (or

I/OPrSwTPN) is a tuple LAIsmPrTPN ,,PostPre τ,,,,,,, 0Sw= , where :

- 0,,,, mTP PostPre is a Petri Net. P is the set of places and T is the set of

transitions, with φ=TPI . +→Ν: Pm0 is the initial marking. N:Post,Pre →→ PT

are the precondition and post-condition functions.

- +→ I: TI s is the Static Interval Function which associates a temporal interval

() +∈ ItI s with every transition in the net. The rational ()tI s↓ and ()tI s↑ are the static

earliest firing time and the static latest firing time of t, respectively.

- TTPr ×⊆ is the priority relation, assumed irreflexive, asymmetric and transitive.

() Prtt ∈21, is written 1221 or tttt pf (t1 has priority over t2).

- A is a finite set of actions, or labels, not containing the internal actionτ .

- τATL →: is the labelling function.

N: →→ PTSw is the stopwatch incidence function. Sw associates an integer with

each() TPtp ×∈, , values greater than 0 are represented by special arcs, called

stopwatch arcs, possibly weighted, and characterized by square shaped arrows. Note

that these arcs do not convey tokens. Figure 2 shows an I/OPrSwTPN. The arc from

place p0 to transition t2 is a stopwatch arc of weight 1. The firing of t0 will freeze the

timing evolution of t2. t2 will be fireable when its total enabling time reaches 2 time

units. If we replace the stopwatch arc by a normal pre arc, t2 will never be fired because

of the continuous enabling condition (for more details see [7]).

A marking is a function +→Ν: Pm . As usual, a transition t is enabled at marking

m iff ()tm Pre≥ . In addition, a transition t enabled at m is "active" iff ()tm Sw≥ ,

otherwise it is said "suspnded". The sets of enabled, active and suspended transitions at

m are respectively denoted by:

- () (){ }mttmEn ≤= Pre ,

- () () (){ }tSwmmEnttmAc ≥∧∈= and

- () () (){ }tSwmmEnttmSu <∧∈= . Fig. 2. I/OPrSwTPN example.

The predicate specifying when t′ is newly enabled by the firing of t from marking m

is defined by: () () ()()∧+−∈′=′↑ ttmEnttmtenabled PostPre,,

()()()tttmEnt ′=∨−∉′ Pre

Definition 4. A state of an I/OPrSwTPN is a pair ()Im, in which m is a marking and

+→ I: TI , a partial function called the interval function, associates a temporal interval

in +I with every transition)(mEnt ∈ .

Definition 5. The semantics of an I/OPrSwTPN LAIsmPrTP ,,PostPre τ,,,,,,, 0Sw

is the TIOTS ()→,,,, outin AAqQ 0 where Q is the set of states ()Im, of the

I/OPrSwTPN, ()000 Imq ,= is the initial state, where ()[]00 mEnII s= is the static

interval function sI restricted to the transitions ()0mEn and QRTQ ××⊆→ ≥0U is the

state transition relation. It corresponds to two kinds of transitions: discrete transitions

are the result of firings transitions of the net and continuous (or delay) transitions are the

result of elapsing of time. These transitions are defined as follows, respectively:

− Discrete transitions: () () () () and,iff,, τAtLTtImIm
tL ∈∈′′ →

1.)()(mActmEnt ∈∧∈

2. ()tI∈0

3. () () () () ()()kItkmAckmEnkTk ∉⇒∧∈∧∈∈∀ 0 f

4. () ()ttmm PostPre +−=′

5. () () () () () ()() elsethen,,if kIkItmkenabledkImEnkTk s↑=′⇒′∈∈∀

− Continuous transitions: andiff),(),(0≥∈′→ RdImIm d

6. () () ()()kIdmAckmEnkTk ≤↑⇒∈∧∈∈∀)(

7. () () () () () ()






 −∈=′⇒∈∈∀ kIelsedkImAckkImEnkTk
.

 if then

The transition t may fire from ()Im, if (1) it is enabled and active at m, (2) fireable

instantly, and (3) no transition with higher priority satisfies these conditions. These

conditions ensure that only active transitions may fire. (4) is the standard marking

transformation. From (5), in the target state, the transitions not in conflict with t

(transitions that remained enabled while t fired, t excluded) retain their firing intervals,

whereas those newly enabled are assigned their static intervals. Firing a transition takes

no time. By (7), all firing domains of active transitions are shifted synchronously

towards the origin as time elapses, and truncated to nonnegative values. The elapsing of

time has sense only for active transitions and changes of dates are thus made only for

these transitions. Frozen (suspended) transitions have their temporal interval unchanged.

