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Abstract—In recent years, there has been growing inter-
est in postural monitoring while seated, thus preventing the
appearance of ulcers and musculoskeletal problems in the
long term. To date, postural control has been carried out
by means of subjective questionnaires that do not provide
continuous and quantitative information. For this reason,
it is necessary to carry out a monitoring that allows to
determine not only the postural status of wheelchair users,
but also to infer the evolution or anomalies associated
with a specific disease. Therefore, this paper proposes
an intelligent classifier based on a multilayer neural net-
work for the classification of sitting postures of wheelchair
users. The posture database was generated based on data
collected by a novel monitoring device composed of force
resistive sensors. A training and hyperparameter selection
methodology has been used based on the idea of using
a stratified K-Fold in weight groups strategy. This allows
the neural network to acquire a greater capacity for gen-
eralization, thus allowing, unlike other proposed models,
to achieve higher success rates not only in familiar subjects
but also in subjects with physical complexions outside the
standard. In this way, the system can be used to support
wheelchair users and healthcare professionals, helping
them to automatically monitor their posture, regardless
physical complexions.

Index Terms— Artificial neural network, sitting posture
classification, wheelchair, force sensors.

[. INTRODUCTION

ODAY, 20% of the elderly population and 10% of people
with disabilities, such as stroke or paraplegia, need to use
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a wheelchair in their daily lives [1]. Therefore, approximately
75 million people around the world are in a situation of low
mobility, in which the use of a mobility aid becomes an essen-
tial necessity to lead a seemingly normal life. Currently, there
are other devices that are intended to serve as a support [2].
However, this technology is still more expensive and complex
than the use of a wheelchair, so this second option stands out.

Autonomous sitting is a fundamental ability for people’s
health and well-being, even more if they are affected by a
neurodegenerative disease, e.g. multiple sclerosis. As these
people present a reduced mobility, they spend a large part of
the day in a seated position. Imbalance due to a sedentary
lifestyle and age, as well as a consequence of the disease
itself, affect the skeleton, deforming it and making it difficult
to adopt a correct posture in the long term [3].

Adopting a sedestation posture is essential to both, prevent
musculoskeletal problems in the long term as well as to prevent
the development of ulcers in people who spend long periods
of time seated. The appearance of ulcers leads to a deterio-
ration in the health-related quality of life of those who suffer
from them [4]. Moreover, inappropriate sedestation causes
the appearance of muscular tension both in the cervical and
shoulder area [5] and in the lumbar area [6]. Above-mentioned
muscle problems cause chronic low back pain (LBP) or some
neuropathies like sciatica [6], [7]. It is therefore necessary to
continuously monitor the postural status of people.

At present, given the difficulty of continuous monitoring
by health specialists, postural monitoring and diagnosis is
carried out by means of specific questionnaires [8]. However,
these questionnaires are composed of a certain subjective
character, and they are not suitable to monitor posture on
a continuous basis. In an attempt to eliminate the subjective
component characteristic of these questionnaires, the interest
in the development of postural monitoring devices that allow
objective quantification of a patient’s postural status has grown
in recent years. These devices can be quantified depending
on how invasive the technology used for the measurement
is: wearable sensors, vision sensors and pressure or force
Sensors.

The first group of sensors used for sitting posture monitoring
are the so-called wearable sensors [3], [9], [10]. The main
advantage of this type of sensors is that they are small in
size. This allows them to be easily implemented in clothing,
providing great portability to the data acquisition system.
However, they are intrusive sensors, which sometimes cause
discomfort to the user, having also drifts that have to be
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corrected during use. For this reason, other types of monitoring
technologies have been developed.

The second group of sensors used for postural monitoring
are sensors based on vision technologies. Within this group,
the Kinect camera stands out, which uses depth sensor tech-
nology [11], [12], [13], [14]. With the cameras being placed
in the environment, the intrusiveness problem of wearable
sensors is eliminated. However, it is necessary to place them
in controlled environments, with constant lighting conditions,
as well as to avoid the appearance of occlusions that interfere
with the image. For this, vision sensors are not very portable
and are not suitable for wheelchair users.

The last group is made up of pressure or force sen-
sors. These sensors, either conductive in textile format [15],
[16], [17], or resistive [18], [19], [20], [21], are arranged along
the seat and back of a chair, allowing the force exerted on them
to be measured. In this way, the intrusiveness of wearable
sensors is avoided and portability is gained with respect to
vision sensors.

The pressure sensors can be arranged as a mat or in a
distributed manner. Currently, there are both commercially
available solutions [22], [23], [24], and custom-made solu-
tions [15], [25]. However, due to the very fabrication of these
meshes, they have an excessive number of sensors, which
makes them expensive and of limited usage time. In addition,
as the number of data collected increases, the difficulty and
computational cost of the subsequent processing of the data
increases.

