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Abstract

Hearing protection is essential to industries operating under extreme noise con-

ditions. This thesis aims at developing efficient binaural speech enhancement

for communication hearing protectors that is capable of giving wearer a percep-

tion of the surrounding sound field while providing an adequate amount of noise

suppression. For this purpose, two binaural noise reduction frameworks are ad-

opted. The first approach uses a differential microphone array (DMA) at each

side of the ears to suppress the noise from behind, followed by a binaural gain

function to attenuate excessive residual noise from surrounding. Another one is

a binaural multi-channel Wiener filter (MWF). This work seeks improvement in

both frameworks by exploiting alternative solutions for different blocks in the

algorithms.

A sigmoid (SIG) function is investigated as an alternative gain function for

real-time single-channel speech enhancement. Besides having tunable parameters

for altering the slope and the mean of its curve, a key benefit of using this

function is the ability to preserve more speech signal at high signal-to-noise ratio

(SNR) level. The parameters of the SIG function is optimised by studying the

relationship between the gain function and the a posteriori SNR estimate, and

through minimising a cost function comprising two objective measures.

The mapping between the SIG gain function and the a priori SNR is then

investigated. As the widely-used decision-directed (DD) a priori SNR estimate

has a one-frame delay that leads to the degradation of speech quality, an a priori

SNR estimator is proposed to overcome this delay. A modified sigmoid (MSIG)

gain function is also proposed, with three parameters optimised to match con-

ventional gain functions. Performance evaluation utilises an objective evaluation

metric that measures the trade-off among the noise reduction, speech distortion
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Abstract v

and musical noise in the enhanced signal. Results are compared with more ob-

jective measures and subjective listening tests.

Noise estimation is one of the most crucial part in any speech enhancement

algorithm. Two novel single-channel noise estimation algorithms are proposed in

this thesis. First method tracks noise variations with low computational complex-

ity, and is robust to speech onsets. It computes the noise estimate by comparing

the estimate with short-term noise and speech at every time frame, and updating

it using an optimised step-size. The second approach is a speech presence prob-

ability (SPP)-based method. The SIG function, with slope and mean that can be

adjusted independently, is used to provide better trade-off between noise overes-

timation and underestimation. Harder decisions based on conditional smoothing

is then employed on top of the SIG function for better noise tracking capability.

This thesis also studies the MWF algorithm for speech enhancement, which

suffers from performance degradation due to the lack of robustness against estim-

ation errors of the second-order statistics. The reasons are twofold: (i) they rely

on real voice activity detection (VAD), and (ii) they involve estimation of the

second order clean speech statistics. A MWF formulation that requires neither

VAD nor clean speech statistics is presented. The aforementioned single-channel

framework is employed to obtain the clean speech estimate at a reference channel.

A rank-one formulation is also included. Results show that the proposed method

outperforms the conventional approach in speech quality.

Finally, the new MWF is extended to the binaural configuration for speech

enhancement. The blocks in DMA with a binaural gain function (DMA-BPF)

algorithm are also altered by tracking the noise estimates using two identical

single-channel noise estimation algorithm, one at each side of the ear. Novel

single-channel algorithm presented in this thesis is employed in the DMA-BPF

for better speech quality performance. Results show that the proposed binaural

MWF algorithm outperforms the conventional binaural MWF both in speech

quality improvement and binaural cues preservation. The improved DMA-BPF

can also preserve the binaural cues of the DMA outputs, and provide more noise

reduction capability when compared to the reference methods.
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Chapter 1

Introduction

Motivation is what gets you started.

Habit is what keeps you going.

– Jim Rohn

1.1 Introduction

Voice communication is the most fundamental form of human communication in

delivering messages in everyday lives, whether it is face-to-face speech commu-

nication or speech communication through electronic devices. However, noise is

omnipresent and this impacts speech communication in terms of speech quality

and intelligibility. In many industrial environments, such as mine sites and oil-

and-gas industry, workers have to stay in extreme noise conditions with sound

pressure levels exceeding 100 decibel A-weighting (dB(A)) for approximately 8

hours daily [1]. In Australia alone, an estimated 1 million employees may be

potentially exposed to hazardous levels of noise at work [2]. Under such environ-

ments, speech communication could cease, or only be made with raised volumes.

In addition to that, long exposure to high noise levels on a daily basis not only

causes permanent damage to the hearing [3], but also serious injury or death

as safety could be compromised. As a result, there is legislation in many coun-

tries, which requires hearing protection devices to be worn in noisy industrial

environments where the noise level exceeds 85 dB(A).