(6) prevents time to elapse as soon as the latest firing time of some active transition is

reached.

Clocks take their values in the set of nonnegative real numbers (dense time), and thus

a state may admit an infinity of successors states, which implies that the state space of a

I/OPrSwTPN may be infinite. Finitely representing state spaces involves grouping some

sets of states. Several grouping can be defined, depending on the properties of the state

space one would like to preserve. We use the grouping method introduced in [4] which

groups some particular sets of states into state classes and preserve marking and traces.

A state class, or a symbolic state, is a pair (m, D) where m is a marking of the net and D

is a firing domain of the possible firings of the enabled transitions at m. The domain D

is described by a system of linear inequalities ωW ≤φ . Variables φ are bijectively

associated with the transitions enabled at m. The symbolic transition relation between

state classes is decomposed to:

− () () () () and iff,, τAtLTtDmDm tL ∈∧∈′′→

1.)()(mActmEnt ∈∧∈

2. { }
t

φ∈0 ({ }
t

φ is the set of solutions of the variable
t

φ in the system D).

3. () () () () { }()
k

tkmAckmEnkTk φ∉⇒∧∈∧∈∈∀ 0f

4. () ()ttmm PostPre +−=′

5. () () ()() ())
kskk

kItmkenabledmEnkTk φφφ else then ,,if ∈′↑=′⇒′∈∈∀

6. the variables φ are eliminated

− () () andff,, i 0≥∈′→ RdDmDm d

7. () () { }()()
k

dmAckmEnkTk φmax)(≤⇒∈∧∈∈∀ ({ }
k

φmax is the maximal value).

8. () () ()()
kkk

dmAckmEnkTk φφφ elsethen if −∈=′⇒∈⇒∈∀

Informally, the system leaves the initial state

()[] ()[]{ }()000 mEnImEnImc sts ≤↑≤↓= φε , then make alternately two types of

transitions: the transitions of active actions if the current value allows it and the

transitions of time which decrease the intervals of the active transitions of the same

duration by respecting the date of firings as soon as possible of each of the transitions.

The time in the suspended transitions is frozen. So, when a frozen transition becomes

active again, due to a change in marking, it resumes with the temporal interval captured

in the state rather than its static interval.

In order to test preemptive real-time systems, we distinguish between two types of

outputs. First, outputs in the common sense of the word; we call them active outputs.

Second, special outputs that we call “indicators” or suspended outputs. The latter are

issued by the systems to give indications on suspended actions. For correct behaviour of

a preemptive real-time system, a response which corresponds to an active output,

resumed or not, and/or suspended output(s)) should not only provide correct values, but

the values should also be provided at the right time points. So, delay is also considered

as an output.

The set of observable active outputs or delays that can occur in QQ ⊆′∈q is defined

as: () { }a
outaord qRAaq ⇒≥

∪∈=
0

Out , () ()q
q

aordaord U
Q

Q
′∈

=′ OutOut

The set of observables suspended outputs that can occur in QQ ⊆′∈q is defined by

(the function su is extended to states):

() (){ }0≥⇒ ∪∈∧∈= RAqqsuaq outsu ααOut , () ()q
q

susu U
Q

Q
′∈

=′ OutOut

Definition 6. Let ()→= ,,,, outin AAqQ 0Q be the input enabled and non-blocking TIOTS

describing the semantics of the specification and E = ()→,,,, inout AAeE 0 is an input

enabled and non-blocking TIOTS associated to the environment model of Q. The set of

input (output) actions of E is identical to the output (input) actions of Q and the

environment model not contains suspended actions. The parallel composition of Q and E

forms a closed system Q ||E in with observable behaviour is defined by the TIOTS

()()→× ,,,,, outin AAeqEQ 00 where → is defined as:

