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Abstract

Time Petri nets with stopwatches not only modetegy®nvironment interactions and time
constraints. They further enable modeling of sudfresume operations in real-time systems. Assuming
the modelled systems are non deterministic andigligrtobservable, the paper proposes a test
generation approach which implements an onlinengspolicy and outputs test results that are valid
for the (part of the) selected environment. A tiglaéd conformance relation named rswtioco is defin
and a test generation algorithm is presented. Tliop@sed approach is illustrated on an example.

1. Introduction

In black box testing, also called model-based ngstiest cases are generated from
the specification of the system and executed ag#irssystem under test (SUT). There
are several works of test case generation fromifsgamons of real-time systems. Real-
time systems are not only characterized by thepaciy to interact with their
surrounding environment and to provide the latieréxpected outputs at the right time.
They may be interrupted at any time while keepihg tapacity to restart later on
without losing their state information. Thereforeeal-time specification model should
include a suspend/resume capability. A survey eflitierature indicates that reactivity
and timeliness have extensively been discusseddsetpapers which address timed
test sequence generation. So, much works on madeldbtesting have considered as
formal modelling techniques Alur and Dill's timedtamata [1] or time Petri nets [32].
However, all this models cannot enable to modelsiigpension and resumption of a

task or any kind of executable portion of code éalitime systems (think, e.g., of
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interrupting a washing machine in order to remoyeiacil from a shirt, and closing the
machine immediately after).

This paper addresses timed test sequence genei@tiartimed formal model which
takes suspend/resume operations into account. Weedh consider Input/Output
Prioritized Time Petri Nets with Stopwatches (I/SRTPN), an extension of Merlin’s
Time Petri Nets [32] with a suspend/resume capgbdind static priorities. Such
priorities are pervasive in many applications o#&l#éme systems. The proposal
implements an online testing approach and definesdativized conformance relation
namedrswtioco (a stopwatch extension of thgoco relation defined in [33]). Unlike
other approaches based on offline testing, we depmaunrestricted non-deterministic
and partially observable specifications.

The paper is organized as follows. Section 2 swvelated work. Section 3 presents
the I/OPrSWTPN model (syntax and semantics). fElngioco relation is introduced in
Section 4. Test generation and execution are disdus Section 5. Finally, Section 6

concludes the paper.
2. Related Work

2.1.Modeling technique

Much work on timed test sequence generation hasidered Alur and Dill's timed
automata (TA) [1] as formal modeling techniquese(seg. [12], [13], [14], [17], [21],
[26], [28], [29], [31], [34], [35], [33] and [36]).This usually requires (symbolic)
analysis of the TA model e.g. [33] and [29]. Severxtensions of TA have been
proposed in the literature in order to facilitateldo improve real time system modeling

(e.q. [2], [8], [15], [16], [18], [22] and [24]). W have noticed that:



- Part of these extended TA cannot be analysed @siisging tools, particularly using
the forward analysis technique implemented by UPPAS]. Therefore, several
authors (e.g. [3], [6] and [11]) proposed to tramsf TA into Time Petri nets
(Merlin’s model [32]) and to reuse verification atghms available for TPNs.

- The extension dedicated to model suspension angnm®n of actions, like for
example stopwatch automata [], are not consideratl im timed testing.

Therefore, we decided to select TPN as startingtgor test generation. Unlike papers

that limit discussion to Merlin’s TPN [30], this per addresses Input/Output Prioritized

