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1. Introduction and main result

Let Γ be a (simple) graph with n vertices. The adjacency matrix A(Γ ) of Γ is the n × n matrix

indexed by the vertices of Γ such that A(Γ )xy = 1 when x is adjacent to y and A(Γ )xy = 0 otherwise.

The spectral radius of Γ is the largest eigenvalue of the adjacency matrix of Γ . An integral graph is a

graph whose adjacency matrix has only integral eigenvalues.

Integral graphs were introduced by Harary and Schwenk [16]. Bussemaker and Cvetković [5] and

Schwenk [19] classified the cubic connected graphs with integral spectrum (up to isomorphism, there

are exactly 13 such graphs, and 5 of them are non-bipartite), building on earlier work by Cvetković [8].

Simić and Radosavljević [20] classified the non-regular non-bipartite integral graphs with maximal

degree exactly four and there are exactly 13 of them [18]. For a survey on integral graphs, see [1].
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Fig. 1. Integral generalized line graphs with spectral radius three.

Fig. 2. Integral exceptional graphs with spectral radius three.

In this paper, we classify the connected non-bipartite integral graphs with spectral radius three,

extending the results of [20]. Our main result is as follows:

Theorem 1.1. Let Γ be a connected non-bipartite integral graph with spectral radius three. Then, Γ is

isomorphic to one of the graphs in Figs. 1 and 2.

2. Preliminaries

In this section, we prepare some notations and terminologies whichwe use in this paper, and recall

some results on eigenvalues of graphs.
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Table 1

The multiplicities of eigenvalues of graphs.

Graph 3 2 1 0 −1 −2 Graph 3 2 1 0 −1 −2

LG4 1 0 0 0 3 0 EG7 1 0 2 0 3 1

LG6 1 0 1 2 0 2 EG8a 1 1 1 0 4 1

LG7a 1 1 0 1 3 1 EG8b 1 0 3 0 2 2

LG7b 1 0 2 1 1 2 EG8c 1 0 2 2 1 2

LG12 1 3 0 2 3 3 EG9 1 1 1 2 2 2

GLG5 1 0 0 2 1 1 EG10a 1 1 3 0 2 3

GLG8 1 0 1 4 0 2 EG10b 1 1 2 2 1 3

GLG10 1 1 1 3 2 2 EG10c 1 1 1 4 0 3

GLG13 1 1 2 5 1 3 EG10d 1 0 5 0 0 4

EG11a 1 1 3 1 2 3

EG11b 1 1 3 1 2 3

EG11c 1 1 2 3 1 3

EG12 1 2 1 4 0 4

2.1. Eigenvalues of graphs

Let Γ be a connected graph where V(Γ ) is the vertex set of Γ and E(Γ ) is the edge set of Γ . The

degreedegΓ (x)of a vertex x inΓ is thenumber of vertices adjacent to x. LetdΓ (x, y)denote thedistance
between two vertices x and y in Γ . The diameter diam(Γ ) of Γ is the maximum distance between

two distinct vertices. The degree matrix �(Γ ) of Γ is the diagonal matrix with �(Γ )xx = degΓ (x) for
any x ∈ V(Γ ). The Laplace matrix L(Γ ) of Γ is the matrix �(Γ ) − A(Γ ). The signless Laplace matrix

Q(Γ ) of Γ is the matrix �(Γ ) + A(Γ ). Let Ev(M) denote the set of eigenvalues of a matrix M. Note

that if M is a real symmetric matrix, then Ev(M) ⊆ R. The spectrum Spec(M) of M is the multiset of

eigenvalues together with their multiplicities.

Before we introduce the Perron–Frobenius Theorem, we need some definitions. A real n×nmatrix

M with nonnegative entries is called irreducible if, for all i, j, there exists a positive integer k such that

(Mk)ij > 0. For two real n × nmatricesM and N, we write N � M if Nij � Mij for all 1 � i, j � n. We

denote the zero matrix by O.

Theorem 2.1 (Perron–Frobenius Theorem, cf. [15, Theorem 8.8.1]). Let M be an irreducible nonnegative

real matrix and let ρ(M) := max{|θ | | θ ∈ Ev(M)}. Then ρ(M) is an eigenvalue of M with algebraic

and geometric multiplicity one. Moreover, any eigenvector for ρ(M) has either no nonnegative entries or

no nonpositive entries.

Let N be a matrix such that O � N � M (in particular N is a principal minor of M), and σ ∈ Ev(N).
Then −ρ(M) � |σ | � ρ(M). If |σ | = ρ(M), then N = M.

We call ρ(M) defined in the above theorem the spectral radius of M. (If M = A(Γ ), then ρ(M) is

also called the spectral radius of Γ .)

Letm � n be two positive integers. LetM be anm×mmatrix and let N be an n× n submatrix ofM

such that Ev(M) ⊆ R, Ev(N) ⊆ R, and bothM and N are diagonalizable. We say that the eigenvalues

of N interlace the eigenvalues of M if

θi(M) � θi(N) � θm−n+i(M)

holds for i = 1, . . . , n, where M has eigenvalues θ1(M) � θ2(M) � · · · � θm(M) and N has

eigenvalues θ1(N) � θ2(N) � · · · � θn(N). We say the interlacing is tight if there exists � ∈
{0, 1, . . . , n} such that θi(N) = θi(M) for 1 � i � �, and θi(N) = θm−n+i(M) for � < i � n.

Theorem 2.2 (Interlacing Theorem, cf. [15, Theorem 9.1.1]). Let M be a square matrix, which is similar

to a real symmetric matrix, and let N be a principal submatrix of M. Then the eigenvalues of N interlace the

eigenvalues of M.
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Let M be a matrix indexed by the vertex set of a graph Γ and let Γ ′ be an induced subgraph of Γ .

We denote byM|Γ ′ the principal submatrix ofM obtained by restricting the index set V(Γ ) to V(Γ ′).
A consequence of Perron–Frobenius Theorem is:

Corollary 2.3. Let M be a matrix indexed by the vertex set of a graph Γ and let Γ ′ be a proper induced

subgraph of Γ . Then θmax(M) > θmax(M|Γ ′), and θmin(M) � θmin(M|Γ ′). where θmax(M) and θmin(M)
denote the largest and smallest eigenvalues of M, respectively.