For this reason, some authors use Force Sensitive Resistors
(FSR) distributed in the form of a mesh [26], [27]. One of
the advantages of FSR resistive sensors is that, as it acts
as a variable resistor, it does not require large electronics
for its proper implementation. Another advantage of this
type of sensor is its low price and availability. However,
prior calibration is necessary to ensure the suitability of the
measured data. In addition, the portability of these sensors is
associated with the portability of the wheelchair to which they
are attached [19], [22].

Once the postural data acquisition method has been selected,
highlighting above the rest the use of sparse pressure sensors
due to their portability and low cost, a second block of machine
learning techniques is used for postural identification. This
second block is carried out in two stages. A first one in
which a selection of the most relevant features is made, and a
subsequent training stage of the classifier based on the selected
features.

For the first stage, in the case of discretely located sensors,
in addition to using information collected from the sensors
directly [19], [22], [28], statistical indicators such as mean
or standard deviation are taken among others [18], [20]. The
calculation of the center of pressures (COP) in seat and
backrest has also been proposed [20], [24]. However, there
is no standardized methodology for the selection of features
for seated classification, as is the case in other health care
settings [29].

For the second stage of training a classifier, statisti-
cal methods such as Naive-Bayes [11] have been used.

However, Machine Learning (ML) based classification models
are the ones that have stood out above the rest. Specifically, the
use of supervised learning models has become popular, where
the model is able to learn to predict an output class from
features provided as input. In this way, classification models
based on K-nearest neighbors (KNN) [20], [21], Support
Vector Machines (SVM) [28], [30], [31] and Artificial Neural
Networks (ANN) [19], [27], [32] have been developed.

However, all models have a number of constraints. First,
much of the previous work is oriented to office work
[19]1, [30], [31], [32]. Since this is a different approach, the
postures to be monitored are different, taking into consid-
eration, for example, leg crossing, which does not occur in
wheelchair users. Likewise, portability and adaptation of these
devices to different types of wheelchairs is not taken into
account [21], [30]. Furthermore, the varied physical complex-
ion of these people, with an obesity rate higher than that of the
general population [33], is not considered. Few of the papers
focus on wheelchair users [27], but the number of subjects
in the trials is low or authors do not detail the methodology
proposed to guarantee the robustness of the classifier. Thus,
results could be affected by the diversity of physical com-
plexions of the participants. Considering that variance between
subjects is greater than between postures [34] and the intrinsic
dependence of the models on the physical complexion, results
may be inferior if validated with subjects who have not
participated in training [19], [28], [35].

The aim of this paper is to present a robust sitting posture
classification model, focused on wheelchair users, able to
distinguish between the common improper sitting postures
adopted by disabled users regardless their physical complex-
ion. The classification model, based on a ANN structure, uses
as input the information collected using a postural monitoring
system developed ad hoc, which has been called i-KuXin.
This device is based on the use of FSR sensors located
in a distributed way in a portable cushion in both the seat
and the backrest. This allows the device to be inexpensive,
have a longer battery autonomy and simplify the subsequent
data processing. This device is designed to be portable and
independent of the wheelchair used.

In order to make the system simple, robust and independent
of physical complexions, a methodology based on a K-fold
stratified in weight groups has been designed. In this way,
in contrast to other studies, it is possible to obtain high
accuracy results in new subjects without being affected by
their physical complexion. The robustness of the classifier,
validated with a large number of subjects, allows to extend
and generalize the advantages of postural monitoring as well
as provide great flexibility to healthcare specialists.

The rest of this article is structured as follows. In Section II
the design of the monitoring system is presented as well
as the method followed in the data acquisition and trials.
In Section III, the methodology used for the intelligent
classifier based in ANN is explained. Then, in Section IV,
an analysis and discussion of the results is provided. Finally,
in Section V the main conclusions are extracted and the future
work is defined.
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Portable
cushion

Fig. 1. i-KuXin postural monitoring device modules. The three
modules that make it up are: a-Sensing module (portable cushion).
b-Acquisition system. c-User interface. Currently, this design is patent
pending (P210811ES).
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Fig. 2. Optimal distribution of FSR sensors for postural monitoring.
On the left: Distribution of the sensors on the backrest. Right: Distribu-
tion of the sensors on the seat.

[I. DATA BASE FOR SITTING POSTURE CLASSIFIER

This section describes the monitoring device developed for
data collection (Section II-A), as well as the methodology
used during the experiments conducted for postural data base
generation (Section II-B).

A. Postural Monitoring Device: i-KuXin

The postural monitoring device, which has been named
i-KuXin, is divided in 3 modules: a sensing module, the
acquisition system and user interface (Figure 1).

The sensing module consists of a set of 16 FSR sensors
distributed along the rest and backrest of a cushion. Given the
lack of precision of these sensors, they have been subjected to
a previous calibration process with weights within their range
of action. These sensors have a linear relationship between
weight and voltage on the logarithmic scale.

A preliminary study has been carried out for the selection
of the best sensor distribution [36]. In this study, commercial
pressure mats (Seating Dev Kit from Sensing Tex S.L. [37])
were used to identify the most relevant pressure points of both
the seat and the backrest in order to identify the most common
sitting postures. The results of this study show as the most
relevant points those represented in Figure 2.

