184,368 research outputs found

    Distance-regular Cayley graphs with small valency

    Full text link
    We consider the problem of which distance-regular graphs with small valency are Cayley graphs. We determine the distance-regular Cayley graphs with valency at most 44, the Cayley graphs among the distance-regular graphs with known putative intersection arrays for valency 55, and the Cayley graphs among all distance-regular graphs with girth 33 and valency 66 or 77. We obtain that the incidence graphs of Desarguesian affine planes minus a parallel class of lines are Cayley graphs. We show that the incidence graphs of the known generalized hexagons are not Cayley graphs, and neither are some other distance-regular graphs that come from small generalized quadrangles or hexagons. Among some ``exceptional'' distance-regular graphs with small valency, we find that the Armanios-Wells graph and the Klein graph are Cayley graphs.Comment: 19 pages, 4 table

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n1/m1(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1o(1)1-o(1) for any p(n)=o(n1/m1(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition
    corecore