4,965 research outputs found

    Assentication: User Deauthentication and Lunchtime Attack Mitigation with Seated Posture Biometric

    Full text link
    Biometric techniques are often used as an extra security factor in authenticating human users. Numerous biometrics have been proposed and evaluated, each with its own set of benefits and pitfalls. Static biometrics (such as fingerprints) are geared for discrete operation, to identify users, which typically involves some user burden. Meanwhile, behavioral biometrics (such as keystroke dynamics) are well suited for continuous, and sometimes more unobtrusive, operation. One important application domain for biometrics is deauthentication, a means of quickly detecting absence of a previously authenticated user and immediately terminating that user's active secure sessions. Deauthentication is crucial for mitigating so called Lunchtime Attacks, whereby an insider adversary takes over (before any inactivity timeout kicks in) authenticated state of a careless user who walks away from her computer. Motivated primarily by the need for an unobtrusive and continuous biometric to support effective deauthentication, we introduce PoPa, a new hybrid biometric based on a human user's seated posture pattern. PoPa captures a unique combination of physiological and behavioral traits. We describe a low cost fully functioning prototype that involves an office chair instrumented with 16 tiny pressure sensors. We also explore (via user experiments) how PoPa can be used in a typical workplace to provide continuous authentication (and deauthentication) of users. We experimentally assess viability of PoPa in terms of uniqueness by collecting and evaluating posture patterns of a cohort of users. Results show that PoPa exhibits very low false positive, and even lower false negative, rates. In particular, users can be identified with, on average, 91.0% accuracy. Finally, we compare pros and cons of PoPa with those of several prominent biometric based deauthentication techniques

    Refining personal and social presence in virtual meetings

    Get PDF
    Virtual worlds show promise for conducting meetings and conferences without the need for physical travel. Current experience suggests the major limitation to the more widespread adoption and acceptance of virtual conferences is the failure of existing environments to provide a sense of immersion and engagement, or of โ€˜being thereโ€™. These limitations are largely related to the appearance and control of avatars, and to the absence of means to convey non-verbal cues of facial expression and body language. This paper reports on a study involving the use of a mass-market motion sensor (Kinectโ„ข) and the mapping of participant action in the real world to avatar behaviour in the virtual world. This is coupled with full-motion video representation of participantโ€™s faces on their avatars to resolve both identity and facial expression issues. The outcomes of a small-group trial meeting based on this technology show a very positive reaction from participants, and the potential for further exploration of these concepts

    IntelliChair

    Get PDF

    Seated Postural Changes with Foot Position at a Tall Workstation

    Get PDF
    Back pain is a leading cause of disability costing 100 billion in healthcare and missed work in the United States alone15. While traditional workstations have been extensively studied, non-traditional workstations have not been as rigorously investigated for ideal settings and possible improvement4. The motivation for this project was to investigate an understudied but growing workstation setupโ€”a tall workstation. The aim of this project was to assess tall workstations and the effect of foot position on back posture. Posture is a growing area of research as we understand that the spinal loading of sitting for long periods of time can have long lasting deleterious effects3,26. In this study we determined the feasibility of quantifying back posture during two 30-minute data collections and developed methods for analyzing time-varying back posture. This study involved collecting a single dataset from a volunteer who sat a tall workstation setup, where feet are not meant to touch the floor, with two different foot positions. For the first foot position, the subject placed their feet under the table on a bar made for that purpose, and the second position was to place the feet on the circular ring under the chair also designed for this use. The three-dimensional position of 11 retroreflective markers adhered to the spine and back were collected for thirty minutes in each position (60 minutes total). Lastly, two reference posture datasets were collected for one minuteโ€”a standing posture and a traditional seated posture. Marker position movement was quantified by taking the absolute distance of each marker position from its own starting point as the origin. Marker positions along the spine were fit to a 5th order polynomial on each timeframe to investigate changes in the shape of the spine over time and between foot positions. At each marker location, the slope of the 5th order polynomial was determined to assess in which anatomical locations the spine changed shape over time and between foot positions. The slopes along the spine were subtracted from the first timeframe and the preferred postures, and the absolute value was then summed and averaged across all the markers. The plot of marker positions over time showed that the subject moved increasingly farther away from the origin in both foot positions. The 5th order polynomials showed that both foot positions were significantly more curved than the preferred postures and they both curved more overtime though the FUT posture curved slightly more. Overall, this thesis demonstrates the feasibility of quantifying back posture with varying foot position at a tall workstation. Ongoing subject recruitment and data collections will generate results for which statistical comparisons can be made for temporal changes in back posture and foot positions