Let π = {C1, C2, . . . , Ct} be a partition of the vertex set of a graph Γ . The characteristic matrix of

π is the |V(Γ )| × |π |matrix P with the characteristic vectors of the elements of π as its columns, i.e.,

Pxi = 1 if x ∈ Ci and Pxi = 0 otherwise. If P is the characteristic matrix of π , then PTP is a diagonal

matrix where (PTP)ii = |Ci|. Since the parts of π are not empty, the matrix PTP is invertible. LetM be

a matrix indexed by the vertex set of Γ . The quotient matrix BM,π of M with respect to π is defined

by BM,π := (PTP)−1PTMP. A partition π is called M-equitable if, for any 1 � i, j � t and any x ∈ Ci,

(MP)xj = (BM,π )ij .

2.2. Generalized line graphs and generalized signless Laplace matrices

The line graph L (H) of a graph H is the graph whose vertex set is the edge set of H and where two

distinct edges of H are adjacent in L (H) if and only if they are incident in H.

Now,we recall the definition of generalized line graphswhichwere introduced byHoffman [17] (cf.

[10, Definition 1.1.6]). A vertex-weighted graph (H, f ) is a pair of a graph H and a function f : V(H) →
Z�0. For n ∈ Z>0, the cocktail party graph CP(n) is the complete n-partite graph Kn×2 each of whose

partite sets has the size two. We let CP(0) = (∅, ∅) for convention.

Definition [17]. Let (H, f ) be a vertex-weighted graph where f : V(H) → Z�0. The generalized line

graphL (H, f ) of (H, f ) is the graph obtained fromL (H)∪⋃
x∈V(H) CP(f (x)) by adding edges between

any vertices in CP(f (x)) and e ∈ V(L (H)) such that x ∈ e in H. A graph Γ is called a generalized line

graph if there exists a vertex-weighted graph (H, f ) such that Γ ∼= L (H, f ).

In 1976, Cameron et al. [6] showed the following theorem:

Theorem 2.4. Let Γ be a connected graph with smallest eigenvalue at least −2. Then, Γ is a generalized

line graph or Γ is a graph with at most 36 vertices.

A connected graph with smallest eigenvalue at least −2 is called exceptional if it is not a generalized

line graph.

For a function f : V → Z�0, we denote the sum
∑

x∈V f (x) by |f |. We denote the function f : V →
Z�0 such that f (x) = 0 for all x ∈ V simply by 0.

Now, we introduce the generalized signless Laplace matrix of a vertex-weighted graph.

Definition. The generalized signless Laplace matrix Q(H, f ) of a vertex-weighted graph (H, f ) is the

square matrix of size |V(H)| defined by

Q(H, f ) := Q(H) + 2�f = A(H) + �(H) + 2�f ,

where �f is the diagonal matrix defined by (�f )xx = f (x) for any x ∈ V(H).

We will see that the generalized signless Laplace matrix Q(H, f ) plays a similar role for the gener-

alized line graph L (H, f ) as the signless Laplace matrix Q(H) for the line graph L (H) (see [11–14] for
recent research on signless Laplacians). Note that Q(H, 0) = Q(H) by definition.
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Definition. For a vertex-weighted graph (H, f ), we define the incidence matrix N(H,f ) of (H, f ) by

N(H,f ) :=
⎛
⎝NH Nf Nf

O I|f | −I|f |

⎞
⎠ ,

whereNH is the vertex-edge incidencematrix ofH andNf is the {0, 1}-matrix of size |V(H)|× |f | such
that each column has exactly one nonzero entry and that each row indexed by x ∈ V(H) has exactly
f (x) nonzero entries.

Proposition 2.5. Let (H, f ) be a vertex-weighted graph and Γ := L (H, f ) be the generalized line graph

of (H, f ), and N := N(H,f ) be the incidence matrix of (H, f ). Then

NTN = A(Γ ) + 2I|E(H)|+2|f |,

NNT =
⎛
⎝Q(H) + 2Nf N

T
f O

O 2I|f |

⎞
⎠ =

⎛
⎝Q(H, f ) O

O 2I|f |

⎞
⎠ .

In the rest of this section, we collect some results on generalized signless Laplace matrices.

Proposition 2.6. Let (H, f ) be a connected vertex-weighted graph. If H has diameter D, thenQ(H, f ) has
at least D + 1 distinct eigenvalues.

Proof. LetQ := Q(H, f ). The set {I,Q,Q2, . . . ,QD} consists of linearly independentmatrices. There-

fore Q has at least D + 1 distinct eigenvalues (as Q is diagonalizable). �

We can show the following by the same proof as [15, Lemma 9.6.1].

Proposition 2.7. Let Q be the generalized signless Laplace matrix of a vertex-weighted graph (H, f ), and
let π be a partition of the vertex set of H. Then the eigenvalues of the quotient matrix BQ,π interlace the

eigenvalues of Q. Moreover, if the interlacing is tight, then π is Q-equitable.

Proposition 2.8. Let (H, f ) be a vertex-weighted graph. Then, the following hold:

(i) Q(H, f ) is positive semidefinite.

(ii) The multiplicity of 0 as an eigenvalue of Q(H, f ) is equal to the number of bipartite connected

components C of H such that the restriction of f to C is a 0-function.

Proof. (i) Immediately from Proposition 2.5.

(ii) Without loss of generality, we may assume H is connected. AssumeQ(H, f ) has an eigenvalue. Let

x be an eigenvector with the eigenvalue 0. Then Q(H)x = 0 and �f x = 0. By [11, Proposition 2.1], H

is bipartite. Let H have the two color classes VR and VB, and let K be the diagonal matrix with Kxx = 1

if x ∈ VB and −1 otherwise. Then, it is well-known that Q(H) = KL(H)K . This means that Kx is an

eigenvector for L(H) for θmax(L(H)), and therefore we may assume is has only positive entries by the

Perron–Frobenius theorem. But this means that x has no zero entry. This implies that �f has to be the

0-matrix. This shows the proposition. �

Corollary 2.9. Let (H, f ) be a connected vertex-weighted graph. Then, 0 ∈ Ev(Q(H, f )) if and only if H

is bipartite and f = 0. In this case, the multiplicity of 0 as an eigenvalue of Q(H, f ) is 1.

Proposition 2.5 also implies:
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Proposition 2.10. Let (H, f ) be a vertex-weighted graph andΓ := L (H, f ) be the generalized line graph

of (H, f ). Then, the following hold:

(i) Γ is an integral graph if and only if Q(H, f ) has only integral eigenvalues.