TPN with Stopwatches. That model enables modelihguspend/resume operations

and the interactions of the reactive real-timeeyst

2.2.0nline vs. offline testing

The test generation algorithm proposed in Sectiam@ements an online (on the fly)

policy. Given that real-time systems are intrindjcaon deterministic and because of

dense time, a timed test case cannot be represbptadfinite tree in offline testing;
indeed, test cases and their verdicts are calcuatgiori and before execution. Several
authors brought solutions that consist in deternmigi explicitly the specification (see,

e.g., [17], [27]); although [1] demonstrated th&) TA cannot be determinized in

general, and (2) that it is sometimes impossiblevitbdraw internal actions [20]. The

result is that [14], [21], [25], [29] and [36] onBddress a subclass of TA. A solution to
address a model with full expressiveness is tooméiee test. The latter indeed enables
working with non deterministic specifications. Ndaterministic specifications can be
used if the cause of some decision in unknown ed#tails that determine the decision
are abstracted away. Online testing (1) combingisgeneration and execution and the
specification is determinized implicitly on the fly2) dramatically lowers the state

explosion risk, since only a subset of the statesia to be stored at any point of time



and (3) it may run for several hours or days, amusequently it may exhibit complex
and long test sequences.

2.3.Relativized Conformance relation

Often, the SUT operates in specific environmentsl, iiis only necessary to establish
correctness under the modelled environment assangptrherefore, and as in [33] and
[, we make a distinction between the specifiedeysthat is calledontroller and the
environment of the system that is calledvironment The assumptions about the
environment are modeled explicitly and will be takieto account during test sequence
generation. So, modeling the environment explicithd separately from the system
makes it possible to synthesize only those scemavrioch are relevant and realistic for
the given type of environment. This in turn reduttes number of required tests and
improves the quality of the test suite (see [33]dther advantages). Otherwise, it is
possible to create a fully open environment for ¢batroller. This is achieved if the
environment can send (and receive) any stimuli i aime i.e. a completely
unconstrained one that allows all possible intevactequences (such environment can
at any time synchronise with the external actiohthe system). We assume than that
the test specification is given as a closed syspamtitioned into one I/OPrSwWTPN
modelling the behaviour of the SUT (the controlland one I/OPrTPN modelling the
behaviour of its environment. The upper part ofifegl. shows the model partitioned as
described above and the lower part shows the systetar test (SUT) and the tester.
Therefore, conformance between an implementatiah itm specification is heavily
dependent on the environment. Test verdicts oldaimea specific environment remain
valid for more restrictive environments. Overahgetconformance addressed by the

paper is said to “relativized” since results aréaoted for the considered environment.



Following [33], the paper considers a relativizemhformance relation (rswtioco)
which extends the tioco relation proposed by [3t5elf relying on Tretman’s ioco
relation [37]. The relation’s name includes “sw” teference to Stopwatch TPN.

Model of System and Environment

Controllel oul Environmen

SUT Tester

Fig. 1. Model-based testing

3. Input/Output prioritized time Petri nets with stopw atches

During a test process, it is useful to know whetther execution of an action is to be
made at the initiative of the system environmeasécof input or reception), or whether
the system itself activates the execution (caseutput or emission). To make the
difference between emission and reception of astidhe set of all action# is
partitioned in two disjoint sets of input actiof§s and output actiond ,. An input
(output) is post fixed by ? (1). In addition, wesame the existence of a specific action
namedinternal or unobservablection and denoted lsy(r [ A). It models the internal
events of a system witch are not observed by teeerteThey may result from an

abstraction of low level details made to facilitéte modelling or to allow a certain

freedom to the implementor or more to events whwehdo not want that the tester to



observe them to facilitate its task, abbreviatesAp, 0 Agyt D{r}. Rog and Qsgare

the sets of nonnegative real and rational numibespectively.

3.1.Timed Input Output Transitions

Timed Input/Output Transition systems (TIOTS) ddmersystems which combine
discrete and continuous transitions. They will s®dito describe the semantics of
I/OPrSwWTPN.

Definition 1. A TIOTS over a finite set of actions, which distinghes between inputs

and outputs, is a quintuplet= (Q,qo, Ans Aout: a) whereQ is a possibly infinite set

of states,qp JQ is the initial state and the transition relation] QX(AT 0 RZO)XQ IS
decomposed into discrete transitiofg? — (withaD Ar) and continuous (delay)

transitions Dﬁl - (withd ORsg). The continuous relation satisfying the following

properties:

Nul-Delay: if [T - q theng =,

Additivity: if q0Y - g andg' 0% - " with d,d' DRy then qo & - o

Continuity: if qO alna gy q then([ﬁ")(q of . qoqQO . q'),

Temporal determinismf q Dﬁ -q Oq Dﬁi -q" withdORsgthenq =q".