Conventional hearing protectors, however, not only suppress noise, but also

1
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attenuate the desired speech. This leads to a situation where many workers re-

fuse to wear hearing protection and shout into each other’s ears because they

would rather bear the health risks than sacrifice the ability to communicate with

co-workers. As a consequence, providing intelligible speech communication cap-

ability in hearing protection under extreme noise environments is of great import-

ance. The ongoing progress in the development of smaller, more efficient, more

powerful and less cosy electronics makes it possible to include digital speech en-

hancement systems in hearing protectors. Commercial works had started with the

implementation of active noise reduction techniques into communication headsets

to reduce more background noise so that conversation can be made. The draw-

back of such techniques is that they also reduce the users’ ability to hear speech

and remain aware of the surroundings. In fact, there is an inherent flaw in the

application of those techniques in extremely noisy environments where hearing

protection is required in the first place.

A more advanced type of digital hearing protectors, named assistive listening

devices, aims to suppress all unwanted noise components while preserving the

target speech. These devices first capture the surrounding acoustic environment

with the use of two or more microphones embedded into the hearing protectors

to process the speech and noise through speech enhancement techniques. The

enhanced signals are then delivered to the ears via two loudspeakers embedded in

the earmuffs or earplugs. An important aspect of this type of noise suppression

is the ability to maintain the spatial cues of the acoustic scene. That means

the enhanced signals should have maintained the same spatial characteristics as

received by the ears without hearing protection. For this reason, the microphones

should be placed close to the ears such that similar shadowing effects can be

obtained.

Besides the placement of the microphones, different signal processing tech-

niques can also alter the spatial impression of the acoustic environment. In the

early stages of assistive listening, particularly in hearing aids, the microphone

signals on each side were processed independently of each other. This type of

processing is referred to as bilateral processing and may distort the so-called

spatial cues, i.e., interaural time and level differences, which are necessary for
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a correct localisation of sound sources in the horizontal plane. Distorted cues

may, however, cause a mismatch between the visual and auditive perception of

the environment and possibly result in an abnormal impression. In order to ac-

count for the binaural aspect of the auditory system, modern systems exploit the

microphone signals of both sides for binaural processing.

Much research effort has been put into the improvement of binaural noise

suppression systems for hearing aids, which help impaired people to hear better

and understand what other people are saying in everyday life [4]. In this context,

scenarios with multi-talker, or known as the cocktail party effects, are frequently

considered, where many people are simultaneously talking and the target signal

is to be extracted out of mixed speech signals. In the scope of this work, the

conditions are different and the desired speech signal is corrupted by industrial

noise. The goal of this thesis is to design better speech enhancement techniques

to extract the desired target speech and suppress high level background industrial

noise. Although there has been many existing binaural noise-reduction algorithms

reported in the literature, most of them are rather sophisticated and require com-

plex architectures, which turn out to be prohibitive for binaural hearing protec-

tion devices. Therefore, the design of the algorithms also aims to take care of

two crucial aspects in the processing, namely the computational complexity and

the latency. A lower computational complexity implies less power consumption

and thus longer battery life, which enables the usage of the hearing protectors for

long working hours without recharging the battery. Whereas, a minimum latency

is required to avoid the delivery of unpleasant sounds to the ear.

Hence, this dissertation aims at utilising promising methods which have the

potential to be implemented in a binaural hearing protection devices, and pro-

poses solutions that aim at reducing the computational complexity of a speech

enhancement framework. Likewise, investigation is carried out to evaluate two ef-

ficient binaural noise suppression frameworks for industrial noise scenarios. Novel

contributions have been proposed to improve both of these binaural processing

techniques in terms of both speech quality and intelligibility by comprising blocks

of multi-channel and single-channel speech enhancement algorithms. The motiv-

ation is that although multi-channel methods often lead to better performance
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than single-microphone methods, the usability is limited by additional costs such

as power usage, computational complexity, and size demands. On the other hand,

single-channel algorithms can improve quality aspects of the signals (in terms of

SNR), which helps to increase the comfort and reduce listeners fatigue.

1.2 Objective

The objective of this thesis is to investigate and provide novel single-channel and

multi-channel solutions for binaural hearing protectors to enhance speech signals

in noisy environments and to protect the cues of spatial hearing. Desirably, the

end-product should be capable of introducing as less speech distortion as possible

whilst reducing as much ambient noise as desirable. This requires the hearing

protection device to be a cross-fertilisation between the two distinct types of

techniques (single-channel and multi-channel speech enhancement techniques).