() () () () () () () ()
eqeq

eeqq

eqeq

ee

eqeq

qq

eqeq

eeqq
d

dd

a

aa

′′→
′→′→

′′→
′→

′′→
′→

′′→
′→′→

,,,,,,,, τ

τ

τ

τ

4. The rswtioco conformance relation

The motivation behind an introduction of the Relativized Stopwatch Timed

Input/Output Conformance relation, or rswtioco for short, is to test real-time systems

and to take into account their suspend/resume operations. rswtioco extends rtioco [33],

the latter being itself an extension of ioco and tioco relations by taking time and

environment assumptions explicitly into account [37], [31] and [19]. Unlike ioco and

tioco, rtioco distinguishes between the system’s constraints and the environment’s ones.

The latter are explicitly and separately modelled from the former. The question “does

the implementation conform to its specification?” is answered not for any type of

possible environment but for the considered environment i.e. the environment under

which the SUT will operate. A “yes” answer to the previous question which has been

obtained for one environment still applies to more restrictive environments. A relativzed

conformance relation can be helpful to give restrictions of the environment to avoid

generating and executing uninteresting test cases. These restrictions can also be seen as

guiding to especially wanted test cases. So, in order to test the suspension/resumption of

an action a we have to take into account the input to supply to the SUT, and also when

to supply it, that enable to suspend/resume the action a. This can be done by the choice

of (1) the environment model, (2) the choice of the input to supply by the function

chooseAction and (3) its timing by the function chooseDelay (see Algorithm 1).

The rswtioco relation does not allow either of “standard” outputs and ‘’indicators’’ to

be emitted in advance or on late, by the system. Also, this relation allows having more

information about the non-conformance of a system. So, when the system emits an

indicator or an output that was not expected at that time, then we can know if that

indicator (resp. output) must be an active output (resp. an indicator) or nothing (see

algorithm 1). The proposed rswtioco relation makes it possible to answer another

question: “does some action a resume at the expected date? i.e. rswtioco does not allow

a suspended action to be resumed in advance or on late. Under assumptions of input

enabledness, the rswtioco relation coincides with relativized timed trace inclusion.

Timed Traces of the SUT operating under an environment must be included in those of

the specification under the cover of the same environment.

Definition 7. Given an environment e, the conformance relation rswtioce between

system states Qtq ∈, is defined by:

()etrswtiocoq e TTrssi ∈∀σ : ()() ()()∧⊆ σσ after,Outafter,Out eteq aordaord

 () ()()()() () ()()()()σσ after,Outafter,after,Outafter,Out eteteqeq aordsuaordsu

O u tO u tO u tO u t
⊆

Whenever q rswtiocoe t we say that q is a correct implementation of the specification

t under the environment constraints expressed by e.

There is a most (least) discriminating input enabled and non-blocking environment U

(O) given by () () () ()()∗
≥

∗
≥ ∪== 00 RAOTTrRAUTTr outU . The corresponding

conformance relation rswtiocoU (rswtiocoO) specializes to simple trace inclusion (timed

output trace inclusion) between system states. In Figure 5(b) and Figure 5(c) the most-

discriminating and the least discriminating environments are given when

{ }rCup tCup,coin, req,=inA and { }sCoffee wWoffe,=outA .

Example. This example is taken from [33] and enriched with suspension/resumption

and internal actions. Figure 3(a) shows an I/OPrSwTPN specifying the requirements to

a coffee machine. It has a facility that allows the user, after paying, to indicate his/her

eagerness to get coffee by pushing a request button on the machine forcing it to output

coffee. However, allowing insufficient brewing time results in a light coffee. Waiting

less than 30 time units definitely results in a light coffee, and waiting more than 50

definitely results in a strong coffee. Between 30 and 50 time units the choice is non-

deterministic, meaning that the SUT/implementor may decide what to produce. After

the request, it takes the machine an additional (non deterministic) 10 to 30 (30 to 50)

time units to produce light coffee (strong coffee). The user requesting for strong coffee

can take his/her coffee at any time during its preparation and can again put back the cup

to resume what remains in the machine, on the condition to not exceed 3 time units. The

machine makes internal actions to be reset or to resume the preparation of strong coffee.