Let a,ag,....akUA ag,...anU0A,a0A OR5g and dp,....dn+1URso . An
execution p of a TIOTS is a finite sequence of continuous and discratesttions.

It can be written as an alternation of continugasgitions (possibly of duration 0) and

discrete transitionsp =qo [ ﬁiﬁ’ -~ Qo0 9 Squd %Lq’lm fi_ g O ﬁ]‘ - 0n-



The transition relation= is the relation—» where internal actions were abstracted
a
(=>0(AORs0)D). We  have: q=q iff g0 -* I~ O ~*q, and

d
qgoqiff g - 0% of +oft. of o+ .of o« 0 % o - *qf where

d=dg+d; +...+d,. The relation= is extended to sequences of delays and actions.

We write:q09 - iff qO0f - qand9-q iff q0O9- q for somey.

Definition 2. An observable timed trace of an executignis the timed word
O hinh — —

JD(AD Rzo) which is of the forma-Trace(p)—doao =1 [T

We assume that the TIOT# is strongly input enabledand non-blocking It is

strongly input enabled iff [I]j - for all stategg and all the input actionisand non-

blocking iff for any stateq and anylJR,g there is a timed output trace

g
0 =01 ...0qdp+1 such thas—= andy;d; =2d . That& will not block time in any input

enabled environment.

We define the timed observable traces of a stag as:

TTr (q)={JD(AD RzO)D| q g}

For a statey, and subseQ' 0 @nd a timed trace, qafter o is the set of states

which can be reached after qafter 0’={q’| ql q'}, Q' after o= Uqafter o
quQ’

3.2. Input/Output Prioritized Time Petri nets with Stopwatches

Time Petri Nets with Stopwatches (SWTPN) [7], extérierlin’s Time Petri Nets [32]
by stopwatch arcs that control the progress ofstt@ms to express suspension and
resumption of actions. TPN’s are obtained from Piy/sassociating a temporal interval

[Tmin, Tmax] with each transition, specifying figndelays ranges for the transitions.



Tmin and Tmax respectively denote the earliestlatekt firing times of the transition
(after the latter was enabled). Prioritized TimériRdets with Stopwatches (PrSwTPN)
extend SWTPN with a priority relation on the trdiwgis; so a transition is not allowed
to fire if some transition with higher priority ifrable at the same instant. Such
priorities increase the expressive power of SWTBMN in particular Prioritized Time
Petri nets can be considered equivalent to timetbnaata, in terms of weak
bisimulation []. Since we address the test of tigacsystems, we also add an alphabet
of actionsA and a labelling function for transitionA. is partitioned in two separate

subsetsinputs actionsAj, andoutputs actiong\, ;. Inputs are the stimuli received by

the system from the outside environment. Outpugsitae actions sent by this system to
the environment. Let * be the set of nonempty real intervals with nonnggattional
endpoints. Foi [J1 i represent its lower endpoint, and its superior endpoint (if it
exists) oro. For anydOR",i =& denotes the interva{lx— 6| x0i Ox = 9}.
Definition 3. An Input/Output Prioritized Time Petri Net with dptwatches (or
I/OPrSwWTPN) is @uple N :<P,T,Pre, Post Sw, Pr,mg, Is, Ar, L>, where :

- <P,T,Pre, Post, m0> is a Petri Net P is the set ofplacesand T is the set of
transitions withPNT =¢. my: P - N¥is theinitial marking. Pre,Pos:T - P - N
are the preconditionandpost-conditiorfunctions

- 1g:T -~ 1 is the Static Interval Functiorwhich associates a temporal interval

Is(t)D | *with every transition in the net. The rationals(t)and TIS(t) are thestatic

earliest firing timeand thestatic latest firing timedf t, respectively.