The seat sensors are distributed as follows: S3 and S8
sensors are responsible for monitoring the ischium area, S1,
S2, S6 and S7 sensors are responsible for monitoring the thighs
at different heights, and S5 and S4 sensors monitor frontal
displacements. On the other hand, the backrest sensors are
distributed as follows: B15, B16, B9 and B10 sensors monitor

lateral displacements in both the lumbar and dorsal areas.
Sensors B11, B12, B13 and B14 monitor spinal pressure at
different heights. The sensors have been covered with a padded
cushion to protect them, as well as to add more comfort to
the user. The system has been designed to be portable and
independent of the type of chair used, so that, in addition to
wheelchair users, it can be used in desk chairs, office chairs
or student chairs, among others.

Sensor data acquisition is performed through an Arduino
MEGA 2560 board. It is a board with an ATmega2560
processor and the capacity to connect 16 analog inputs, one for
each FSR sensor used. The sampling frequency used is 4 Hz.
In addition, a wireless connection module HC-05 has been
used, which allows the board to transmit data via Bluetooth
to a remote computer. The Arduino board is powered by an
external 10000 mAh battery that allows the system to collect
data for more than 24 hours. The data is transmitted in real
time with a sample frequency of 4 Hz to a remote computer
on which a graphical interface based on Matlab software has
been designed.

This interface has been developed with the idea of facil-
itating, on the one hand, the real-time display of sensor
measurements. For this purpose, the value of the sensors are
shown intuitively, varying their size and color depending on
the measured force, as shown in Figure 3. On the other hand,
an analysis tab has been designed, in which the most relevant
information for the subsequent study of the historical data by
a health specialist is represented in an orderly manner.

Therefore, the i-KuXin system developed, composed of the
three modules described above, allows real-time monitoring
of the postural status of wheelchair users, and transmits the
information to the health specialist. Thanks to the limited
number of sensors, an autonomy of more than 24 hours is
achieved at a low cost.

B. Test Procedure for the Generation of a Seating
Posture Database

To develop a sitting posture classifier, it is first necessary
to have a good database. For this, the first step is to decide
which sitting postures to be classified, which are relevant to
know the functional status of wheelchair users.

As discussed in Section I, wheelchair users tend to have a
trunk control problem, mainly due to muscle and bone weak-
ness. It is therefore necessary to monitor spinal displacements.
For this reason, lateral tilts and frontal tilt are selected as
relevant postures. Lateral tilt is defined as the displacement
of the back to one side by 15-20 degrees, with the back
resting on the backrest (Posture 02 and 03). On the other hand,
in the forward tilt (Posture 05), the back is moved forward by
approximately 40 degrees, so that it no longer makes contact
with the backrest. In both positions, the buttocks remain fixed
on the seat, but the weight distribution is modified. Feet resting
on the floor.

In addition, wheelchair users have, to a large extent, thoracic
kyphosis, so this will be another posture to be taken into
account (Posture 04). Therefore, they are instructed to hunch
their shoulders slightly forward, maintaining contact with the
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Fig. 3.

Graphical interface of the developed i-KuXin postural monitoring system. On the left: Monitoring tab. Right: Analysis tab. Description of

components: 1- Real-time display of sensors. 2- i-KuXin sensors distribution scheme. 3- Monitoring tab user interaction buttons. 4- Analysis tab

user interaction buttons. 5- Table of representation of previously saved d
selected sensors.

PO1. Neutral

sedestation P02. Leaning right |

| P03. Leaning left

PO4. Hyperkyphosis | | PO5. Leaning forward | | P06. Slouching |

Fig. 4. Wheelchair users common postures: PO1 - Neutral sedesta-
tion, P02 - Leaning right, PO3 - Leaning left, P04 - Hyperkyphosis,
P05 - Leaning forward, P06 - Slouching posture. The person in the
image consents to the use of his image.

backrest in the lumbar area. Finally, possible frontal sliding
that can lead to falls is considered as a relevant posture
(Posture 06). The complete list of positions is shown in
Figure 4.

The test subjects maintain each of the postures for a total
of 30 seconds. Between postures, the subjects had to return to
the neutral sedestation, which was considered the reference

ata. 6- Selection panel of sensors to visualize. 7- Time representation of

posture and from which the rest of the postures began.
The instructions on how to perform each of the postures,
as well as the supervision of the correct performance of each
posture, were supervised by a specialist in physiotherapy. This
specialist also performed the different postures in front of
the participants, so that they could replicate them in as a
mirror. In this way, the degree of inclination they had to
perform in the lateral movements was also limited and it
has been possible to standardize the different postures for all
subjects. Furthermore, the physiotherapist is responsible of
taking anthropometric measurements of the subjects as well
as ensuring that the footrests are individually adjusted to the
correct height. Anthropometric measurements include height,
weight, leg length and shoulder width, among others. For
each user, the process has been repeated twice, to monitor the
differences of the same posture and user. The total duration
of the trials for each participant was about 30 minutes.