This service is not allowed for the user requesting light coffee. The figure 3(b) models

potential (nice) users of the machine that pay before requesting coffee and take his

coffee after its preparation.

 a) Specification QC of a machine coffee (b) Example environment EC

 Fig. 3. Specification of machine coffee and an environment models.

 (a) IUT: I1(Ds,). (b) Environment E1([[∞,Rd)

 Fig. 4. Implementation of coffee machine

 (a) IUT: I2([Ds, Ds], [Dl, Dl]). (b) Environment EU (c) Environment EO

Fig. 5. An other implementation of coffee machine (Dl and Ds are intervals)

p0

p1

t1 [41,ω[

req?

Dl t9

lightCoffee! Ds t8

strongCoffee!

p3

p2

t0 Coin?

p5

t7

]3,5[
t5 <t7

[0,5[returnCup!

t6 [0,1[

q3

k4

strongCafé?

t3 <t1

req?

p4

p6

t4

tackeCup?

q2

k2 tackeCup!

q0

k0coin!

k3[0,2]returnCup!

q1

k1 Rd

req!

k5

lightCafé?

q4

p0

t1 [50,ω[

req?

p4

t9

]10,30[

lightCoffee! t8]30,50[

strongCoffee!

p3

p2

t0 Coin?

t4

tackeCup?

p5

t7

]3,5[
t5 <t7

[0,5[returnCup!

t6 [0,1[

q0

k2

strongCafé?

q2

p1

t3 <t1

req?

t2 <t1

[30,ω[

req?

p6

k3

lightCafé?
k0

coin!

q1

k1req!

p0

p1

Dl t9

lightCoffee! Ds t8

strongCoffee!

p3
t0 Coin?

t4

tackeCup?

p5

t5 <t7[0,5[returnCup!

t6

[0,1[

p2
qO

k0

coin!

k1

req!

t7]3,5[

p6

t1 [41,ω[

req?

t3 <t1

req?

p4

 k0

lightCoffee?

q0

k3

returnCup!

k2

tackeCup!

k4

lightCoffee?

k5

stronfCoffee?

 k1

strongCoffee?

To illustrate our approach we suppose that the SUT can be modelled as an I/OPrswTPN.

The (deterministic) implementation I1([Ds, Ds], [Dl, Dl]) in Figure 4(a) produces light

coffee (strong coffee) after than less 40 time units (more than 41 time units) and an

additional brewing time of Dl (Ds) time units. Notice that I1([Ds, Ds], [Dl, Dl]) does

not allow the user requesting light coffee to take his cup before this time. Observe that

any trace of the implementation I1([40, 40], [20, 20]) (in any environment) can be

matched by the specification; hence I1([40, 40], [20, 20]) rswtiocoEU QC. Thus also

I1([40, 40], [20, 20]) rswtiocoE1 QC. In contrast, I1([70, 70], [5, 5]) rswtiocoEU QC for

tow reasons: 1) it has the timed trace coin . 30 . req. 5 lightCoffee that QC does not,

i.e. it may produce light coffee too soon (no time to insert a cup); 2) it has a trace coin .

50 . req . 70 not in QC meaning that it produces strong coffee too slowly. The

implementation I2([Ds, Ds], [Dl, Dl]) in Figure 5(a) is different from I1([Ds, Ds], [Dl,

Dl]), it allows all users requesting coffee to take it during its preparation (including

those requesting light coffee). We have I2([40, 40], [20, 20]) rswtiocoEU QC and I2

([40, 40], [20, 20]) rswtiocoE1 QC because it has the timed trace coin . 30 . req. 10

(tackeCup, lightCoffee). 2. (returnCup, lightCoffee). 5. lightCoffee that QC does

not. (tackeCup, lightCoffee) means that tackeCup is an active action and

lightCoffee is a suspended action. In contrast, I2([40, 40], [20, 20]) rswtiocoEC QC and

I2([40, 40], [20, 20]) rswtiocoE1 QC if [,[∞= 60Rd because EC never takes up his cup

while the machine preparing coffee and E1 (60) never requests light coffee.