- PrOT xT is thepriority relation, assumed irreflexive, asymmetric and transitive.
(tl, t2)D Pr is writtenty >ty orto <tp (t1 has priority ovet,).
- Alis afinite set o&ctions orlabels not containing the internal action

- L:T - Aris thelabelling function.

Sw:T - P - N is thestopwatch incidence functioBw associates an integer with
eacl‘(p,t)D PxT, values greater than 0 are represented by speccd, called
stopwatch arcspossibly weighted, and characterized by squaapesth arrows. Note
that these arcs do not convey tokens. Figure 2 stewl/OPrSWTPN. The arc from
place p to transition 1 is a stopwatch arc of weight 1. The firing gfwtill freeze the
timing evolution of 4. t, will be fireable when its total enabling time rbhas 2 time
units. If we replace the stopwatch arc by a nononalarc, ¢ will never be fired because

of the continuous enabling condition (for more dstsee [7]).

A markingis a functiom: P - N*. As usual, aransition tis enabledat marking
m iff m> Pre(t). In addition, a transitiort enabled aim is "active' iff m2> S\N(t)
otherwise it is saidsuspnded The sets of enabled, active and suspended ti@amsiat
m are respectively denoted by:

. :|[1,1]

- En(m)={ t|Pre(t)< m},

- Adm)={t|t DEn(m) Om= Swt)} and

[2.2]

- sum)={t|t DEn(m)Om< Swft)}. Fig. 2. /OPrSWTPN example.

The predicate specifying wheh is newly enabled by the firing dfrom markingm
is defined by:1 enabled (t',m,t)=t'0 En (m - Pre (t)+ Post (t))O

toEn(m-Pre (t)Ct=t")



Definition 4. A state of an I/OPrSWTPN is a pa(im, I) in whichm is a marking and

| :T = 1", a partial function called thieterval function associates a temporal interval
in 17 with every transitiort 0 En(m) .

Definition 5. The semantics of an I/OPrSwTP(Iﬂ’,T,Pre,Post, Sw, Pr,mg, Is,A,,L>

is the TIOTS (Q, d0: An - Aout> a) where Q is the set of states{m, I) of the
I/OPrSwWTPN, qo:(mo,lo) is the initial state, wherelo:IS[En(mo) is the static
interval function 4 restricted to the transitiorEn(rrb) and - 0 QxTUR5pxQ is the
state transition relation. It corresponds to twodki of transitions: discrete transitions
are the result of firings transitions of the ned @ontinuous (or delay) transitions are the
result of elapsing of time. These transitions atnéd as follows, respectively:

— Discrete transitions{m, | )0 tﬁ)a(m',l') iff tOT,L({t)0A; and

1. tOEn(m) CtOAg(m)

2.001(t)

3. (0kOT)(k O En(m) Ok 0 Ad(m) O(k = t) =001 (k))

4. m =m- Prelt) + Postt)

5. (OkOT)(kOEn(m) = 1'(k) =if 1enabledk,m,t)then Is(k)elsel (k))

— Continuous transitiongm, ) (I - (m,1") iff dOR, and

6. (OkOT)(kDEn(m) Ok O Adm) = d <11(k))
7. (o DT)(kDEn(m): (k)= it kO Am) then | (k)-d elsel (k)j

The transitiort may fire from (m,1) if (1) it is enabled and active at, (2) fireable

instantly, and (3) no transition with higher prigrisatisfies these conditions. These



conditions ensure that only active transitions niiag. (4) is the standard marking
transformation. From (5), in the target state, transitions not in conflict witht
(transitions that remained enabled whilired, t excluded) retain their firing intervals,
whereas those newly enabled are assigned thdu sttgrvals. Firing a transition takes
no time. By (7), all firing domains of active tramens are shifted synchronously
towards the origin as time elapses, and truncatedhnegative values. The elapsing of
time has sense only for active transitions and gesrof dates are thus made only for
these transitions. Frozen (suspended) transitiaas their temporal interval unchanged.
(6) prevents time to elapse as soon as the latesj fime of some active transition is
reached.