(ii) Γ has spectral radius ρ if and only if Q(H, f ) has spectral radius ρ + 2.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. If Γ has spectral radius three and Γ is non-bipartite, then

−3 	∈ Ev(A(Γ )). Since Γ is an integral graph, we have Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3}. By Theorem

2.4, Γ is either a generalized line graph or an exceptional graph. We deal with the case of generalized

line graphs in Section 3.1 and the case of exceptional graphs in Section 3.2. Then, Theorem 1.1 follows

from Theorems 3.1 and 3.20.

3.1. The case of generalized line graphs

In this section we determine the connected integral generalized line graphs with spectral radius

three. We will show:

Theorem 3.1. Let Γ be a connected integral generalized line graph with spectral radius three. Then, Γ is

one of the 9 graphs in Fig. 1.

LetΓ bea connected integral generalized line graphwith spectral radius three, sayΓ = L (H, f ) for
some connected vertex-weighted graph (H, f ). Then the generalized signless Laplace matrix Q(H, f )
is integral and has spectral radius five. So, instead of determining the connected integral generalized

line graphs with spectral radius three, we will first determine the connected vertex-weighted graph

(H, f ) whose generalized signless Laplace matrix Q(H, f ) has only integral eigenvalues and spectral

radius five.

First we will give some more general results and then we will consider the case where 0 ∈
Ev(Q(H, f )) and after that we will consider the case 0 	∈ Ev(Q(H, f )). One of the reasons to do so

is that H usually has much less vertices than Γ . We give a computer-free proof. It is easy to see that

the generalized line graphs of the vertex-weighted graphs (H1, 0), (H2, 0), (H3, 0), (H4, 0), (H5, f5),
(H6, f6), (H7, f7), (H8, f8), (H9, f9) in Figs. 3 and 4 are the graphs LG4, LG6, LG7b, LG12, GLG5, GLG8,

LG7a, GLG10, GLG13 in Fig. 1, respectively. By Proposition 2.10, Theorem 3.1 follows from Propositions

3.6 and 3.11.

3.1.1. General results

In this subsection we will develop some general results to help us in this case of generalized line

graphs.

Let us begin with the following lemma:

Lemma 3.2. Let (H, f ) be a connected vertex-weighted graph with Ev(Q(H, f )) ⊆ {θ ∈ R | θ � 5}.
Then, for each x ∈ V(H), we have

(degH(x), f (x)) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}.
Moreover, if there is a vertex x with (degH(x), f (x)) = (4, 0), then H = H1(= K1,4) and f = 0.

Proof. By the Perron–Frobenius Theorem (Theorem 2.1), we have (Q(H, f ))xx � 5 and (Q(H, f ))xx =
5 only if |V(H)| = 1. Since (Q(H, f ))xx = degH(x) + 2f (x), the first part of the lemma holds. As

Q(K1,4, 0) has spectral radius 5 the moreover part follows immediately from the Perron–Frobenius

Theorem. �
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For nonnegative integers i and j, let

A(i,j) := {x ∈ V(H) | (degH(x), f (x)) = (i, j)}.

By Lemma 3.2, if (H, f ) 	= (K1,4, 0), then we have

V(H) = A(1,0) ∪ A(1,1) ∪ A(2,0) ∪ A(2,1) ∪ A(3,0).

We say a vertex x in H is of type (i, j) if x ∈ A(i,j). Let a(i,j) denote the cardinality of A(i,j).

Lemma 3.3. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f )) ⊆ {0, 1, 2, 3, 4, 5}
such that H has maximum degree 3. Then, we have the following:

(1) If a(1,0) 	= 0, then 0 ∈ Ev(Q(H, f )), and hence H is bipartite and f = 0;

(2) If x, y ∈ A(1,0), then dH(x, y) � 2;

(3) a(1,0) � 2;

(4) If H has two adjacent vertices x, y ∈ A(2,0) and if they do not have a common neighbour, then

0 ∈ Ev(Q(H, f ));
(5) H does not contain an induced subgraph H′ with exactly two components each of which is a cycle.

Proof. (1) Let x be a vertex of degree 1 and let u be its unique neighbour. Then the signless Laplace

matrix restricted to {u, x} has smallest eigenvalue less then 1. This shows (1).

(2) This shows that for x, y ∈ A(1,0) we have dH(x, y) � 3, as 0 has multiplicity at most one. If x

and y have distance 3 then let x, u, v, y be a shortest path between x and y. Now the signless Laplace

matrix restricted to {x, u, v, y} has second smallest eigenvalue less than one, which is impossible by

interlacing as the multiplicity of 0 is at most one.

(3) If a(1,0) � 3, then let x, y, z be three vertices of degree 1. Let u be their unique common neighbour.

But then H = K1,3, a contradiction with that the multiplicity of 5 is one.

(4) Consider the principal submatrix of Q indexed by x, y, and the other neighbour of x. Then this

submatrix has smallest eigenvalue smaller then one. The statement now immediately follows from

interlacing.

(5) As H is connected each cycle has a vertex of degree 3, which implies if we look at the signless

Laplace matrix with restricted to H′ then this matrix has two eigenvalues more than 4, a contradiction

as by interlacing m5 � 2, butm5 = 1. This completes the proof. �

Let (H, f ) be a connected vertex-weighted graph such that 5 ∈ Ev(Q(H, f )) ⊆ {0, 1, 2, 3, 4, 5}.
Let mr denote the multiplicity of r ∈ R as an eigenvalue of Q := Q(H, f ). Since Ev(Q(H, f )) ⊆
{0, 1, 2, 3, 4, 5}, we have mr = 0 for r ∈ R \ {0, 1, 2, 3, 4, 5}. Note that m5 = 1 and m0 ∈ {0, 1}.

By the equations tr(Qi) = ∑
r∈R rimr for i = 0, 1, 2, we obtain the following:

Proposition 3.4. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f ))) ⊆ {0, 1, 2, 3,
4, 5}. Then, the following hold:

m0 + m1 + m2 + m3 + m4 + 1 = a(1,0) + a(2,0) + a(3,0) + a(1,1) + a(2,1), (1)

m1 + 2m2 + 3m3 + 4m4 + 5 = a(1,0) + 2a(2,0) + 3a(3,0) + 3a(1,1) + 4a(2,1), (2)

m1 + 4m2 + 9m3 + 16m4 + 25 = 2a(1,0) + 6a(2,0) + 12a(3,0) + 10a(1,1) + 18a(2,1). (3)

Proof. Since 5 ∈ Ev(Q(H, f )) and H is connected, we have m5 = 1. By considering the equation

tr(Qi) = ∑
r∈R rimr for i = 0, 1, 2, we obtain the equations. �
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Fig. 3. The graphs H1,H2,H3,H4.