Also, the new structures should be able to track and estimate the surrounding

noise continuously. Ideally, in order to build an implementable binaural speech

enhancement framework for binaural hearing protection devices, it should have

the following traits

• use only a few microphones (e.g., 2 to 4),

• no knowledge of the geometry of the array,

• no knowledge of the physical location of the target signal,

• no assumptions about the distribution of the target signal,

• no need for a VAD, i.e., no additional algorithm to detect speech active or

speech inactive periods, and

• low computational complexity and short processing delays.

1.3 Contribution of the Thesis

The work has mainly focused on designing speech enhancement frameworks that

are feasible for real-time implementation. The original contributions of this dis-

sertation include
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• Identified the problems in conventional approaches and investigated a flex-

ible spectral weighting gain function, the sigmoid function for single-channel

speech enhancement framework [5]. The parameters of the gain function

are determined based on the mapping with the SNR estimate, and a cost

function that comprises two speech quality objective measures.

• Proposed a modified sigmoid function and an SNR estimate for single-

channel speech enhancement [6, 7]. The former provides a better function

that can be optimised to match the conventional gain curves to deal with

the trade-off among speech distortion, noise reduction and musical noise;

while the latter reduces the speech transient distortion that occurs in the

conventional decision-directed approach. A kurtosis measure is introduced

to evaluate the amount of musical noise generated, and is used together

with other objective measures to quantify the overall performance of the

proposed algorithms.

• Two noise PSD estimation methods are proposed, namely (i) the SSC noise

PSD estimator [8], and (ii) the soft VAD (SVAD) noise PSD estimator [9].

The former offers an estimate that is robust to outliers (speech) with very

low computational complexity relative to the conventional methods, while

the latter offers faster noise tracking capability and better speech quality

when compared to reference algorithms.

• A multi-channel Wiener filter solution is proposed to deal with the non-

stationary of speech and noise, which then improves the speech quality

performance [10]. The solution avoids the poor estimation of clean speech

correlation matrix by incorporating a single-channel framework in the es-

timation of the clean speech signal in the reference channel, which involves a

noise power spectral estimation method utilising a conditional speech pres-

ence probability. The conditional speech presence probability is then used

to estimate the second order statistics of noisy speech and noise.

• Extended the proposed algorithms into binaural configurations for speech

enhancement. Two frameworks are considered, both comprising blocks of

single-channel and multi-channel algorithms. The most important finding
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is that the proposed multi-channel Wiener filter is capable of preserving the

speech and noise cues based on objective measurement.

1.4 Thesis Outline

The focus of this thesis is speech enhancement in hearing protection device (HPD)

and the flow of this thesis is intended to resemble the author’s research and

development progress. Each chapter provides a stepping stone for the subsequent

chapter or complements one another. The thesis is organised as follows.

Chapter 2 gives a background on the impact of long exposure to extremely

loud noise and the importance of having speech enhancement system in a hearing

protection device. Several single-channel and multi-channel speech enhancement

techniques are reviewed and discussed.

Chapter 3 gives a brief background on the derivation of optimal gain func-

tion in the literature, and shows that a sigmoid function can be utilised as a

gain function with its built in flexibility. Instead of trying to optimise the gain

in mathematical sense, several objective evaluation tools for speech quality are

utilised to find optimal parameters for sigmoid function.

Chapter 4 proposes a modified sigmoid function with a new a priori SNR

estimate for speech enhancement. The sigmoid function can be flexibly fitted to

the conventional gain functions, with two smoothing parameters from the a priori

SNR estimate. Optimal parameters for modified sigmoid function are obtained

to improve speech quality in terms of trade-off among noise reduction, speech

distortion and musical noise.

Chapter 5 introduces two novel estimation algorithms for noise power spec-

trum. The first one utilises a step-size control mechanism to update the noise

PSD estimate based on the difference between the estimate and the noisy obser-

vation at the previous frame. The second method is a soft voice activity detection

based algorithm that updates the noise PSD estimate by employing conditional

smoothing towards a sigmoid function that offers flexibility in controlling the

amount of noise power overestimation and underestimation.
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Chapter 6 proposes a new MWF that avoids the estimation of speech cor-

relation matrix and employs a single-channel speech enhancement algorithm to

estimate the desired signals. The conditional SPP is employed to estimate the

noise PSD in the single-channel gain function and to update the second-order

statistics. The proposed method outperforms the reference method in terms of

noise reduction and speech quality.