5. Generations and execution of test cases

The inputs to algorithm 1 are two TIOTS’s Q ||E describing the semantics of two

I/OPrSwTPN’s, respectively modelling the SUT and an environment. The algorithm

maintains after every execution of a test event (a sent of an input or an observed output

or a delay), the current reachable state set EQC ×⊂ by using the symbolic technique

implemented in TINA [5] adapted to the needs of test. The tester is thus a state

estimator; it occupies a set of symbolic states and modifies it after every test event.

Knowing the set C, we can choose the appropriate test primitive and validate the SUT

outputs. C initially contains the symbolic stateεc . The tester can perform three basic

actions: either send an input (an enabled environment output) to the SUT, or wait for an

output after a delay or still reset the SUT and restart. If an output or a delay is observed,

the tester verifies if this is conforming to the specification. Any illegal occurrence or

absence of a standard output is detected if the modification of the set C becomes empty,

which happens when the observed trace is not in the specification. The illegal

occurrence of a suspended action is detected if it does not belong to ImpSuspend(C).

The function After calculates the accessible symbolic states after the execution of a test

event from the current states C. It returns an empty set if this event was not authorized

by the specification. The functions used in Algorithm 1 are defined as:

- ChooseAction selects randomly an input in the environment model applicable to the

SUT from the set C.

- () ()








∈∃∈= ⇒≥

d

eCeqRdCyChoosedela .,0 . Delays can not be randomly chosen

from all the set of real numbers if the environment must offer an input to the SUT

before certain date.

- () (){ }→∈∃∈= a
in eCeqAaCEnvOutput ., , EnvOutput is empty if the environment

has no output to offer.

- () (){ }→∈∃∈= a
out qCeqAaCImpOutput ., .

- () () (){ }qsuaCeqAaCImpSuspend ∈∧∈∃∈= , .

- ()oactive (resp. ()osuspend) calculates the active output (resp. the suspended actions).

The output o is a pair (active output, suspended actions). Each of them can be empty.

The suspend function is extended to delays.

Algorithm 2 computes the function ()dC,δτClosure that collects the reachable

symbolic state set within a delay of d. The predicate ()()DmC ,,Contains tests whether

a symbolic state ()Dm, is covered by a symbolic state in C. Sol(D) is the set of

solutions of the temporal variables associated with the enabled transitions. The

function () ()0ClosureClosure ,CC δττ = that collects the reachable symbolic state set

after all possible internal transition in zero delay can be computed similarly. Given

this function, the actual algorithms for computing After(C, a) and After(C,δ) become

trivial: () () () () (){ }()DmDmCDmDmAfter(C,a) a ′′→∈′′= ,,,,, ττ ClosureClosure ,

and () () (){ }δδ δτ ,,, CDmDm)After(C, Closure∈= .

Algorithm 1 Generation and execution of test.

GenExeTest()NSUTES ,,, , (){ }00 DmcC ,: == ε

while NiterationsC ≤∧≠ φ do RondomlyChoose(Action, Delay, Restart)

Action: // offer an input to the SUT

If EnvOutput(C) ≠ ∅ then a := ChooseAction(EnvOutput(C))

 sent a to the SUT

 C := After(C, a)

Delay: // wait for an output of the SUT

δ := ChooseDelay(C) // Wait δ unit of time and test the output o (o contains eventually

 // suspended actions) sent by the SUT.

if o occurs at δ' ≤ δ then C := After(C, δ')

 if active(o)∉ ImpOutout(C)

 then return fail

 if active(o)∈ ImpSuspend(C)

 then “active(o) must be a suspended action”

 else C:= After(C, active(o))

 if suspend(o) ⊄ ImpSuspend(C)

 then return fail

 S= active(o) - ImpSuspend(C)

 forall a ∈ S if a ∈ ImpOutout(C)

 then “a must be active”

 else C := After(C,δ) // no output during δ

Restart: // reset and restart.