Corollary 3.5. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f ))) ⊆ {0, 1, 2, 3,
4, 5}. Then, the following holds:

4m0 − 2m2 − 2m3 + 4 = a(1,0) + a(3,0) − a(1,1) + 2a(2,1). (4)

Proof. By calculating 4× [Eq. (1)] +(−5)× [Eq. (2)] +1× [Eq. (3)], we obtain Eq. (4). �

3.1.2. The case where 0 ∈ Ev(Q(H, f ))
In this section, we will show the following result.

Proposition 3.6. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f )) ⊆
{0, 1, 2, 3, 4, 5}. If 0 ∈ Ev(Q(H, f )), then f = 0 and H is one of the four graphs in Fig. 3.

Let (H, f ) be a connected vertex-weighted graph such that {0, 5} ⊆ Ev(Q(H, f )) ⊆ {0, 1, 2,
3, 4, 5}. Then, by Corollary 2.9, H is bipartite and f = 0. Although the result in this case now follows

from [20], we will give a computer-free proof.

Lemma 3.7. Let H be a connected graph with maximum degree at most 3 such that Q(H) ⊆ {θ ∈ R |
θ � 5}. Let H′ be an induced subgraph of H which has no vertex of degree 1. Let a′

i be the number of vertices

of H′ of degree i for i = 2, 3. Let m be the number of edges with one endpoint a vertex of degree 2 and the

other endpoint a vertex of degree 3. If a′
3 	= 0 and a′

2 	= 0, then 1 + m

a′
2

� m

a′
3
and equality implies that

5 ∈ Ev(Q(H)) and H = H′.

Proof. Let A′
i be the set of vertices of H′ of degree i for i = 2, 3. Consider the quotient matrix of Q(H)

B =
⎛
⎝6 − m

a3

m
a3

m
a2

4 − m
a2

⎞
⎠

with respect to the partition {A′
3, A

′
2}. By interlacing (Proposition 2.7), we obtain that B has largest

eigenvalue at most 5. This is equivalent to the inequality 1 + m
a2

� m
a3
. Now equality means that the

largest eigenvalue of Q(H′) is equal to 5, and hence by Perron–Frobenius Theorem (Theorem 2.1) we

obtain H = H′. This shows the lemma. �

LetH′ be the (induced) subgraph ofH obtained by consecutively removing degree 1 vertices fromH.

SinceH is connected,H′ is also connected. Since the vertices ofH have degree atmost 3, the vertices of

H′ havedegree2or 3. LetA′
(3,0) := {x ∈ V(H′) | degH′(x) = 3},A′

(2,0) := {y ∈ V(H′) | degH′(y) = 2},
a′
(3,0) := |A′

(3,0)|, a′
(2,0) := |A′

(2,0)|, and m be the number of edges of H′ with exactly one endpoint in

A′
(3,0). Note thatm is also the number of edges of H′ with exactly one endpoint in A′

(2,0).

Proposition 3.8. Let H be a connected graph with 5 ∈ Ev(Q(H)) ⊆ {0, 1, 2, 3, 4, 5}. Then the following

hold:

(1) If x, y ∈ A′
(3,0), then dH′(x, y) � 3.
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(2) If a′
(3,0) 	= 0 and a′

(2,0) 	= 0, then 1 + m

a′
(2,0)

� m

a′
(3,0)

and equality implies H = H′.
(3) If m

a′
(2,0)

= 2, then m

a′
(3,0)

= 3 and H′ = H, and moreover H = H2(= K2,3) or H = H4.

Proof. (1)AsQ(K1,3)has spectral radius 4, it follows immediately fromthePerron–Frobenius Theorem

(Theorem2.1) and interlacing (Theorem2.2), by considering the subgraph induced on x and y and their

neighbours.

(2) Immediately from Lemma 3.7.

(3) If m

a′
(2,0)

= 2, then by (2), we have m

a′
(3,0)

= 3 and H = H′. As, by interlacing, 3 � m2 � a(2,0) −
a(3,0) = n

5
, we obtain n is one of 5, 10, 15. But, if n = 15 then m2 = 3 and hence a(3,0) � 2, a

contradiction. If n = 10 then, by (1), any two vertices of degree 3 have a common neighbour. This

implies H = H4. If n = 5, it is completely clear. �

Recall that a spanning tree of a connected graphH with n vertices is a connected subgraph ofH with

(n − 1) edges and no cycle.

Proposition 3.9 cf. [15, Lemma 13.2.4]. Let H be a graph with n vertices and 0 = μ1 � μ2 � · · · � μn

be the eigenvalues of the Laplace matrix L(H) of H. Then, the number of spanning trees of H is equal to
1
n
μ2μ3 · · · μn.

As we already have seen in the proof of Proposition 2.8, if a graph H is bipartite then the Laplace

matrix L(H) is similar to the signless Laplace matrix Q(H) and hence Spec(L(H)) = Spec(Q(H)). As a
consequence we have:

Corollary 3.10. LetH bea connectedbipartite graphwithEv(Q(H)) ⊆ {0, 1, 2, 3, 4, 5}. Then, thenumber

of vertices of H has a form 2a · 3b · 5c with a, b, c ∈ Z�0 satisfying 0 � a � m2 + 2m4, 0 � b � m3

and 0 � c � m5.

Proof of Proposition 3.6. As f = 0, we have a(1,1) = a(2,1) = 0 and Q(H, f ) = Q(H). Note that

n := |V(H)| = a(1,0) + a(2,0) + a(3,0). Since H is bipartite, we have m0 = 1 by Proposition 2.8. By

Corollary 3.5, we have

−2m2 − 2m3 + 8 = a(1,0) + a(3,0). (5)

Sincem2 andm3 are nonnegative, a(1,0) + a(3,0) � 8. Moreover the nonnegative integer a(1,0) + a(3,0)

must be even, and so a(1,0) + a(3,0) ∈ {0, 2, 4, 6, 8}. If a(3,0) = 0, then H has maximum degree at

most 2 and hence all the row sums of Q(H) are at most 4, so the largest eigenvalue of Q(H) is at most

4. Therefore

a(3,0) 	= 0 and a(1,0) + a(3,0) ∈ {2, 4, 6, 8}.
By Eq. (5), we obtain

0 � m2 + m3 � 3.