Chapter 7 revises and investigates two possible binaural noise reduction tech-

niques to be implemented in hearing protectors. The problems of each approach

are addressed, and partly tackled with proposed solutions presented in previous

chapters, which include the noise PSD estimation algorithm in Chapter 3, the

proposed single-channel speech enhancement algorithm in Chapter 5, and the

multi-channel speech enhancement framework in Chapter 6. It has been con-

cluded that the proposed methods can improve the performance in terms of noise

reduction while maintaining the spatial awareness of both speech and noise.

Chapter 8 gives conclusions and recommendations for future work.

1.5 List of Peer-Reviewed Publications

The following papers are published in conjunction with this thesis.

I P. C. Yong, S. Nordholm, H. H. Dam, and S. Y. Low, “On the optimization

of sigmoid function for speech enhancement,” in Proc. 19th European Signal

Process. Conference (EUSIPCO’11), Barcelona, Spain, Aug. 2011, pp. 211-

215.

II P. C. Yong, S. Nordholm, and H. H. Dam, “Noise estimation with low com-

plexity for speech enhancement,” in Proc. IEEE Workshop Applications of

Signal Process. to Audio and Acoust. (WASPAA’11), New Paltz, USA, Oct.

pp. 109-112.

III P. C. Yong, S. Nordholm, and H. H. Dam, “Trade-off evaluation for speech

enhancement algorithms with respect to the a priori SNR estimation,” in

Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP’12).

Kyoto, Japan, Mar. 2012, pp. 4657-4660.



Chapter 1: Introduction 8

IV P. C. Yong, S. Nordholm, and H. H. Dam, “Noise estimation based on soft

decisions and conditional smoothing for speech enhancement,” in Proc. Int.

Workshop Acoust. Signal Enhancement (IWAENC’12), Aachen, Germany,

Sep. 2012, pp. 4640-4643.

V P. C. Yong, S. Nordholm, and H. H. Dam, “Optimization and evaluation of

sigmoid function with a priori SNR estimate for real-time speech enhance-

ment,” Speech Communication, vol. 55, no. 2, pp. 358-376, Feb. 2013.

VI P. C. Yong, S. Nordholm, H. H. Dam, Y. H. Leung, and C. C. Lai, “Incor-

porating multi-channel Wiener filter with single-channel speech enhancement

algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process.

(ICASSP’13). Vancouver, Canada, May. 2013.

VII K. Y. Chan, P. C. Yong, S. Nordholm, C. K. F. Yiu, and H. K. Lam, “A hy-

brid noise suppression filter for accuracy enhancement of commercial speech

recognizers in varying noisy conditions,” Applied Soft Computing, 2013.

VIII P. C. Yong, S. Nordholm, and H. H. Dam, “Effective binaural multi-channel

processing algorithm for improved environmental presence,” Submitted to

IEEE Trans. on Audio, Speech, and Language Process.



Chapter 2

Background Literature

If the only tool you have is a hammer,

you tend to see every problem

as a nail.

– Abraham Maslow

2.1 Introduction

Speech enhancement in adverse acoustic environments with regards hearing aids

remains an area of intensive research over decades [4, 11–17]. However, only little

attention has been paid in designing speech enhancement algorithms for hearing

protection devices, which is a crucial application to avoid hearing impairment

and to enable speech communication among workers. Recall from Chapter 1 that

such devices have to be able to suppress high level industrial noise while main-

taining the target speech signal and preserving the spatial cues of both the target

speech and background noise. In addition, there are two additional important

elements to be associated with the design criteria, namely the low latency and

low computational complexity.

There are largely two approaches to address speech enhancement, i.e., single-

channel and multichannel approaches. On one hand, the single-channel method

is essentially easier to be implemented in hardware with less computational effort

required. Multi-channel algorithms on the other hand, offers invaluable spa-

tial diversity which provides further improvement in speech quality. Both of

9
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the two solutions, however, have their own fundamental limitations. In general,

single-channel approaches tend to generate noise artefacts while multi-channel al-

gorithms cannot suppress as much noise compared to the single-channel methods.

This chapter investigates the need of assistive listening devices in industrial

environment and reviews state-of-the-art single and multiple channel solutions for

speech enhancement. It begins by introducing noise and noise induced hearing

loss, and followed by the review of the hearing protectors. Next, the human spatial

hearing system is briefly described before moving into the discussion of the noise

reduction techniques. The style of writing is intended to give the readers a quick

idea of the problem and compendious review of conventional speech enhancement

techniques and how they relate to the eventual proposed structures.

