51 research outputs found

    A non-intrusive method for estimating binaural speech intelligibility from noise-corrupted signals captured by a pair of microphones

    Get PDF
    A non-intrusive method is introduced to predict binaural speech intelligibility in noise directly from signals captured using a pair of microphones. The approach combines signal processing techniques in blind source separation and localisation, with an intrusive objective intelligibility measure (OIM). Therefore, unlike classic intrusive OIMs, this method does not require a clean reference speech signal and knowing the location of the sources to operate. The proposed approach is able to estimate intelligibility in stationary and fluctuating noises, when the noise masker is presented as a point or diffused source, and is spatially separated from the target speech source on a horizontal plane. The performance of the proposed method was evaluated in two rooms. When predicting subjective intelligibility measured as word recognition rate, this method showed reasonable predictive accuracy with correlation coefficients above 0.82, which is comparable to that of a reference intrusive OIM in most of the conditions. The proposed approach offers a solution for fast binaural intelligibility prediction, and therefore has practical potential to be deployed in situations where on-site speech intelligibility is a concern

    Speech Enhancement for Automatic Analysis of Child-Centered Audio Recordings

    Get PDF
    Analysis of child-centred daylong naturalist audio recordings has become a de-facto research protocol in the scientific study of child language development. The researchers are increasingly using these recordings to understand linguistic environment a child encounters in her routine interactions with the world. These audio recordings are captured by a microphone that a child wears throughout a day. The audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday life which degrades the performance of speech analysis tasks. The purpose of this thesis is to investigate the utility of speech enhancement (SE) algorithms in the automatic analysis of such recordings. To this effect, several classical signal processing and modern machine learning-based SE methods were employed 1) as a denoiser for speech corrupted with additive noise sampled from real-life child-centred daylong recordings and 2) as front-end for downstream speech processing tasks of addressee classification (infant vs. adult-directed speech) and automatic syllable count estimation from the speech. The downstream tasks were conducted on data derived from a set of geographically, culturally, and linguistically diverse child-centred daylong audio recordings. The performance of denoising was evaluated through objective quality metrics (spectral distortion and instrumental intelligibility) and through the downstream task performance. Finally, the objective evaluation results were compared with downstream task performance results to find whether objective metrics can be used as a reasonable proxy to select SE front-end for a downstream task. The results obtained show that a recently proposed Long Short-Term Memory (LSTM)-based progressive learning architecture provides maximum performance gains in the downstream tasks in comparison with the other SE methods and baseline results. Classical signal processing-based SE methods also lead to competitive performance. From the comparison of objective assessment and downstream task performance results, no predictive relationship between task-independent objective metrics and performance of downstream tasks was found

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    Parkinsonian Speech and Voice Quality: Assessment and Improvement

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease. Statistics show that nearly 90% of people impaired with PD develop voice and speech disorders. Speech production impairments in PD subjects typically result in hypophonia and consequently, poor speech signal-to-noise ratio (SNR) in noisy environments and inferior speech intelligibility and quality. Assessment, monitoring, and improvement of the perceived quality and intelligibility of Parkinsonian voice and speech are, therefore, paramount. In the first study of this thesis, the perceived quality of sustained vowels produced by PD patients was assessed through objective predictors. Subjective quality ratings of sustained vowels were collected from 51 PD patients, on and off the Levodopa medication, and 7 control subjects. Features extracted from the sustained vowel recordings were combined using linear regression (LR) and support vector regression (SVR). An objective metric that combined linear prediction and harmonicity features resulted in a high correlation of 0.81 with subjective ratings, higher than the performance reported in the literature. The second study focused on the prediction of amplified Parkinsonian speech quality. Speech amplifiers are used by PD patients to counteract hyperphonia. To benchmark the amplifier performance, subjective ratings of the quality of speech samples from 11 PD patients and 10 control subjects using 7 different speech amplifiers in different background noise conditions were collected. Objective quality predictors were then developed in combination with machine learning algorithms such as deep learning (DL). It was shown that the speech amplifiers differentially affect Parkinsonian speech quality and that the composite objective metric resulted in a correlation of 0.85 with subjective speech quality ratings. In the third study, a new signal-to-noise feedback (SNF) device was designed and developed to help PD patients control their speech SNR, intelligibility, and quality. The proposed SNF device contained dual ear-level microphones for estimating the speech SNR, a throat accelerometer for reliable voice activity detection, and visual/auditory alarms when the produced speech was below a certain threshold. Performance evaluation of this device in noisy environments demonstrated significant improvements in speech SNR, perceived intelligibility, and predicted quality, especially in high background noise levels