By Proposition 3.4, we have

m1 + m2 + m3 + m4 + 2 = a(1,0) + a(2,0) + a(3,0),

m1 + 2m2 + 3m3 + 4m4 + 5 = a(1,0) + 2a(2,0) + 3a(3,0),

m1 + 4m2 + 9m3 + 16m4 + 25 = a(1,0) + 6a(2,0) + 12a(3,0).
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Table 2

Possible parameters.

Cases m2 m3 a(1,0) a(3,0) m1 m4 a(2,0) |V(H)|
(A0) 0 0 0 8 2t + 3 t + 5 3t + 2 3t + 10

(B0) 1 0 0 6 2t + 1 t + 3 3t + 1 3t + 7

(C0) 0 1 0 6 2t + 2 t + 3 3t 3t + 8

(D0) 2 0 0 4 2t + 1 t + 2 3t + 3 3t + 7

(E0) 1 1 0 4 2t t + 1 3t + 1 3t + 5

(F0) 0 2 0 4 2t + 1 t + 1 3t + 2 3t + 6

(G0) 3 0 0 2 2t + 1 t + 1 3t + 5 3t + 7

(H0) 2 1 0 2 2t t 3t + 3 3t + 5

(I0) 1 2 0 2 2t + 1 t 3t + 4 3t + 6

(J0) 0 3 0 2 2t + 2 t 3t + 5 3t + 7

(A1) 0 0 1 7 2t + 3 t + 4 3t + 1 3t + 9

(B1) 1 0 1 5 2t + 1 t + 2 3t 3t + 6

(C1) 0 1 1 5 2t + 2 t + 2 3t + 1 3t + 7

(D1) 2 0 1 3 2t + 1 t + 1 3t + 2 3t + 6

(E1) 1 1 1 3 2t t 3t 3t + 4

(F1) 0 2 1 3 2t + 1 t 3t + 1 3t + 5

(G1) 3 0 1 1 2t + 1 t 3t + 4 3t + 6

(H1) 2 1 1 1 2t + 2 t 3t + 5 3t + 7

(I1) 1 2 1 1 2t + 3 t 3t + 6 3t + 8

(J1) 0 3 1 1 2t + 4 t 3t + 7 3t + 9

(A2) 0 0 2 6 2t + 3 t + 3 3t 3t + 8

(B2) 1 0 2 4 2t + 3 t + 2 3t + 2 3t + 8

(C2) 0 1 2 4 2t + 2 t + 1 3t 3t + 6

(D2) 2 0 2 2 2t + 1 t 3t + 1 3t + 5

(E2) 1 1 2 2 2t + 2 t 3t + 2 3t + 6

(F2) 0 2 2 2 2t + 3 t 3t + 3 3t + 7

Since a(1,0) � 2 by Lemma 3.3 (3), there are 26 possibilities for (m2,m3, a(1,0), a(3,0)). By solv-

ing the system of the above equations with given parameters m2, m3, a(1,0), and a(3,0), we obtain

(m2,m3, a(1,0), a(3,0); m1,m4, a(2,0)) as in Table 2.

Recall that the diameterD of a graphH is at most the number of distinct eigenvalues ofQ(H)minus

one. Therefore D is at most 5. By Lemma 3.3 (3), we consider the following three cases:

Case 1: a(1,0) = 0.

By Proposition 3.8 (3), we have either H = H2 or H = H4 or there exists an edge xy such that both

x and y have degree two and n := |V(H)| > 5
2
a(3,0). So we may assume that there exists an edge xy

such that both x and y have degree two. As H is bipartite with diameter D at most five, any vertex of

H lies at distance at most D − 1 to the edge xy. For D = 3 we obtain n � 2 + 2 + 4 = 8, for D = 4

we obtain n � 2 + 2 + 4 + 8 = 16, and for D = 5 we obtain n � 32 in this way. If a(3,0) � 6, then

n > 5
2
a(3,0) � 15. But in the case (A0) we have D � 3, and in the cases (B0) and (C0) we have D � 4.

So if a(3,0) � 6 then a(3,0) = 6 and n = 16 and we have case (B0) with t = 3. But in order to obtain

n = 16 in case of (B0) we need four edges in side A(3,0). This in turn implies (by Proposition 3.8) that

n � 21, a contradiction. So a(3,0) � 4.

If a(3,0) = 4, then (as n > 5
2
a(3,0)) n > 10, so n � 12. In the cases (D0) and (F0) we have D � 4, so

hence n � 2 + 2 + 4 + 6 = 14 (as a(3,0) = 4). This implies that case (D0) is not possible and in case

(F0) we have t = 2 and n = 12. If there is a path of length three in the subgraph induced by A(2,0) then

n � 2 + 2 + 2 + 4 = 10, impossible. Now we contract all the vertices of H to obtain H′′ and for each

edge e of H′′ we denote the number of vertices of degree 2 contracted on e. Note that there are four

possibilities for H′′, but two of them are rules out by Lemma 3.3 (5). If H′′ is K4, then there is at most

one edge with weight at least two and all weights are at most three. So there is only one possibility for

H in this case. One can easily check that Q(H) has not only integral eigenvalues. If H′′ has two cycles

of length two, then those four edges must have odd weight, and one of themmust be of weight three.
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Fig. 4. The vertex-weighted graphs (H5, f5), . . . , (H9, f9).

But then one of the other two edges have weight 2, and this is impossible by Lemma 3.3 (5).

For case (E0) we have 12 � n � 2 + 2 + 4 + 6 + 6 = 20, so this case is not possible. In cases (G0)

and (J0) we have 6 � n � 2 + 2 + 4 + 4 = 12, and in cases (H0) and (I0) we obtain 6 � n �
2 + 2 + 4 + 4 + 4 = 16. This means that in cases (G0), (H0), and (J0) we have t = 1, and in case (I0)

t = 0, 1, 2, 3, and it is easily checked that the only graph occurring is H3.

Case 2: a(1,0) = 1.

Since m3 = 0 and |V(H)| ≡ 0 (mod 3), the cases (A1), (B1), (D1), and (G1) do not happen by

Corollary 3.10. If D � 4 then n � 1 + 1 + 2 + 4 + 4 = 12 as H is bipartite and a(3,0) = 1. Also

a′
(3,0) = a(3,0) − 1, so in case (C1) we obtain 12 � n > 10, and hence this case is not possible. In case

(E1) we obtain 5+ 1 < n � 1+ 1+ 2+ 4+ 4+ 2 = 14, so t = 2 and n = 10. In case (F1) we obtain

5 + 1 < n � 1 + 1 + 2 + 4 + 2 = 10, so t = 1 and n = 8. And in both cases it is easy to check that

they do not occur. For cases (H1)–(J1), n � 9, so n = 8 or n = 9. In both cases, it is easy to check there

is no graph H.