Clocks take their values in the set of nonnegataat numbers (dense time), and thus
a state may admit an infinity of successors stateg;h implies that the state space of a
I/OPrSWTPN may be infinite. Finitely representingte spaces involves grouping some
sets of states. Several grouping can be definggerdigng on the properties of the state
space one would like to preserve. We use the gngupiethod introduced in [4] which
groups some particular sets of states into statesek and preserve marking and traces.
A state class, or a symbolic state, is a pajrif) wherem is a marking of the net arial
is a firing domain of the possible firings of theabled transitions ah. The domairD

is described by a system of linear inequaliti®gp< » . Variables ¢ are bijectively

associated with the transitions enablednafThe symbolic transition relation between

state classes is decomposed to:
- (mp)o®™ . (m,D) iff tOTOL(E)OA and
1.tOEn(m) Ct O Ac(m)

2.00 {ﬂ} ({ g} is the set of solutions of the variat@in the systenD).



3. (OkOT)(k DENM) Ok O AmM) D(k - t) =004 @ |)

bt
4. m =m- Prelt) + Postt)
5. (Dk DT) (kD En(m’):>gk = if Tenable(ﬂk,m,t)) then ¢ U Is(k) else i”k)
6.the variablespare eliminated
- (mD)¥ -~ (m,D’) iff dOR, and
7.(0kOT)(k DEN(m) Ok O Adm)=(d <max{g })) (max{g,} is the maximal value).
8. (0kOT)= (k OEn(m)= ¢, = ifkd Adm) then @, —d else gk)
Informally, the system leaves the initial state

¢, =(m{t1[En(m)] < @ <t1[En(m,)})  then make alternately two types of

transitions: the transitions of active actions he tcurrent value allows it and the
transitions of time which decrease the intervaldhef active transitions of the same
duration by respecting the date of firings as sasipossible of each of the transitions.
The time in the suspended transitions is frozen.v8m®n a frozen transition becomes
active again, due to a change in marking, it resuwigh the temporal interval captured
in the state rather than its static interval.

In order to test preemptive real-time systems, wanguish between two types of
outputs. First, outputs in the common sense ofwbel; we call thermactive outputs
Second, special outputs that we cafidicators’ or suspended output3he latter are
issued by the systems to give indications on swigmbactions. For correct behaviour of
a preemptive real-time system, a response whichegponds to an active output,
resumed or not, and/or suspended output(s)) shamildnly provide correct values, but
the values should also be provided at the righé gpaints. So, delay is also considered

as an output.



The set of observable active outputs or delaysddatoccur ingC Q' O (s defined

as: Out__,(q) :{aDAomDRZO q i}, Out,,,o(Q) = | JOut .o (0)
aQ

The set of observables suspended outputs thatazam m g0 Q' 0 Q is defined by

(the functionsuis extended to states):

out,,(a)={a0sug)] * q0a0A, DR}, Out,(Q)=|Jout,q)

o
Definition 6. Let & = (Q,qO,An,AM, —>) be the input enabled and non-blocking TIOTS
describing the semantics of the specification ﬂrd(E,eo,Amt,An, a) is an input
enabled and non-blocking TIOTS associated to tve@mment model o#Z. The set of
input (output) actions off is identical to the output (input) actions ¢&f and the
environment model not contains suspended actidmes parallel composition a@fand &
forms a closed systen? ||€ in with observable behaviour is defined by the T8

(QxE.(a,.8,) A,» Ayr — ) Where— is defined as:

qf - q ed - € qi - o e - ¢ q - g e - ¢
(0.¢)F~(d.€) (a.e)T-(q.€) (a.e) T -(d.€) (a.e)f-(d.€)