    Speech Intelligibility Prediction for Hearing Aid Systems

    Get PDF

    Speech enhancement in binaural hearing protection devices

    Get PDF
    The capability of people to operate safely and effective under extreme noise conditions is dependent on their accesses to adequate voice communication while using hearing protection. This thesis develops speech enhancement algorithms that can be implemented in binaural hearing protection devices to improve communication and situation awareness in the workplace. The developed algorithms which emphasize low computational complexity, come with the capability to suppress noise while enhancing speech

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    FPGA-based implementation of speech recognition for robocar control using MFCC

    Get PDF
    This research proposes a simulation of the logic series of speech recognition on the MFCC (Mel Frequency Spread Spectrum) based FPGA and Euclidean Distance to control the robotic car motion. The speech known would be used as a command to operate the robotic car. MFCC in this study was used in the feature extraction process, while Euclidean distance was applied in the feature classification process of each speech that later would be forwarded to the part of decision to give the control logic in robotic motor. The test that has been conducted showed that the logic series designed was precise here by measuring the Mel Frequency Warping and Power Cepstrum. With the achievement of logic design in this research proven with a comparison between the Matlab computation and Xilinx simulation, it enables to facilitate the researchers to continue its implementation to FPGA hardware

    Objective and Subjective Evaluation of Wideband Speech Quality

    Get PDF
    Traditional landline and cellular communications use a bandwidth of 300 - 3400 Hz for transmitting speech. This narrow bandwidth impacts quality, intelligibility and naturalness of transmitted speech. There is an impending change within the telecommunication industry towards using wider bandwidth speech, but the enlarged bandwidth also introduces a few challenges in speech processing. Echo and noise are two challenging issues in wideband telephony, due to increased perceptual sensitivity by users. Subjective and/or objective measurements of speech quality are important in benchmarking speech processing algorithms and evaluating the effect of parameters like noise, echo, and delay in wideband telephony. Subjective measures include ratings of speech quality by listeners, whereas objective measures compute a metric based on the reference and degraded speech samples. While subjective quality ratings are the gold - standard\u27\u27, they are also time- and resource- consuming. An objective metric that correlates highly with subjective data is attractive, as it can act as a substitute for subjective quality scores in gauging the performance of different algorithms and devices. This thesis reports results from a series of experiments on subjective and objective speech quality evaluation for wideband telephony applications. First, a custom wideband noise reduction database was created that contained speech samples corrupted by different background noises at different signal to noise ratios (SNRs) and processed by six different noise reduction algorithms. Comprehensive subjective evaluation of this database revealed an interaction between the algorithm performance, noise type and SNR. Several auditory-based objective metrics such as the Loudness Pattern Distortion (LPD) measure based on the Moore - Glasberg auditory model were evaluated in predicting the subjective scores. In addition, the performance of Bayesian Multivariate Regression Splines(BMLS) was also evaluated in terms of mapping the scores calculated by the objective metrics to the true quality scores. The combination of LPD and BMLS resulted in high correlation with the subjective scores and was used as a substitution for fine - tuning the noise reduction algorithms. Second, the effect of echo and delay on the wideband speech was evaluated in both listening and conversational context, through both subjective and objective measures. A database containing speech samples corrupted by echo with different delay and frequency response characteristics was created, and was later used to collect subjective quality ratings. The LPD - BMLS objective metric was then validated using the subjective scores. Third, to evaluate the effect of echo and delay in conversational context, a realtime simulator was developed. Pairs of subjects conversed over the simulated system and rated the quality of their conversations which were degraded by different amount of echo and delay. The quality scores were analysed and LPD+BMLS combination was found to be effective in predicting subjective impressions of quality for condition-averaged data
    • …
    corecore