Case 3: a(1,0) = 2.

It follows from Lemma 3.3 that the two vertices in A(1,0) are at distance 2. It is easy to check that

the diameter three cannot occur, and n � 7. This rules out case (A2). For diameter 4, we obtain

n � 2+1+1+2+2 = 8 and forD = 5, n � 10. This means that for case (B2) t = 0 and n = 8, case

(C2) cannot occur, for case (D2) we have t = 1 and n = 8, for case (E2) t = 1 and n = 9, and case (F2)

is not possible. Case (B2) is not possible as if we look at the subgraph H′ by removing the vertices of

degree 2we see that this subgraphhas to have twovertices of degree 3 andhence at least 6 vertices. But

thismeans that n � 9, a contradiction. It is easy to check that the two remaining cases are not possible.

This completes the proof of Proposition 3.6. �

3.1.3. The case where 0 	∈ Ev(Q(H, f ))
In this section we show the following proposition.

Proposition 3.11. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f )) ⊆ {0, 1, 2,
3, 4, 5}. If 0 	∈ Ev(Q(H, f )), then (H, f ) is one of the five vertex-weighted graphs in Fig. 4.

Note that the diameter D of H is at most 4 since Q(H, f ) has at most 5 distinct eigenvalues.

Lemma 3.12. Let (H, f ) be a connected vertex-weighted graph with Ev(Q(H, f )) ⊆ {θ ∈ R | 1 � θ}.
Then A(1,0) = ∅.
Proof. Suppose that A(1,0) 	= ∅. Take x ∈ A(1,0). Let y be the vertex adjacent to x. Then the smallest

eigenvalue of Q(H, f )|{x,y} is less than 1, which is a contradiction to Ev(Q(H, f )) ⊆ {θ ∈ R | 1 � θ}.
Hence A(1,0) = ∅. �
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Lemma 3.13. Let (H, f ) be a connected vertex-weighted graph with Ev(Q(H, f )) ⊆ {θ ∈ R | θ � 5}.
Then A(2,1) is an independent set of H.

Proof. Suppose that there exist two adjacent vertices x and y in A(2,1). Then the largest eigenvalue of

Q(H, f )|{x,y} is equal to 5 but V(H) 	= {x, y}, which is a contradiction to Ev(Q(H, f )) ⊆ {θ ∈ R | θ �
5}. Hence A(2,1) is an independent set of H. �

Lemma 3.14. Let (H, f ) be a connected vertex-weighted graph with Ev(Q(H, f )) ⊆ {θ ∈ R | θ � 5}.
Then there is no triangle K3 consisting three vertices of types (2, 0), (2, 1), (3, 0).

Proof. If there is a triangle K3 consisting three vertices of types (2, 0), (2, 1), (3, 0), then Q(H, f )|K3
has the largest eigenvalue greater than 5, which is a contradiction. �

Lemma 3.15. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f )) ⊆ {1, 2, 3, 4, 5}.
If a(1,1) = 0 and a(3,0) � 1, then the diameter of H is at most 3.

Proof. Since m0 = 0, a(1,0) = 0, and a(1,1) = 0, we have −2m2 − 2m3 + 4 = a(3,0) + a(2,1)

by Corollary 3.5. Since m2,m3, a(3,0), a(2,1) are nonnegative integers, if a(3,0) � 1, then m2 = 0 or

m3 = 0. Therefore D � 3. �

Proposition 3.16. Let (H, f ) be a connected vertex-weighted graph with 5 ∈ Ev(Q(H, f )) ⊆ {1, 2, 3,
4, 5}. If a(1,1) = 0, then (H, f ) is (H5, f5) or (H7, f7).

Proof. If a(3,0) = 0, then H is an n-gon and by Lemma 3.3 (4), and Lemma 3.13, either n = 2a(2,0) or

n = 3 and (H, f ) = (H5, f5). By Corollary 3.5, in the first case we have a(2,1) = a(2,0) = 2 and H is a

quadrangle. It is easy to check that this is not possible. If a(3,0) � 1, then as a(3,0) is even a(3,0) � 2.

As then H has at least two cycles, two degree 3 vertices must be adjacent by Lemma 3.3 (5). As the

diameter is at most three it is now easy to check that we must have (H, f ) = (H7, f7). This completes

the proof. �

Proposition 3.17. Let (H, f ) be a connected vertex-weighted graph. Suppose that (H, f ) has a triangle

x1x2x3 such that x1 and x2 are vertices of type (2, 0). Let (H̃, f̃ ) be the vertex weighted graph obtained

from (H, f ) by deleting the edge x1x2 and changing the type of the vertices x1 and x2 to type (1, 1). Then,

Ev(Q(H, f )) ⊆ Z if and only if Ev(Q(H̃, f̃ )) ⊆ Z.

Proof. LetM1 := Q(H, f ) andM2 := Q(H̃, f̃ ). First, suppose that Ev(M2) ⊆ Z. Take any θ ∈ Ev(M1).
ThenM1u = θu for some 0 	= u ∈ R

n. Therefore, we have 2u1 + u2 + u3 = θu1 and u1 + 2u2 + u3 =
θu2. So we have u1 − u2 = θ(u1 − u2). Thus if θ 	= 0, 1, then u1 = u2. In this case, it holds that

M2u = θu, i.e., θ ∈ Ev(M2) ⊆ Z Hence Ev(M1) ⊆ Z. Second, suppose that Ev(M1) ⊆ Z. Take

any θ̃ ∈ Ev(M2). Then M1ũ = θ̃ ũ for some 0 	= ũ ∈ R
n. Therefore, we have 3ũ1 + ũ3 = θ̃ ũ1 and

3ũ2 + ũ3 = θ̃ ũ2. So we have 3(ũ1 − ũ2) = θ̃ (ũ1 − ũ2). Thus if θ̃ 	= 0, 3, then ũ1 = ũ2. In this case, it

holds thatM1ũ = θ̃ ũ, i.e., θ̃ ∈ Ev(M1) ⊆ Z. Hence Ev(M2) ⊆ Z. �

Corollary 3.18. Let (H, f ) be one of the connected vertex-weighted graphs (H6, f6) or (H8, f8) or (H9, f9).
Then (H, f ) satisfies 5 ∈ Ev(Q(H, f )) ⊆ {1, 2, 3, 4, 5}.
Proof. This follows from Propositions 3.16 and 3.17. �

Now we assume that A(1,1) 	= ∅ and that dH(x, y) � 3 for any distinct vertices x and y in A(1,1)

(Proposition 3.17).
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Fig. 5. The matrices in the proof of Proposition 3.17.