The trials were conducted with a total of 37 healthy
subjects belonging to the University of the Basque Country
(UPV/EHU), 25 male and 12 female between 20 and 49 years
of age. These subjects have been instructed by health special-
ists regarding the usual postures of wheelchair users. It has
been sought to have a high number of healthy subjects, in order
to cover the largest number of physical complexions, before
transferring this system to people who use wheelchairs on a
daily basis. Therefore, attention was paid to height and weight,
among others, when selecting test subjects. A more detailed
description of the physical characteristics of the test subjects
is given in Table L.

The tests have been carried out in the facilities of the
University of Basque Country. The tests were carried out
on a wheelchair on which the i-KuXin monitoring device
was placed. The tests were performed on a Sunrise Medical
QUICKIE Q200 R wheelchair, on which the i-KuXin monitor-
ing device was placed. To validate the tests, the pressure mats
used in previous studies have been used and placed over the
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TABLE |
PHYSICAL CHARACTERISTICS OF TRIAL PARTICIPANTS

Total (n = 37)
Ql Median Q3 Min Mean Max
Age (years) 23,0 25,0 27,0 20,0 26,9 49,0
Weight (kg) 63,3 68,6 75,7 49,9 71,5 121,5
Height (cm) 164,7 173,0 177,4 | 152,6 | 172,3 | 192,0
BMI (kg/m?) 21,2 23,5 249 17,8 24,5 474

Data from i-KuXin
{
| 1. SEGMENTATION AND NORMALIZATION |

—| 2. WEIGHT GROUP STRATIFICATION |
Training set
25 subjects
Test set
10 subjects

3. OPTIMAL HYPERPARAMETERS SELECTION |

4. NEURAL NETWORK TRAINING |
Fig. 5. Methodology followed for the development of the neural network-
based posture classifier. This methodology is divided into five phases:
data segmentation and normalization, stratification in different groups,

5. CLASSIFIER VALIDATION |
selection of the optimal hyperparameters, training and evaluation and
analysis of the results.

i-KuXin, allowing measurements to be taken simultaneously
with both devices.

Prior to conducting the trials, subjects have signed a consent
form agreeing to participate in the trials. At the end, they have
completed a usability test to provide feedback on different
aspects of their experience. The trials were conducted under
the authorization of the ethics committee of the University of
the Basque Country (M10_2022_007).

Ill. METHODOLOGY FOR THE DEVELOPMENT
OF THE INTELLIGENT CLASSIFIER

A multilayer perceptron neural network has been selected
for the sitting postural classifier. This selection has been made
on the basis of their good performance in other health care
fields [29]. In order to eliminate the dependence on weight
in the classification, while maintaining the high percentage of
success, the methodology explained below has been carried
out and is shown in Figure 5.

The methodology can be divided into five main steps: A first
step of segmentation, normalization and conditioning of the
classifier input data (Section III-A). Subsequently, a second
step is carried out in which segmented data is stratified
into groups based on the subjects’ weight (Section III-B).
Then, an analysis and selection of optimal hyperparameters is
performed in Section III-C. Finally, the fourth step of training
and the fifth step of validation are presented in Section IV.

It should be noted that of the 37 subjects who participated
in the trials, 2 of them have a physical build outside the norm,
both in weight and body mass index (BMI), defined as the
quotient between weight and height squared. To be exact,
these two subjects were above the 97th percentile for BMI
corresponding to their age. The remaining 35 subjects were
uniformly between 50 and 90 kg, achieving an acceptable
representation in this range. For this reason, it was decided
at first not to use the data from these two subjects for the
design of the classifier. However, the data from these subjects
are not kept aside, since they are used later for the validation
and analysis of the robustness of the proposed methodology.

A. Segmentation and Normalization of Input Data

In order to create the classifier, and for a correct differen-
tiation of the postures, a window segmentation process has
been followed. In order to eliminate the transient between
postures, the initial 30-second windows have been shortened
to 20-second windows, cutting 7 seconds from the beginning
and 3 seconds from the end. This is because the transient
between postures is mostly concentrated at the beginning of
each window. In addition, given the time of the windows and
the sampling frequency being 4 Hz, 81 samples are taken from
each window. For each person and posture there are a total
of 162 samples, given that each person repeats each posture
twice.

Therefore, a balanced database is available for all postures,
with a representative number of samples for each posture.
Taking into account the total number of postures and subjects
that participate, there are a total of 35964 samples to be used
for classifier training and validation.

Once the data has been segmented into windows, the
normalization process continues, with the idea of achieving
two purposes. The first is the elimination of the user weight-
dependent component in the sensors’ amplitude. The weight
of the users greatly influences the measurement collected by
the sensors, especially the seat sensors, by interaction with
gravity. The second purpose is the conditioning of the data
at the input of the classifier. In this case, being a multilayer
perceptron neural network, input data ranges between O and
1 or between -1 and 1 are commonly used.