4. The rswtioco conformance relation

The motivation behind an introduction of the Ref@ed Stopwatch Timed
Input/Output Conformance relation, mwtioco for short, is to test real-time systems
and to take into account their suspend/resume tpesarswtioco extendstioco [33],
the latter being itself an extension imico and tioco relations by taking time and
environment assumptions explicitly into account][331] and [19]. Unlikeioco and
tioco, rtioco distinguishes between the system’s constraintstameénvironment’s ones.
The latter are explicitly and separately modellesirf the former. The question “does

the implementation conform to its specification®” answered not for any type of



possible environment but for the considered envivent i.e. the environment under
which the SUT will operate. A “yes” answer to theeyious question which has been
obtained for one environment still applies to m@rictive environments. A relativzed
conformance relation can be helpful to give restits of the environment to avoid
generating and executing uninteresting test cadesse restrictions can also be seen as
guiding to especially wanted test cases. So, israltest the suspension/resumption of
an actiona we have to take into account the input to supplthe SUT, and also when
to supply it, that enable to suspend/resume theraat This can be done by the choice
of (1) the environment model, (2) the choice of thput to supply by the function
chooseActiorand (3) its timing by the functiacthooseDelaysee Algorithm 1).

The rswtioco relation does not allow either of fetard” outputs and “indicators” to
be emitted in advance or on late, by the systersoAhis relation allows having more
information about the non-conformance of a syst&m,. when the system emits an
indicator or an output that was not expected at tinae, then we can know if that
indicator (resp. output) must be an active outpesgd. an indicator) or nothing (see
algorithm 1). The proposetswtioco relation makes it possible to answer another
question: “does some acti@resume at the expected date?rseitiocodoes not allow
a suspended action to be resumed in advance catenUnder assumptions of input
enabledness, theswtioco relation coincides with relativized timed traceclusion.
Timed Traces of the SUT operating under an enviemtrmust be included in those of
the specification under the cover of the same enwient.

Definition 7. Given an environmeng, the conformance relatiorswtioc between

system stateg, t [1Q is defined by:

grswtiocqt ssi OoU TTr(e) :Out 4 ((q e) after 0’) Uout,, 4 ((t e) after 0’) 0

out((a,e)after(Out,_,((g.€)after o)) 0 _,((t. &) after(Out,_,((t, e)after 7))



Whenevelg rswtiocq t we say that is a correct implementation of the specification
t under the environment constraints expresseel by

There is a most (least) discriminating input endlalad non-blocking environmebt
(O) given by TTr(U)= (AU Rzo)D (TTr(O) = (Am O RzO)D). The corresponding
conformance relatiorswtiocq, (rswtioca,) specializes to simple trace inclusion (timed
output trace inclusion) between system statesigar€ 5(b) and Figure 5(c) the most-
discriminating and the least discriminating envirents are given when
A, ={req,coin,tCup,rCup} and A, :{WWoffe,sCoffeé.

Example. This example is taken from [33] and enriched vatispension/resumption
and internal actions. Figure 3(a) shows an I/OPi3NEpecifying the requirements to
a coffee machine. It has a facility that allows tiser, after paying, to indicate his/her
eagerness to get coffee by pushing a request battahe machine forcing it to output
coffee. However, allowing insufficient brewing timmesults in a light coffee. Waiting
less than 30 time units definitely results in ehtigoffee, and waiting more than 50
definitely results in a strong coffee. Between 3@ &0 time units the choice is non-
deterministic, meaning that the SUT/implementor rdagide what to produce. After
the request, it takes the machine an additionah gheterministic) 10 to 30 (30 to 50)
time units to produce light coffee (strong coffeE)e user requesting for strong coffee
can take his/her coffee at any time during its arafpon and can again put back the cup
to resume what remains in the machine, on the ondob not exceed 3 time units. The
machine makes internal actions to be reset orsmme the preparation of strong coffee.
This service is not allowed for the user requesligigt coffee. The figure 3(b) models
potential (nice) users of the machine that pay feefequesting coffee and take his

coffee after its preparation.



stronfCoffas?

lightCoffee!

Café?
lightCffé? N

§pecificationdZ; of a machine coffee Example environmenf;

Fig. 3.Specificatiorof machine coffee and an environment models.

strongCafé?
strongCoffee! o

lightCoffee!

returnCup!