 (){ }00 DmcC ,: == ε

Reset SUT

If C=∅ then return fail else return pass

Algorithm 2 ()dC,δτClosure

C== :: Wait, Pass φ

while φ≠Wait do (){ } WaitWait Dm,: −=

 if () ()DmDm
d ′→ ′

,, where dd ≤′ then (){ }DmPassPass ′∪= ,:

 For each transition () ()DmDm ′′′→′ ,, τ

 if ()()DmPasscontains ′′′¬ ,, then (){ }Dm ′′′∪= ,: WaitWait

return Pass

()()DmC ,,Contains

 For each state () () ()() SolSol si DDCDm ′⊆∈′, then return true

 Return false

6. Conclusions and future work

The paper discusses testing of real-time systems modelled using Stopwatch Time Petri

Nets. The latter have been selected for their capacity to model suspend/resume

operations in real-time systems (whereas surveyed papers on timed testing only address

system/environment interactions and timeliness). Using an online testing approach

makes is possible to handle non determinism and partly observable systems.

The paper introduces rswtioco, a new conformance relation which differs from tioco

and rtioco. It differs from tioco because it addresses the constraints captured by the

system separately from the ones inherent to the environment. Also, rswtioco differs

from both tioco and rtioco because the latter were defined for timed automata, a

modelling technique which does not enable description of suspend/resume operations

i.e. operations where the system’s context has to be stored and restored later on. tioco

and rtioco do not allow one to distinguish between suspended actions and not enabled

ones.

The algorithm proposed in the paper will be soon implemented in TINA [5]. So far,

our investigations have been limited to conformance testing. We plan to address other

types of testing in the near future (in particular, robustness testing).

References

1. Alur R., Dill D., « A theory of timed automata Theoretical », Computer Science, 126:183–235, 1994.

2. Bérard B. and Dufourd C., « Timed automata and additive clock constraints », Information Processing
Letters (IPL), 75(1–2):1–7, 2000.

3. Bérard B., Cassez F., Haddad S., Lime D. and Roux O. H., « When are timed automata weakly timed
bisimilar to time Petri nets ? », In 25th FSTTCS 2005, vol. 3821 of LNCS, Hyderabad, India,
December 2005, Springer.

4. Berthomieu B., M. Diaz, modelling and verification of time dependent systems using time Petri nets,
IEEE transactions on software Engineering, 17(3), 1991.

5. Berthomieu B., Ribet P. O., Vernadat F., « The tool TINA -- Construction of Abstract State Spaces for
Petri Nets and Time Petri Nets », Inter. Journal of Production Research, Vol. 42, No 14, July 2004.

6. Berthomieu B., Peres F., Vernadat F., « Bridging the gap between Timed Automata and Bounded Time
Petri Nets », In Proc. of FORMATS 2006. Springer Verlag, LNCS 4202, 2006.

7. Berthomieu B., Lime D., Roux O. H., Vernadat F., « Reachability Problems and Abstract State Space
for Timed Petri Nets with Stopwatches », August 2006, To appear 2007.

8. Bouyer P., Dufourd C., Fleury E., and Petit A., « Updatable timed automata », Theoretical Computer
Science, 321(2–3):291–345, 2004.

 9. Bouyer P., « Forward Analysis of Updatable Timed Automata », Formal Methods in System
Design 24(3), pages 281-320, 2004.

10. Bouyer P., Chevalier F., « On conciseness of extensions of timed automata », Journal of Automata,
Languages and Combinatorics, 2005.

11. Bouyer P., Serge H., Reynie P. A., « Extended Timed Automata and Time Petri Nets », in ACSD'06,
Turku, Finland, pages 91-100, IEEE Computer SocietyPress, juin 2006.

12. Braberman V., Felder M., Marre M., « Testing timing behavior of real-time software », In Intern.
Software Quality Week, 1997.

13. Brinksma E., Tretmans J., « Testing transition systems: An annotated bibliography », In MOVEP
2000, volume 2067 of LNCS, Springer, 2001.

14. Cardell-Oliver R., « Conformance test experiments for distributed real-time systems », In ISSTA’02,
ACM Press, 2002.

15. Cassez F. and Larsen K. G., « The impressive power of stopwatches », In Proc. 11th Int.CONCUR’0),
vol. 1877 of LNCS, p. 138–152, Springer, 2000.