As discussed in Section I, there is no standardized feature
selection methodology. Therefore, for simplicity, each of the
already segmented window samples is selected as input fea-
tures. However, these data, by themselves, do not comply with
the independence of the weight of the users and range of input
to the networks. Therefore, instead of using the raw force data
as input, it is decided to use the weight distribution at each
time instant as input data. That is, for each of the sensors, at a
time instant ¢, its force value is divided by the total sum of
the force on the seat and on the backrest, as represented in
Equation 1.

Fi(1)

xi(t) =
1S Fe()

Ciefl,2,3,...,16) (1)

where x;(t) is the percentage in percent of the total weight
measured by sensor i at time ¢ and F; is the force measured
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TABLE I
DISTRIBUTION OF GROUPS BY WEIGHT
Group Weight (kg)
Min Mean Max

1 49.95 56.03 61.8

2 62.1 63.85 65.45

3 66 68.68 72

4 72.25 74.33 75.3

5 77 84.59 91.65

by sensor i at a specific time 7. The denominator corresponds
to the sum total of the force measured by the 16 sensors at an
instant 7.

Consideration has been given to the possibility of calculat-
ing the weight distribution independently for seat and backrest.
However, in this way the existing seat-back ratio is lost.

B. Stratification of Subjects by Weight

Once the data have been normalized, the next step is the
selection of optimal neural network hyperparameters. It is
a matter of choosing those hyperparameters that allow to
achieve, on the one hand, high classification percentages.
On the other hand, the network must have an optimal gener-
alization capacity, allowing it to perform efficiently regardless
of the subjects used for training and validation.

Furthermore, despite having eliminated the weight com-
ponent in the input sensor amplitude to the classifier, the
distribution of forces used is still conditioned to the different
physical complexions of the users who participated in the
tests. For this reason, an additional approach is proposed
based on stratifying the data into groups according to weight.
Specifically, the subjects are divided into 5 groups, each
consisting of 7 subjects. The criterion used for the creation of
these groups is that each group should include subjects with
a similar weight range. The distribution of weights is shown
in Table II.

Thus, the final set composed of the data from the 35 sub-
jects, and 6 relevant postures, is divided into two balanced
data sets, the training set and the test set.

The training set will be used both for the selection of
optimal hyperparameters of the neural network and for the
subsequent training of the neural network. This set is balanced
for the 6 postures, so that a similar relative importance is given
to each of the postures when training the classifier. The test
set is used only for the analysis and validation of the neural
network once trained. It has also been balanced for the
6 postures, so that representative results can be obtained for
all of them. It is also important to note that the test set has
not been used in the optimal hyperparameter selection block,
to ensure that the results obtained correspond to subjects who
have not participated at any time in the training.

This division has been made in a proportion of 71.5% of
the data for the training set and the remaining 28.5% for the
test set. In addition, it is added as an additional requirement
that data from the same subject cannot be part of both sets
simultaneously. This requirement is added to help to know
in greater detail the degree of generalization of the model,

thus avoiding that the known data of a subject influence the
percentage of success of the model. Following this criterion,
the data from 25 subjects are included in the training set and
the remaining 10 in the test set. The selection of test and
training subjects was randomized by adding a single condition.

This condition is based on the idea that in order to analyze
the real influence of weight on the classification model, it is
necessary that among the test subjects there is a broad repre-
sentation of all physical complexions. Therefore, a condition
is imposed, that among the 10 test subjects, 2 are from each
group formed and represented in Table II.

For the posterior selection of the optimal hyperparameters,
a K-Fold cross-validation with K = 5 was performed, using
only the training set data. Therefore, the 25 subjects that make
up this data set are divided into 5 groups of 5 subjects each,
imposing a single requirement. The requirement is that each
group must consist of one person from each weight range
previously selected. The process of separating the dataset into
training and test sets, as well as the stratification of the groups,
was performed automatically and randomly.

Thus, there is a test set of 10 subjects (2 from each weight
group) on the one hand and a training set of 25 subjects in
5 groups of 5 persons each on the other hand. By stratifying,
it is ensured that there is a wide representation of physical
complexions in both training and validation.

C. Optimal Neural Network Hyperparameters Selection
for Sitting Posture Classification

With the 25 training subjects, the optimal hyperparameter
selection step is performed. A multilayer perceptron neural
network is considered as classifier. The network is composed
of an output layer with 6 neurons, one for each posture to
be classified and an input layer composed of 16 neurons
matching the input features, i.e., signals from the 16 S; and
B; normalized sensors. Moreover, it has been considered to
make use of a network with a single hidden layer. The
hyperbolic tangent sigmoid is chosen as the activation function
of the neurons that compose this hidden layer. Therefore, the
hyperparameter to be optimized is the number of neurons in
this hidden layer.

As mentioned, for the selection of the optimal number of
neurons in the hidden layer, a K-fold was performed with
K = 5. Thus, in each iteration the model is trained with 4
of the training groups (20 subjects) and validated with the
remaining group (5 subjects). Between iterations, the group
used for validation is modified. With the training and vali-
dation sets created, samples were randomly shuffled within
each group to prevent spurious results. In addition, in each
iteration the study was performed for a range between 1 and
20 neurons. This range has been chosen in order to minimize
computational cost and in view of the good results obtained
in previous experimental studies [27].