Proposition3.19. Theredoesnot exist connectedvertex-weightedgraph (H, f ) satisfying5 ∈ Ev(Q(H, f ))
⊆ {1, 2, 3, 4, 5} such that dH(x, y) � 3 for any distinct vertices x and y in A(1,1) and a(1,1) � 1.

Proof. We prove the proposition by contradiction. Suppose that there exists a connected vertex-

weighted graph (H, f ) satisfying 5 ∈ Ev(Q(H, f )) ⊆ {1, 2, 3, 4, 5} such that dH(x, y) � 3 for any

distinct vertices x and y in A(1,1) and a(1,1) � 1. If the diameter D of H equals 2, then n := |V(H)| � 4

and it is easy to check that there are no such graphs. So we have D � 3. Therefore m2 + m3 � 1,

and so a(3,0) � a(1,1) + 2 by Corollary 3.5. If a(3,0) = a(1,1) + 2, then m2 + m3 = 1, D = 3,

a(2,1) = 0 and n � 1 + 1 + 2 + 4 = 8. So we have (a(3,0), a(1,1)) ∈ {(3, 1), (4, 2), (5, 3)}. The case

(a(3,0), a(1,1)) = (5, 3) would be a contradiction to the assumption that dH(x, y) � 3 for any distinct

vertices x and y inA(1,1). The case (a(3,0), a(1,1)) = (3, 1) givesm1 = m2 = 0,which is a contradiction

to D = 3. For the case (a(3,0), a(1,1)) = (4, 2), there is no solution. So this shows a(1,1) � a(3,0).

If a(1,1) � a(3,0) + 2 then a neighbour of some vertex in A(1,1) has degree 2, so n � 8, but because

of the assumption that dH(x, y) � 3 for any distinct vertices x and y in A(1,1), we find (a(3,0), a(1,1)) ∈
{(1, 3), (0, 2)}. Asn ≡ a(1,1)+m3 (mod 3), it is easy to check that there are nopossibilities. Therefore
a(1,1) = a(3,0) � 1. Then a(2,1) + m2 + m3 = 2.

Now we consider the case D = 4. If D = 4, then m3 = m2 = 1 and a(2,1) = 0. So n ≡ a(1,1) + 1

(mod 3). The case a(1,1) = 1 = a(3,0) is not possible as then there are 2 edges in the subgraph of

H induced by the set A(2,0) and only one vertex of degree three. Now a(1,1) = 2 implies n ∈ {6, 9},
a(1,1) = 3 implies n ∈ {7, 10}, a(1,1) = 4 implies n ∈ {10, 13}, and a(1,1) = 5 implies n ∈ {12, 15}.
In all the cases it is easy to check that they do not occur. And clearly a(1,1) � 6 is impossible.

So this shows that D = 3. Now n � 8. And in similar fashion one can show that no case can

occur. �

Proof of Proposition 3.11. It follows from Proposition 3.16, Corollary 3.18, and Proposition 3.19. �

3.2. The case of exceptional graphs

In this section, we show the following:

Theorem 3.20. Let Γ be a connected integral exceptional graph with spectral radius three. Then, Γ is

isomorphic to one of the 13 graphs in Fig. 2.

Now we recall some definitions and results. Let |�(Γ )| denote the number of triangles in a graph

Γ .

Proposition 3.21 cf. [15, Corollary 8.1.3]. Let Γ be a graph. Then tr(A(Γ )0) = |V(Γ )|, tr(A(Γ )1) = 0,

tr(A(Γ )2) = 2|E(Γ )|, and tr(A(Γ )3) = 6|�(Γ )|.
Corollary 3.22. Let Γ be a connected integral graph with smallest eigenvalue at least −2 and largest

eigenvalue 3. Let mr denote the multiplicity of r ∈ R as an eigenvalue of A(Γ ). Then the following hold:
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1 + m2 + m1 + m0 + m−1 + m−2 = |V(Γ )|, (6)

3 + 2m2 + m1 − m−1 − 2m−2 = 0, (7)

9 + 4m2 + m1 + m−1 + 4m−2 = 2|E(Γ )|, (8)

27 + 8m2 + m1 − m−1 − 8m−2 = 6|�(Γ )|. (9)

Definition. Let Γ be a graph with V(Γ ) = {1, . . . , n}. Let P be the orthogonal projection of R
n onto

E (μ), where E (μ) is the eigenspace of A(Γ ) for the eigenvalue μ of A(Γ ). Then a subset X of V(Γ )
satisfying the following condition is called a star set for μ of Γ :

the vectors Pej (j ∈ X) form a basis for E (μ), (10)

where {e1, . . . , en} is the standard basis of R
n.

Definition. Let Γ be a graph with V(Γ ) = {1, . . . , n} and μ an eigenvalue A(Γ ). Let X be a star set

for μ of Γ . Then the subgraph Γ − X of Γ is called the star complement for μ corresponding to X .

Let Γ be a graph with adjacency matrix

⎛
⎝AX BT

B C

⎞
⎠, where X is a star set for an eigenvalue μ of Γ .

Then we define a bilinear form on R
n−|X| by 〈x, y〉X = xT (μI − C)−1y, and denote the columns of B

by bv (v ∈ X).

Theorem 3.23 [9]. Suppose that μ is not an eigenvalue of the graph Γ ′. Then there exists a graph Γ with

a star set X for μ such that Γ − X = Γ ′ if and only if the characteristic vectors bv (v ∈ X) satisfy

(i) 〈bv, bv〉X = μ for all v ∈ X,

(ii) 〈bu, bv〉X ∈ {−1, 0} for all pairs u, v of distinct vertices in X.

If Γ has Γ ′ as a star complement for μ with corresponding star set X , then each induced subgraph

Γ − Y (Y ⊂ X) also has Γ ′ as a star complement for μ.