16. Choffrut C. and Goldwurm M., « Timed automata with periodic clock constraints », JALC, 5(4):371–
404, 2000.

17. Cleaveland R., Hennessy M., « Testing Equivalence as a Bisimulation Aquivalence », Farmal Aspects
of Computing, 5:1-20, 1993.

18. Demichelis F. and Zielonka W., « Controlled timed automata », In Proc. 9th Int.CONCUR’98, vol.
1466 of LNCS, p. 455–469, Springer, 1998.

19. de Vries R., Tretmans J., « on-the-fly conformance testing using SPIN», Software Tools for
Technology Transfer, 2(4) : 382-393, March 2000.

20. Diekert V., Gastin P., Petit A. « Removing epsilon-Transitions in Timed Automata », In 14th an. stacs
1197, p;583-594, LNCS, Vol. 1200, Springer, Lubeck, Germany, February 1997.

21. En-Nouaary A., Dssouli R., Khendek F., Elqortobi A., « Timed test cases generation based on state
characterization technique », In RTSS’98, IEEE, 1998.

22; Fersman E., Petterson P., and Yi W., « Timed automata with asynchronous processes: Schedulability
and decidability » In Proc. 8th Int.TACAS’02, vol.2280 of LNCS, P. 67–82, Springer, 2002.

 23. Fernandez J.C., Jard C., Jéron T., Viho G., « Using on-the-fly verification techniques for the
generation of test suites », In CAV’96, LNCS 1102, 1996.

24. Henzinger T. A., « The theory of hybrid automata », In Proc. 11th An.LICS’96, p. 278–292. IEEE
Computer Society Press, 1996.

25. Hessel A., Larsen K., Nielsen B., Pettersson P., Skou A., « Time-optimal real-time test case
generation using UPPAAL », In FATES’03, Montreal, October 2003.

26. Higashino T., Nakata A., Taniguchi K., Cavalli A., « Generating test cases for a timed I/O automaton
model », In IFIP Int’l Work, Test Comm. System Kluwer, 1999.

27. Jéron T., Morel P., « Test generation derived from model-cheking », In Halbwachs and D. peled
Editors, CAV’99, Trento, Italy, Volume 1633 of LNCS, pages 108-122. Springer-Verleg, july 1999.

28. Jéron T., Rusu V., Zinovieva E., « STG: A symbolic test generation tool », In TACAS’02, volume
2280 of LNCS, Springer, 2002.

29. Khoumsi A., Jéron T., Marchand H., « Test cases generation for nondeterministic real-time systems »,
In FATES’03, Montreal, October 2003.

30. Lin J. C., Ho I., « Generating Real-Time Software Test Cases by Time Petri Nets », IJCA (EI
journal), ACTA Press, U.S.A. Vol. 22, No.3, pp.151-158, Sept. 2000.

31. Krichen M., Tripakis S., « An Expressive and Implementable Formal Framework for Testing Real-
Time Systems », In 17th IFIP Intl. TestCom'05, 2005.

32. Merlin P. M., Farber J., « Recoverability of communication protocols: Implications of a theoretical
study », IEEE Trans. Com., 24(9):1036-1043, September 1976.

33. Mikucionis M., K. G. Larsen, Brian Nielsen, « T-UPPAAL: Online Model-based Testing of Real-time
Systems », 19th IEEE Internat. Conf. ASE, 396-397. Linz, Austria, September 24, 2004.

34. Nielsen B., Skou. A., « Automated test generation from timed automata », In TACAS’01, LNCS 2031,
Springer, 2001.

35. Peleska J., « Formal methods for test automation - hard real-time testing of controllers for the airbus
aircraft family », In IDPT’02, 2002.

36. Springintveld J., Vaandrager F., D’Argenio P., « Testing timed automata », Theoretical Computer
Science, 254, 2001.

37. Tretmans J., «Testing concurrent systems: A formal approach », In J.C.M Baeten and S. Mauw,
editors, CONCUR’99 – 10th Int. CCT, vol. 1664 of LNCS, p. 46–65. Springer-Verlag, 1999.