Moreover, to add a further degree of randomness to the
training, this K-fold is performed up to 3 times. For each of
them, the previous step of stratification by weight groups has
been performed independently. In this way, both the training
and validation sets are modified, as well as the distribution
of K-fold groups. This is intended to eliminate the possibility
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Fig. 6. Analysis of the results obtained in the 5-Fold. Top: Average

success rate as a function of the number of neurons in the hidden layer.
Bottom: Standard deviation as a function of the number of neurons in
the hidden layer.

that the selection of the optimal number of neurons may be
conditioned to a specific selection of the training and test sets.

For the analysis of the selection of the optimal hyperpa-
rameters, two statistical indicators, the mean and the standard
deviation, have been taken into account. In this way, the mean
of the success percentages of each of the K-fold iterations
and each number of neurons of the hidden layer is calculated.
In this way, it is possible to obtain a degree of knowledge
of the effectiveness of the classifier. On the other hand, the
standard deviation of the success percentages is calculated.
This allows us to know the degree of uncertainty offered by
the model for a given number of neurons in the face of changes
in the training and test subjects.

The results for this 5-Fold are plotted in the graph in
Figure 6. This graph shows the mean and standard deviation as
a function of the number of neurons for the 5-fold performed.
In addition, the mean value of all 5-folds is represented in
dashed lines.

In view of the results obtained in the K-fold, it can be seen
that with a low number of neurons in the hidden layer a good
result in postural classification prediction can be obtained.
To be exact, with a number of 5 neurons, the percentage
of success is already around 95%, stabilizing around this
value for a higher number of neurons. It can be thought
that the best option is to choose this number of neurons,
since this value allows to achieve a good performance while
reducing the computational cost. However, for this number of
neurons, the standard deviation has not yet stabilized. This
may distort the results for new, unknown subjects. This is
why a more conservative approach is adopted, choosing the
number of neurons that minimizes the standard deviation.
To be exact, a total of 9 neurons are chosen in the hidden layer.
In addition, using this number of neurons allows minimizing
the difference in standard deviation between the different
5-folds. This indicates that for this number of neurons the
system offers a lower uncertainty in the face of changes in the
training and test subjects.

TABLE IlI
CONFUSION MATRIX OF THE SUCCESS RATE OBTAINED BY
CLASSIFYING TEST SET’S POSTURES USING THE ANN TRAINED.
P01 - NEUTRAL SEDESTATION, P02 - LEANING RIGHT, P03 - LEANING
LEFT, P04 - HYPERKYPHOSIS, P05 - LEANING
FORWARD, P06 - SLOUCHING

Predicted
P01 P02 P03 P04 P05 P06
POl | 90% 0% 0% 10% 0% 0%
P02 0% 100% 0% 0% 0% 0%
E P03 0% 0% 95% 5% 0% 0%
& | P04 | 32% 1% 0% 96,7% 0% 0%
P05 0% 0% 0% 0% 100% 0%
P06 5% 0% 0% 0% 0% 95%
TABLE IV
SUMMARY TABLE OF METRICS FOR EVALUATION OF THE
CLASSIFICATION MODEL: ACCURACY, PRECISION,
RECALL, SPECIFICITY AND F1-SCORE
Posture | Accuracy | Precision | Recall | Specificity | F1-Score
P01 0,9697 0,9164 0,9000 0,9836 0,9081
P02 1,0000 1,0000 1,0000 1,0000 1,0000
P03 0,9917 1,0000 0,9500 1,0000 0,9744
P04 0,9697 0,8658 0,9670 0,9700 0,9136
P05 1,0000 1,0000 1,0000 1,0000 1,0000
P06 0,9917 1,0000 0,9500 1,0000 0,9744

V. RESULTS AND DISCUSSION

Based on the methodology explained in the previous section,
we proceed to analyze the results obtained after its application
(Section IV-A). On the other hand, a discussion of these
results is made, analyzing the influence of the weight in the
classifier, as well as the training model of the neural network
(Section IV-B).

A. Training and Validation of the Sitting Posture Classifier

Once the optimal structure of the neural network has been
defined, it is trained using an algorithm based on Bayesian
Regularization.

These results correspond to test subjects that were initially
excluded and were not part of the hyperparameter optimization
process. Using subjects who have not participated in the
training allows us to know the degree of generalization of
the postural classifier.

The results of this training are reflected in the confusion
matrix in Table III and metrics such as accuracy or precision
provided in Table IV. The percentages in the table represent
the number of samples that are classified in a posture by the
network, with respect to the total number of samples of a given
real posture. Thus, the sum of the percentages for each row
adds up to 100%. Thus, the percentages located on the main
diagonal correspond to the success rate for each posture, i.e.,
the correctly classified postures.