(a) IWK(Ds, ). (b) Environment&([Rd, | )

Fig. 4lmplementation of coffee machine
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stronfCoffee?
coin! lightCoffee?
A strongCoffee! K5
kO ko
lightCoffee! lightCoffee?
ightCoffee!
10 Coin? Ds 8
p3 k1 4
DI t9
t3 <t1 req! PY © °
req? req?
p2
P 1 tackeCup?
t ackeCup?
(41,0 @ "
k3
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p4 tackeCup! strongCoffee?
5 returnCup!
t6 p
13,5 t7
[0.1]
p6

retunCup! | [o5[ | 5 <t7

(a) IUF([Ds, Ds], [DI, DI]). (b) Environments; (c) Environmenty

Fig. 5. An other implementation of coffee machine (DI @&slare intervals)



To illustrate our approach we suppose that the 8aiTbe modelled as an I/OPrswTPN.
The (deterministic) implementatiafi([Ds, Ds], [DI, DI]) in Figure 4(a) produces light
coffee (strong coffee) after than less 40 time wufmore than 41 time units) and an
additional brewing time of DI (Ds) time units. Nedi that7([Ds, Ds], [DI, DI]) does
not allow the user requesting light coffee to takecup before this time. Observe that
any trace of the implementatiaf([40, 40], [20, 20]) (in any environment) can be
matched by the specification; hengg[40, 40], [20, 20])rswtiocay, &. Thus also
J1([40, 40], [20, 20])rswtiocaa . In contrast, 7 ([70, 70], [5, 5])rswihioco, & for
tow reasons: 1) it has the timed traxxen . 30 . req. 5 lightCoffee that & does not,
i.e. it may produce light coffee too soon (no titnensert a cup); 2) it has a tracein .

50 . req . 70 not in & meaning that it produces strong coffee too slowlie
implementation([Ds, Ds], [DI, DI]) in Figure 5(a) is differentdm ([Ds, Ds], [DI,
Dl)), it allows all users requesting coffee to takeduring its preparation (including
those requesting light coffee). We hayg[40, 40], [20, 20])rswtiocay & and %
([40, 40], [20, 20])rswiiccaq & because it has the timed traogin . 30 . req. 10
(tackeCup, lightCoffee). 2. (returnCup, lightCoffee). 5. lightCoffee that & does
not. (tackeCup, lightCoffee) means hat tackeCup is an active action and
lightCoffee is a suspended actiom contrast, %([40, 40], [20, 20])rswtiocar & and

J([40, 40], [20, 20]rswtiocas & if Rd =[60, [ because‘z never takes up his cup

while the machine preparing coffee afid60) never requests light coffee.

5. Generations and execution of test cases

The inputs to algorithm 1 are two TIOTSE ||€ describing the semantics of two
I/OPrSWTPN'’s, respectively modelling the SUT and emvironment. The algorithm

maintains after every execution of a test eversiefa of an input or an observed output



or a delay), the current reachable stateGét Qx E by using the symbolic technique

implemented in TINA [5] adapted to the needs oft.td$e tester is thus a state
estimator; it occupies a set of symbolic states ruudlifies it after every test event.
Knowing the seC, we can choose the appropriate test primitive \aiiate the SUT

outputs.C initially contains the symbolic state. The tester can perform three basic

actions: either send an input (an enabled envirommetput) to the SUT, or wait for an
output after a delay or still reset the SUT andaresif an output or a delay is observed,
the tester verifies if this is conforming to theespication. Any illegal occurrence or
absence of a standard output is detected if thefivaiibn of the seC becomes empty,
which happens when the observed trace is not in sipecification. The illegal
occurrence of a suspended action is detecteddibes not belong ttmpSuspend(C).
The functionAfter calculates the accessible symbolic states afeeexiecution of a test
event from the current stat€s It returns an empty set if this event was noharized
by the specification. The functions used in Algamt1 are defined as:

- ChooseActiorselects randomly an input in the environment magbglicable to the

SUT from the seC.