    Intelligent Sitting Posture Classifier for Wheelchair Users

    Get PDF
    In recent years, there has been growing interest in postural monitoring while seated, thus preventing the appearance of ulcers and musculoskeletal problems in the long term. To date, postural control has been carried out by means of subjective questionnaires that do not provide continuous and quantitative information. For this reason, it is necessary to carry out a monitoring that allows to determine not only the postural status of wheelchair users, but also to infer the evolution or anomalies associated with a specific disease. Therefore, this paper proposes an intelligent classifier based on a multilayer neural network for the classification of sitting postures of wheelchair users. The posture database was generated based on data collected by a novel monitoring device composed of force resistive sensors. A training and hyperparameter selection methodology has been used based on the idea of using a stratified K-Fold in weight groups strategy. This allows the neural network to acquire a greater capacity for generalization, thus allowing, unlike other proposed models, to achieve higher success rates not only in familiar subjects but also in subjects with physical complexions outside the standard. In this way, the system can be used to support wheelchair users and healthcare professionals, helping them to automatically monitor their posture, regardless physical complexions.This work was supported in part by the Ministry of Science and Innovation-StateResearch Agency/Project funded by MCIN/State Research Agency(AEI)/10.13039/501100011033 under Grant PID2020-112667RB-I00,in part by the Basque Government under Grant IT1726-22, and in part by the Predoctoral Contracts of the Basque Government under Grant PRE-2021-1-0001 and Grant PRE-2021-1-021

    ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ ์ €๊ฐ์„ ์œ„ํ•œ ์ž‘์—… ์ž์„ธ ๋ฐ ๋™์ž‘์˜ ์ธ๊ฐ„๊ณตํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022.2. ๋ฐ•์šฐ์ง„.์œก์ฒด์  ๋ถ€ํ•˜๊ฐ€ ํฐ ์ž์„ธ ๋ฐ ๋™์ž‘์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„์— ๊ฐ€ํ•ด์ง€๋Š” ์œก์ฒด์  ๋ถ€ํ•˜์˜ ์–‘์ƒ์€ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์žฅ์‹œ๊ฐ„ ์•‰์€ ์ž์„ธ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ๊ทผ์œก, ์ธ๋Œ€์™€ ๊ฐ™์€ ์—ฐ์กฐ์ง์— ๊ณผ๋„ํ•œ ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋ชฉ, ํ—ˆ๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹ ์ฒด ๋ถ€์œ„์—์„œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ฐฉ์ขŒ ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž‘์—…์ž์˜ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ์ด์— ๋Œ€ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์›€์ง์ž„์ด ํฌํ•จ๋œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ์ฒด์ค‘์ด ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ์ „์„ธ๊ณ„์ ์ธ ๋น„๋งŒ์˜ ์œ ํ–‰์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์ž‘์—…์ž๋“ค์ด ์ฒด์ค‘ ์ฆ๊ฐ€๋ฅผ ๊ฒช๊ณ  ์žˆ๊ณ , ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์ž‘์—…์—์„œ ๋น„๋งŒ์€ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋น„๋งŒ๊ณผ ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์€ ์ž ์žฌ์ ์ธ ์—ฐ๊ด€์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ๋น„๋งŒ์ด ๋“ค๊ธฐ ์ž‘์—…์— ๋ฏธ์น˜๋Š” ์ƒ์ฒด์—ญํ•™์  ์˜ํ–ฅ์„ ๋…ผ์˜ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ž‘์—…์žฅ์—์„œ์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ˆ˜ํ–‰๋˜์–ด ์™”์ง€๋งŒ, ์ž‘์—… ์‹œ์Šคํ…œ์˜ ์ธ๊ฐ„๊ณตํ•™์  ์„ค๊ณ„ ์ธก๋ฉด์—์„œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์žฅ์‹œ๊ฐ„ ์˜์ž์— ์•‰์•„ ์ •์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•œ ์œ ๋งํ•œ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ, ์ž‘์—…์ž์˜ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด ์ œ์•ˆ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž๊ฐ€ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์ž‘์—… ์‹œ๊ฐ„ ๋™์•ˆ ์œ ์ง€ํ•˜๋„๋ก ๋•๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ž์„ธ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ถ„๋ฅ˜ํ•  ์ž์„ธ๋ฅผ ์ •์˜ํ•˜๋Š” ๊ณผ์ •์—์„œ ์ธ๊ฐ„๊ณตํ•™์  ๋ฌธํ—Œ์ด ๊ฑฐ์˜ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ์‹ค์ œ๋กœ ํ™œ์šฉํ•˜๊ธฐ์—๋Š” ์—ฌ๋Ÿฌ ํ•œ๊ณ„์ ๋“ค์ด ์กด์žฌํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์˜ ๊ฒฝ์šฐ, ์ฒด์งˆ๋Ÿ‰ ์ง€์ˆ˜(BMI) 40 ์ด์ƒ์˜ ์ดˆ๊ณ ๋„ ๋น„๋งŒ ์ž‘์—…์ž์˜ ๋™์ž‘ ํŒจํ„ด์„ ๋…ผ์˜ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ฐพ์•„๋ณผ ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด ํ•˜์—์„œ ์ „์‹  ๊ด€์ ˆ๋“ค์˜ ์›€์ง์ž„์„ ์ƒ์ฒด์—ญํ•™์  ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์—ฐ๊ตฌ ๋ชฉ์ ์€ 1) ๋‹ค์–‘ํ•œ ์„ผ์„œ ์กฐํ•ฉ์„ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ , 2) ๋“ค๊ธฐ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋“ค๊ธฐ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ดํ•ดํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ž‘์—…์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์—ฐ๊ตฌ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ฐ๊ฐ ์—ฌ์„ฏ ๊ฐœ์˜ ๊ฑฐ๋ฆฌ ์„ผ์„œ์™€ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฐฉ์ขŒ ๊ด€๋ จํ•œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์— ๋Œ€ํ•ด ๋ฌธํ—Œ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฒฐ์ •๋œ ์ž์„ธ๋“ค์— ๋Œ€ํ•ด ์„œ๋ฅธ ์—ฌ์„ฏ ๋ช…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์—์„œ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด kNN ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์˜€๊ณ , ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ์ผ ์ข…๋ฅ˜์˜ ์„ผ์„œ๋กœ ๊ตฌ์„ฑ๋œ ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ๋•Œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ์…˜ ์บก์ณ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์‹คํ—˜์—๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜ ์ด๋ ฅ์ด ์—†๋Š” ์„œ๋ฅธ ๋‹ค์„ฏ ๋ช…์ด ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฃผ์š” ๊ด€์ ˆ(๋ฐœ๋ชฉ, ๋ฌด๋ฆŽ, ์—‰๋ฉ์ด, ํ—ˆ๋ฆฌ, ์–ด๊นจ, ํŒ”๊ฟˆ์น˜) ๋ณ„ ์šด๋™์—ญํ•™์  ๋ณ€์ˆ˜๋“ค๊ณผ, ๋“ค๊ธฐ ๋™์ž‘์˜ ํŒจํ„ด์„ ํ‘œํ˜„ํ•˜๋Š” ๋™์ž‘ ์ง€์ˆ˜๋“ค์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด๊ณผ ๋น„๋งŒ ์ˆ˜์ค€์— ๋”ฐ๋ผ, ๋Œ€๋ถ€๋ถ„์˜ ๋ณ€์ˆ˜์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ ๋น„๋งŒ์ธ์€ ์ •์ƒ์ฒด์ค‘์ธ์— ๋น„ํ•ด ๋‹ค๋ฆฌ ๋ณด๋‹ค ํ—ˆ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋™์ž‘ ์ˆ˜ํ–‰ ์‹œ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ๊ด€์ ˆ ๊ฐ๋„ ๋ณ€ํ™”์™€ ๋Š๋ฆฐ ์›€์ง์ž„์„ ๋ณด์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์—์„œ ๋ฐ•์Šค์˜ ์ด๋™์— ๊ฐœ๋ณ„ ๊ด€์ ˆ์ด ๊ธฐ์—ฌํ•˜๋Š” ๋น„์œจ๋„ ์ •์ƒ์ฒด์ค‘์ธ๊ณผ ๋น„๋งŒ์ธ์€ ๋‹ค๋ฅธ ํŒจํ„ด์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ๋…ธ์ถœ๋œ ์ž‘์—…์ž๋“ค์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•  ์ˆ˜ ์žˆ๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ์—…๋ฌด์˜ ์ƒ์‚ฐ์„ฑ๊ณผ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์˜ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ ์ €๋ ดํ•œ ์†Œ์ˆ˜์˜ ์„ผ์„œ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ ์ž์„ธ๋“ค์„ ๋†’์€ ์ •ํ™•๋„๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž์—๊ฒŒ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ž์„ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜์—ฌ, ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋™์ ์ธ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์œผ๋กœ ์ธํ•œ ์ž ์žฌ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ธ๊ณผ ์ •์ƒ์ฒด์ค‘์ธ ๊ฐ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘์˜ ์ฐจ์ด๋ฅผ ์ดํ•ดํ•˜์—ฌ, ๋น„๋งŒ์„ ๊ณ ๋ คํ•œ ์ธ๊ฐ„๊ณตํ•™์  ์ž‘์—…์žฅ ์„ค๊ณ„์™€ ๋™์ž‘ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Working in stressful postures and movements increases the risk of work-related musculoskeletal disorders (WMSDs). The physical stress on a workerโ€™s musculoskeletal system depends on the type of work task. In the case of sedentary work, stressful sitting postures for prolonged durations could increase the load on soft connective tissues such as muscles and ligaments, resulting in the incidence of WMSDs. Therefore, to reduce the WMSDs, it is necessary to monitor a workerโ€™s sitting posture and additionally provide ergonomic interventions. When the worker performs a task that involves dynamic movements, such as manual lifting, the workerโ€™s own body mass affects the physical