For this particular example, the overall success rate is
95.5%. In general, a good percentage of postures classi-
fied correctly is achieved for all postures, being Posture 01
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(Neutral sedestation) the one with the lowest percentage of
success, confusing some samples with the Posture 04. This
may be due to the fact that this is the posture with the greatest
variability per person, not being as well defined as the rest.

Looking at the table, it can be seen that for most of
the postures, the failures are due to missclassifications with
another particular posture. Moreover, these failures correspond
to the same subject. This highlights the generalization capa-
bility of the trained neural network. This indicates that for
the vast majority of users, the classifier is able to correctly
predict their postural state, and if it does, the percentage is
close to 100%. The failures are concentrated for a specific
person and a specific posture. Therefore, despite achieving
more than acceptable results, in order to improve them even
further, the option of adopting a more individualized strategy
could be considered. Especially considering that the trials were
conducted in a controlled environment. However, this does
not change the fact that the classifier shows a high degree of
accuracy for the general population, and the failures detected
are more related to the individual particularities of each subject
at the time of sitting.

Based on the results, the performance of the classifier is
high. This performance is even more acceptable considering
that subjects who have not been used in any of the previous
phases of the methodology, and are therefore unfamiliar to the
model, were used for validation. It is difficult to compare these
results with those of other studies, given that there are different
cases, both in terms of postures, number of subjects and the
measurement system used. Results for other similar works
where it is clearly specified that validation has been performed
on unfamiliar subjects generally show worse results, compared
to the near 100% success rate of the approach proposed here.
Thus, in [28] a success rate of 90.4% is obtained and in [19]
of 81%, both using MLP networks.

Few studies have focused on analyzing the difference in
results obtained when validating the model with familiar or
unfamiliar subjects. Thus, in [35], results for classifying driver
postures go from 85.5% to 71.6% when they are validated
with familiar and unfamiliar subjects, respectively. It can be
thought that the generalization of the classifier is due to
the fact that it is being validated with subjects of similar
physical complexions to those of the training, even if they
are new for the model, and not to the proposed methodology.
To check this, it was decided to use the two subjects who
were initially discarded because they weighed more than
100 kg. For this purpose, the network trained following the
proposed methodology is used to validate the hypothesis that
the classifier is able to generalize to subjects with physical
complexions not included in the training. The overall results
in terms of success rate for these subjects with a high body
mass index is 94.65%. In general, the results are slightly lower.
This is not surprising, given that the two subjects being studied
are in a range of weights totally different from the training
weights.

To make sure that the results are due to the proposed
methodology, and not to the specific characteristics of these
subjects, a neural network has been trained following a tradi-
tional 5-fold. The results for this network do not exceed 70%

accuracy in people with high BMI, thus it can be affirmed
that the methodology followed allows to achieve good results
regardless of the physical constitution of the subjects. Other
works obtain results close to 92% using both MLP [31], [38]
and KNN [21]. These works obtain a slightly lower success
rate than the one obtained in this work, but these results
have been obtained with a general population and without
specifically analysing the results for people with a BMI outside
the average.

Finally, a comparative analysis has been carried out using
3 ML techniques commonly used for sitting classification,
SVM, KNN and ANN. Based on the results of this analysis,
it can be seen that the success rates obtained for subjects
with normative bodies are similar in all models (94,14%
SVM, 91,49% KNN and 95,5% ANN). However, for non-
normative bodies this difference is increased, with success
rates of 65,6% for SVM, 69,9% for KNN and 94,7% for ANN.
This analysis reinforces the fact that the methodology based
on neural networks is the best performer when it comes to
sitting postural classification of people with an BMI outside
the norm.

In this way, as much importance is given to the fact of hav-
ing a large database, with subjects of diverse complexion, as to
the fact of employing an effective training and hyperparameter
selection methodology. Based on the results, it is proved that
the proposed methodology is effective to classify postures
of users of different physical complexions, increasing the
generalization of the trained neural network. This is important,
since physical complexion independence has been achieved,
it allows to transfer the advantages of postural monitoring to
a wider range of wheelchair users, while providing a greater
flexibility to healthcare professionals.

B. Sensor Relevance Analysis Based on Neural
Network Results

Finally, in order to analyze not only the results, but also the
methodology proposed, the relative relevance that the neural
network gives to each of the sensors is studied. Knowing the
relevance that the network brings to the sensors, it is possible
to know to some extent the learning process that it carries out,
and compare it with the experience of a physiotherapist.

In order to calculate the relative influence of the sensors,
Garson’s formula is used, already applied in other fields for
the same purpose [39]. This algorithm allows estimating the
relative importance of each feature based on the weights of the
input layer and the hidden layer once the neural network has
been trained. This estimation is represented by the following
formula:

W) ]
Relevance; = e —— 2)
2 j=1 |WJ' |
where W; refers to the network weights associated with an
input feature j.

The algorithm returns values between 0 and 1 for each input,
which have been translated into percentages for better under-
standing. The higher the value, the greater the contribution of
a feature in the network. To eliminate the variability of the
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weights when training different neural networks, this process
has been applied to the three trained neural networks, and
the average of the three has been obtained. The results are
represented in Figure 7 by a bar graph.