By the star complement technique (see, for example, [9]), we determine all connected exceptional

graphs Γ satisfying 3 ∈ Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3}.
By G(Γ ′), we define the graph satisfying the following conditions:

(i) the vertices are the (0, 1)-vectors b in R
t such that 〈b, b〉Γ ′ = −2, where t = |V(Γ ′)|,

(ii) b1 is adjacent to b2 if and only if 〈b1, b2〉Γ ′ ∈ {−1, 0}.
A graph Γ with a star set X for−2 such that Γ − X = Γ ′ now corresponds to a clique in G(Γ ′). There
exist 573 graphs such that they are connected exceptional and have the smallest eigenvalues greater

than −2 (see [10]). There are 20 such graphs on 6 vertices, 110 on 7 vertices and 443 on 8 vertices.

Since the connected exceptional graphs with smallest eigenvalue −2 have subgraphs isomorphic

to one of such graphs as a star complement for −2, we can obtain the complete list of exceptional

graphs satisfying 3 ∈ Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3} from 573 such graphs. By computer (cf. [22]),

we obtain the following lemma:

Lemma 3.24. Let Γ be a connected exceptional graph satisfying 3 ∈ Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3}.
If |V(Γ )| ≤ 12, then Γ is isomorphic to one of the graphs in Fig. 2.

In the following, we show that any connected exceptional graph satisfying 3 ∈ Ev(A(Γ )) ⊆
{−2, −1, 0, 1, 2, 3}. has at most 12 vertices.
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Lemma 3.25. Let Γ be a connected exceptional graph satisfying 3 ∈ Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3}.
If |�(Γ )| = 0, then Γ is the Petersen graph. In particular, m−2 = 4.

Proof. IfΓ containsan inducedK1,4, then, byPerron–FrobeniusTheorem,Γ cannot containan induced

bipartite subgraph containing K1,4 and therefore Γ is K1,4, but this is impossible as it is bipartite and

hence spectral radius is not three. This means that Γ hasmaximum degree at most three and hence as

it has spectral radius three, it must be three-regular. So 2|E(Γ )| = 3|V(Γ )|. If Γ contains an induced

quadrangle, then again, by Perron–Frobenius Theorem, Γ must be this quadrangle, a contradiction.

By solving Eqs. (6)–(9) with 2|E(Γ )| = 3|V(Γ )| and |�(Γ )| = 0, we have m−1 = m0 = m2 = 0,

m1 = 5, m−2 = 4 and n = 10. Thus it follows that Γ is the Petersen graph. �

Lemma 3.26. Let Γ be a connected exceptional graph satisfying 3 ∈ Ev(A(Γ )) ⊆ {−2, −1, 0, 1, 2, 3}.
Then |V(Γ )| � 12.

Proof. First, we show that
∑3

i=−1 mi � 8. There exists a star set X for −2 of Γ such that Γ − X

is exceptional and θmin(A(Γ − X)) > −2. Then |V(Γ )| − |X| = 6, 7 or 8 (see [10]). Therefore∑3
i=−1 mi = ∑3

i=−2 mi − m−2 = |V(Γ )| − |X| ≤ 8. Hence
∑3

i=−1 mi � 8.

Second, we show thatm−2 ≤ 4. If |�(Γ )| = 0, thenm−2 = 4 by Lemma 3.25. So we assume that

|�(Γ )| � 1. First, we show that 4m2 +m−2 +m1 +m−1 ≤ 15. It is well-known that θmax(A(Γ )) �
1

|V(Γ )|
∑

v∈V(Γ ) degΓ (v). By Eq. (8) and 2|E(Γ )| = ∑
v∈V(Γ ) degΓ (v), we have 9 + ∑2

i=−2 i
2mi ≤

3|V(Γ )|. By Eq. (6) and
∑3

i=−1 mi � 8, we have |V(Γ )| � 8 + m−2. Therefore, 9 + ∑2
i=−2 i

2mi ≤
3(8+m−2), that is,

∑2
i=−1 i

2mi +4m−2 ≤ 15+3m−2. Hencewe have 4m2 +m1 +m−1 +m−2 ≤ 15.

By calculating [Eq. (9)] − [Eq. (7)], we obtain 6m2 − 6m−2 + 24 = 6|�(Γ )|, that is, m2 =
m−2 +|�(Γ )|−4. By calculating [Eq. (9)]− 4× [Eq. (7)], we obtain−3m1 +3m−1 +15 = 6|�(Γ )|,
that is, m−1 = m1 + 2|�(Γ )| − 5. Thus we have m−2 � 1

5
(36 − 6|�(Γ )| − 2m1). If |�(Γ )| = 1,

then m1 = m−1 + 5 − 2 ≥ 3 and thusm−2 ≤ 24
5
. If |�(Γ )| ≥ 2, then m−2 ≤ 24

5
. Hence m−2 ≤ 4.

By Eq. (6), |V(Γ )| = ∑3
i=−1 mi + m−2 ≤ 8 + 4 = 12. Hence the lemma holds. �

Proof of Theorem 3.20. It follows from Lemmas 3.24 and 3.26. �

4. Concluding remarks

In this paper, we classified the connected non-bipartite integral graphs with spectral radius three.

They have at most 13 vertices. A natural question is given the set of eigenvalues of a connected graph

what one can say about the number of vertices, the degree sequence etcetera. A bound on the number

of vertices given the diameter and spectral radius is given in [7]. Although it is believed that this bound

is asymptotically good, for small spectral radius, it is not a good bound.

Challenge 1. Classify the connected integral bipartite graphs.

Brouwer and Haemers [4] classified the integral trees with spectral radius three, and K. Balińska et al.

did somework on the bipartite non-regular integral graphs withmaximum degree four [2,3]. It seems

that the general case is not doable without a better bound on the number of vertices. Probably the

methods in this paper can be extended to find all integral graph with spectral radius four and smallest

eigenvalue −2.

Challenge 2. Classify the integral graphs with spectral radius four and smallest eigenvalue −2.

Some work towards this challenge has been done by [21].
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[18] Z. Radosavljević, S. Simić, There are just thirteen connected nonregular nonbipartite integral graphs having maximum vertex

degree four (a shortened report), Graph theory (Dubrovnik, 1985), Univ. Novi Sad Novi Sad (1986) 183–187.
[19] A.J. Schwenk, Exactly thirteenconnectedcubicgraphshave integral spectra, theoryandapplicationsof graphs, Proc. International

Conf., Western Mich. Univ., Kalamazoo, Mich., 1976, Lecture Notes in Mathematics, vol. 642, Springer, Berlin, 1978, pp. 516–533.
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