- Choosedelja(C) = {d UR,

d
E(q,e)DC.e:> } Delays can not be randomly chosen

from all the set of real numbers if the environmenist offer an input to the SUT

before certain date.

- EnvOutpu(C)={aD A, E(q,e)DC.e[I]ZF‘a } EnvOutputis empty if the environment

has no output to offer.

- ImpOutpu(C):{aD A,| o.e)0C.qIt - }

- ImpSuspen(C) ={a0 Af{g,e) 0C DaOsu(q)}.



- activeo) (respsuspenéb)) calculates the active output (resp. the suspeadtdns).

The outputo is a pair (active output, suspended actions). Eddhem can be empty.

The suspendfunction is extended to delays.
Algorithm 2 computes the functi@losurg, (C,d) that collects the reachable
symbolic state set within a delay of d. The pretdzic(aontainséc, (m, D)) tests whether
a symbolic state(m D) is covered by a symbolic state @ Sol(D) is the set of
solutions of the temporal variables associated Wit enabled transitions. The
function Closure (C)= Closure, (C,0) that collects the reachable symbolic state set

after all possible internal transition in zero getan be computed similarly. Given

this function, the actual algorithms for computiisfier(C, a) andAfter(C,d) become
trivial:  After(C,a)= Closure {(m,D’)| (m, D)0Closure(C),(m D) - (m,D")}),

and After(Cd) ={(m,D)| (m D)OClosure, (C,3)}.

Algorithm 1 Generation and execution of test.
GenExeTeds,E,SUT,N), C:={c, =(mg, Do)}
while C # gOiterations< N do RondomlyChoogéction Delay, Restar}
Action:  // offer an input to the SUT
If EnvOutpufC) # 0 then| a:=ChooseActiofEnvOutputC))
senta to the SUT
C = After(C, a)
Delay: // wait for an output of the SUT
0 := ChooseDelafC) // Waitd unit of time and test the outpat(o contains eventually
/I suspeth@etions) sent by the SUT.
if ooccurs atd' <& then| C := After(C, &)
attivgo)J ImpOutoufC)
then| return fail
ifactivgo)] ImpSuspen()
thendctivgo) must be a suspended action”
else C:= After(C, activg0))

if suspend(o)] ImpSuspen()




then return fail
S=activg0) - ImpSuspen)
forallad S if a O ImpOutoufC)
then “a must be active”
elseC ;= After(C,0) // no output during
Restart /Il reset and restart.

C:={c; =(mp, Do)}
ResetSUT

If C=/7 then return fail else return pass

Algorithm 2 Closure; (C,d)
Pass=¢ , Wait:=C
while Wait# ¢ do Wait:= Wait—{(m, D)}
if (mD)O . (m,D)whered'<d then Pass=Passd{(m, D'}
For each tramn't(m, D') m - (m’, D")
if ~containdPass(m,D")) then Wait:= Wait 0{(n',D"}}

return Pass

ContaingC, (m, D))
For each stafen, D')01C si So(D) T (Sol(D’) ) then return true

Return false

6. Conclusions and future work

The paper discusses testing of real-time systengeheo using Stopwatch Time Petri

Nets. The latter have been selected for their d¢gpdo model suspend/resume

operations in real-time systems (whereas survegpers on timed testing only address
system/environment interactions and timeliness)ingysan online testing approach

makes is possible to handle non determinism antlypdrservable systems.

The paper introduceswtiocq a new conformance relation which differs froiwco
and rtioco. It differs fromtioco because it addresses the constraints capturetdeby t
system separately from the ones inherent to théra@maent. Also,rswtioco differs
from both tioco and rtioco because the latter were defined for timed automata

modelling technique which does not enable desomptf suspend/resume operations



i.e. operations where the system’s context hastetbred and restored later ¢ioco
andrtioco do not allow one to distinguish between susperaiihns and not enabled
ones.

The algorithm proposed in the paper will be soople@mented in TINA [5]. So far,
our investigations have been limited to conformatesting. We plan to address other

types of testing in the near future (in particutahustness testing).
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