stress on the musculoskeletal system. In the global prevalence of obesity in the workforce, an increase in the body weight of the workers could adversely affect the musculoskeletal system during the manual lifting task. Therefore, obesity could be associated with the development of WMSDs, and the impacts of obesity on workersโ€™ movement during manual lifting need to be examined. Despite previous research efforts to prevent WMSDs, there still exist research gaps concerning ergonomics design of work systems. For sedentary workers, a promising solution to reduce the occurrence of WMSDs is the development of a system capable of monitoring and classifying a seated worker's posture in real-time, which could be utilized to provide feedback to the worker to maintain a posture with a low-risk of WMSDs. However, the previous studies in relation to such a posture monitoring system lacked a review of the ergonomics literature to define posture categories for classification, and had some limitations in widespread use and user acceptance. In addition, only a few studies related to obesity impacts on manual lifting focused on severely obese population with a body mass index (BMI) of 40 or higher, and, analyzed lifting motions in terms of multi-joint movement organization or at the level of movement technique. Therefore, the purpose of this study was to: 1) develop a sensor-embedded posture classification system that is capable of classifying an instantaneous sitting posture as one of the posture categories discussed in the ergonomics literature while not suffering from the limitations of the previous system, and, 2) identify the impacts of severe obesity on joint kinematics and movement technique during manual lifting under various task conditions. To accomplish the research objectives, two major studies were conducted. In the study on the posture classification system, a novel smart chair system was developed to monitor and classify a workerโ€™s sitting postures in real-time. The smart chair system was a mixed sensor system utilizing six pressure sensors and six infrared reflective distance sensors in combination. For a total of thirty-six participants, data collection was conducted on posture categories determined based on an analysis of the ergonomics literature on sitting postures and sitting-related musculoskeletal problems. The mixed sensor system utilized a kNN algorithm for posture classification, and, was evaluated in posture classification performance in comparison with two benchmark systems that utilized only a single type of sensors. The mixed sensor system yielded significantly superior classification performance than the two benchmark systems. In the study on the manual lifting task, optical motion capture was conducted to examine differences in joint kinematics and movement technique between severely obese and non-obese groups. A total of thirty-five subjects without a history of WMSDs participated in the experiment. The severely obese and non-obese groups show significant differences in most joint kinematics of the ankle, knee, hip, spine, shoulder, and elbow. There were also significant differences between the groups in the movement technique index, which represents a motion in terms of the relative contribution of an individual joint degree of freedom to the box trajectory in a manual lifting task. Overall, the severely obese group adopted the back lifting technique (stoop) rather than the leg lifting technique (squat), and showed less joint range of excursions and slow movements compared to the non-obese group. The findings mentioned above could be utilized to reduce the risk of WMSDs among workers performing various types of tasks, and, thus, improve work productivity and personal health. The mixed sensor system developed in this study was free from the limitations of the previous posture monitoring systems, and, is low-cost utilizing only a small number of sensors; yet, it accomplishes accurate classification of postures relevant to the ergonomic analyses of seated work tasks. The mixed sensor system could be utilized for various applications including the development of a real-time posture feedback system for preventing sitting-related musculoskeletal disorders. The findings provided in the manual lifting study would be useful in understanding the potential risk of WMSDs for severely obese workers. Differences in joint kinematics and movement techniques between severely obese and non-obese groups provide practical implications concerning the ergonomic design of work tasks and workspace layout.Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Objectives 5 1.3 Dissertation Outline 6 Chapter 2. Literature Review 8 2.1 Work-related Musculoskeletal Disorders Among Sedentary Workers 8 2.1.1 Relationship Between Sitting Postures and Musculoskeletal Disorders 8 2.1.2 Systems for Monitoring and Classifying a Seated Worker's Postures 10 2.2 Impacts of Obesity on Manual Works 22 2.2.1 Impacts of Obesity on Work Capacity 22 2.2.2 Impacts of Obesity on Joint Kinematics and Biomechanical Demands 24 Chapter 3. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-time Posture Classification: Combining Pressure and Distance Sensors 27 3.1 Introduction 27 3.2 Materials and Methods 33 3.2.1 Predefined posture categories for the mixed sensor system 33 3.2.2 Physical construction of the mixed sensor system 36 3.2.3 Posture Classifier Design for the Mixed Sensor System 38 3.2.4 Data Collection for Training and Testing the Posture Classifier of the Mixed Sensor System 41 3.2.5 Comparative Evaluation of Posture Classification Performance 43 3.3 Results 46 3.3.1 Model Parameters and Features 46 3.3.2 Posture Classification Performance 47 3.4 Discussion 50 Chapter 4. Severe Obesity Impacts on Joint Kinematics and Movement Technique During Manual Load Lifting 57 4.1 Introduction 57 4.2 Methods 61 4.2.1 Participants 61 4.2.2 Experimental Task 61 4.2.3 Experimental Procedure 64 4.2.4 Data Processing 65 4.2.5 Experimental Variables 67 4.2.6 Statistical Analysis 71 4.3 Results 72 4.3.1 Kinematic Variables 72 4.3.2 Movement Technique Indexes 83 4.4 Discussion 92 Chapter 5. Conclusion 102 5.1 Summary 102 5.2 Implications 105 5.3 Limitations and Future Directions 106 Bibliography 108 ๊ตญ๋ฌธ์ดˆ๋ก 133๋ฐ•