In view of the results, the sensors can be classified into
3 groups according to their relevance for classification: sensors
of high relevance, sensors of medium relevance and sensors
of low relevance. In general, a slight asymmetry is observed
between sensors located at the same height. However, this
asymmetry does not affect their relevance. This asymmetry
may be due, in addition to the variability inherent to the
training of the networks, to the fact that the subjects do not
feel centered at any time. In the event that two symmetrical
sensors are in two different relevance groups, the sensor with
the higher relevance is taken into account to classify them both
within the same group.

In the backrest, the most relevant sensors for classification
are B10, B13 and B16. These sensors are located in the
upper part of the backrest, at the level of the dorsal region.
In contrast, the lumbar area, with sensor B12, is the least
relevant. This may be due to the fact that the tests were carried
out with healthy subjects, who have a natural lumbar lordosis.
The results when testing with regular wheelchair users may
vary, giving it a higher relevance than the current one. The
rest of the sensors have a medium relevance, in the case of
sensors B11 and B 14 because, being located in the central area
of the spine, they do not present great variations. In the case of
sensors B9 and B15, these are intended for monitoring acute
lateral displacements. Their average relevance may be due to
the fact that these tests were performed in a controlled manner
and excessive lateral displacement was not required.

As for the seat, the difference in relevance between the
sensors is not as noticeable as in the backrest. The most
relevant sensors in this case are those located on the thighs, i.e.
sensors S2, S7, S1 and S6, the latter two being of particular
relevance. On the other hand, the least relevant sensors is

sensor S5, located in the back area of the buttocks. In the
zone of medium relevance are sensors S3 and S8, located
around the ischia. Despite being the area around which most
force is exerted, is one with less relevance with respect to
other sensors. This may be due to the fact that at all times,
regardless of posture, force is exerted around this area, so that
variations in force are minimal. Therefore, they provide little
information on the postural state compared to other sensors.
However, these sensors are of great importance, among others,
for the prevention of ulcers, so there are no plans to eliminate
them. Finally, sensor S4, despite not having a high overall
relevance, is of great importance for monitoring slouching
posture.

Backrest sensors are more relevant than the seat sensors,
despite the fact that most of the force is collected in the seat.
The backrest is precisely where the greatest variability of force
between postures occurs, while a lighter weight redistribution
occurs in the seat.

In general, considering that the classifier gives greater
importance to force variations, however small they may be,
rather than to the measured force, the results are coherent.
The sensor relevance results are in line with medical experi-
ence for classifying wheelchair users’ relevant postures. Thus,
it can be concluded that the presented classifier, together with
the training methodology, not only obtains good results for
subjects of different body shapes, but also follows an intuitive
learning process interpretable by healthcare experts.

V. CONCLUSION

The use of wheelchair during long term as in the case of
people with disabilities or functional problems is related to
several health problems and loss of quality of life. Therefore,
monitoring is essential to prevent these disorders. Given the
need to quantify in an objective way the postural condition of
wheelchair users, in this paper, an intelligent sitting posture
classifier for wheelchair users is presented. This intelligent
classifier has the ability to generalise to new users and is
independent of the users’ weight.

The innovative i-KuXin postural monitoring device was
used to generate the database. The monitoring system devel-
oped consists of 16 FSR sensors allowing prolonged monitor-
ing, at low cost, while maintaining portability and wheelchair
independence. For the generation of the database, tests were
carried out on a wheelchair with 37 subjects of varying phys-
ical complexions, under the supervision of a physiotherapist.

With the generated postural database, a neural network
training strategy has been followed, based on a K-Fold strategy
stratified in groups of people according to their weight. The
methodology based on K-Fold stratified allows high success
rates to be obtained, regardless of the user’s physical com-
plexion. Based on the results obtained, with 9 neurons in the
hidden layer, success rates of over 95% are achieved. On the
other hand, an analysis of the relative relevance of each of
the sensors has been carried out using Garson’s formula. This
analysis confirms that the classifier not only obtains good
results for subjects of varying physical build, but also follows
a training process that is intuitive and consistent with medical
experience.
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However, this study has some limitations. This study was
carried out in a controlled environment, with healthy subjects.
Since this is a development oriented to wheelchair users, the
classifiers should be tested in the future on people with low
mobility. In addition, these tests should be performed on an
older population, over a longer period of time, thus allowing
the results obtained to be consolidated. Furthermore, during
this testing, it is necessary to use the wheelchairs of the users
themselves, thus also verifying that the results obtained are
independent of the assistive device used.

In this way, and once the results have been validated,
1-KuXin can be used to support patients and healthcare pro-
fessionals, helping them to automatically monitor their posture
and prevent the development of ulcers thanks to the feedback
obtained from the system. In addition, as a future work,
historical data obtained from i-KuXin can be used to associate
changes in postural patterns with changes in the functional
status of users.
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