    Designing and developing a vision-based system to investigate the emotional effects of news on short sleep at noon: an experimental case study

    Get PDF
    Background: Sleep is a critical factor in maintaining good health, and its impact on various diseases has been recognized by scientists. Understanding sleep patterns and quality is crucial for investigating sleep-related disorders and their potential links to health conditions. The development of non-intrusive and contactless methods for analyzing sleep data is essential for accurate diagnosis and treatment. Methods: A novel system called the sleep visual analyzer (VSleep) was designed to analyze sleep movements and generate reports based on changes in body position angles. The system utilized camera data without requiring any physical contact with the body. A Python graphical user interface (GUI) section was developed to analyze body movements during sleep and present the data in an Excel format. To evaluate the effectiveness of the VSleep system, a case study was conducted. The participants' movements during daytime naps were recorded. The study also examined the impact of different types of news (positive, neutral, and negative) on sleep patterns. Results: The system successfully detected and recorded various angles formed by participants' bodies, providing detailed information about their sleep patterns. The results revealed distinct effects based on the news category, highlighting the potential impact of external factors on sleep quality and behaviors. Conclusions: The sleep visual analyzer (VSleep) demonstrated its efficacy in analyzing sleep-related data without the need for accessories. The VSleep system holds great potential for diagnosing and investigating sleep-related disorders. The proposed system is affordable, easy to use, portable, and a mobile application can be developed to perform the experiment and prepare the results

    Driver tracking and posture detection using low-resolution infrared sensing

    Get PDF
    Intelligent sensors are playing an ever-increasing role in automotive safety. This paper describes the development of a low-resolution infrared (IR) imaging system for continuous tracking and identification of driver postures and movements. The resolution of the imager is unusually low at 16 x 16 pixels. An image processing technique has been developed using neural networks operating on a segmented thermographic image to categorize driver postures. The system is able reliably to identify 18 different driver positions, and results have been verified experimentally with 20 subjects driving in a car simulator. IR imaging offers several advantages over visual sensors; it will operate in any lighting conditions and is less intrusive in terms of the privacy of the occupants. Hardware costs for the low-resolution sensor are an order of magnitude lower than those of conventional IR imaging systems. The system has been shown to have the potential to play a significant role in future intelligent safety systems
    • โ€ฆ
    corecore