2.2 Noise and Hearing Loss

Noise is often defined simply as unwanted sound, which is however misleading as

any loud sound, whether wanted or not, can damage hearing. The relationship

between noise and hearing loss has been the focus of numerous studies since 1950s.

Conclusive evidence for greater hearing loss was found between workers exposed

to elevated noise levels compared to workers in quieter jobs [18]. An Estimation

from the 2000 Global Burden of Disease study has stated that worldwide 70% of

mild or greater hearing loss, 75% of moderate or greater hearing loss and 87%

of severe or greater hearing loss is adult-onset [19], with the two major causes

of adult-onset hearing loss are ageing and exposure to loud noise [20]. Age-

related hearing loss is mostly the damage to the hearing-related structures and

nerves that occurred from various sources over time rather than from biological

deterioration alone [20]. On the other hand, exposure to excessive levels of noise

(i.e., levels considered hazardous to the hearing of most people, see Table 2.1 for

examples of hazardous noise levels) affects hearing by changing the physiology of

the inner ear, which can lead to severe hearing impairment, and even complete

deafness.

The term deafness can sometimes be confusing, as in some places it is only

used to describe those who are totally deaf while in others it also includes those
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Painful
150 dB = jet take-off (at 25 meters)
140 dB = fire arms, air raid siren, jet engine
130 dB = jack-hammer, motorcycles
120 dB = chain saw, oxygen torch

Extremely Loud
110 dB = rock music, model aeroplane, steel mill
100 dB = pneumatic drill, farm tractor
90 dB = lawnmower, shop tools, truck traffic, subway

Very Loud
80 dB = heavy city traffic, busy street, average factory
70 dB = busy traffic, vacuum cleaner
60 dB = conversation in restaurant, office, dishwasher

Moderate
50 dB = moderate rainfall
45 dB = humming of a refrigerator
40 dB = quiet room
30 dB = whisper, quiet library

Table 2.1: Hazardous noise levels and examples.

who experience difficulty in hearing [21]. As a consequence, the grades of hearing

impairment often cannot be compared directly across studies. World Health

Organization (WHO) defines permanent hearing impairment in adults as having

difficulty in listening at hearing threshold level of 41 decibel (dB) or higher (refer

to Table 2.2), based on the un-aided hearing threshold in the better ear and is

averaged over the 0.5, 1, 2, and 4 kHz frequencies. A hearing threshold level

of 41 to 60 dB is considered as the beginning of hearing impairment because at

this level of impairment, an individual can only distinguish words spoken at one

metre and only if they are spoken in a raised voice [22]. This is also the level of

impairment where hearing aids are usually required by the individual [23].

Depending on the intensity of the noise and the duration of exposure, either

exposure to very loud noise for a short period of time or repeated exposure to

moderately loud noise, noise-induced hearing loss can begin immediately or gradu-

ally and may be temporary or permanent. Such hearing loss may affect one or

both ears, although not always to the same extent [24]. The first sign of noise-

induced hearing loss is typically a shift in the pure-tone threshold in 3-6 kHz
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Degree of hearing loss Hearing loss range (dB) Effect

None ≤ 25 can hear whispers
Slight 26 to 40 can hear words at

1m in normal voice
Moderate 41 to 60 can hear words at

1m in raised voice
Severe 61 to 80 can hear words if

shouted into ear
Profound ≥ 80 cannot hear

shouted words

Table 2.2: WHO grades of hearing impairment.

frequencies. That means a notably louder tone than previous is required for an

individual to detect a tone at the range of the frequencies [19]. Threshold shifts

in these frequencies usually indicate a hearing impairment in the upper part of

frequency range for human voices [25]. Once the individual workers slowly lose

their ability to hear voices, they would suffer from the inability to communicate

with co-workers under those extremely noisy circumstances. Research in Sweden

has shown that in a noisy environment, only 40% of a conversation can be heard

by someone with moderate noise-induced hearing loss when compared to 75% by

someone with unimpaired hearing [26]. Whereas 90% of a conversation in a quiet

environment can be heard by a moderate hearing-impaired person compared with

98% by another with unimpaired hearing [26]. However, even if a hearing im-

paired person can find another job in less noisy workplaces, noise is ubiquitous

thus exposure to noise is always unavoidable.

Exposure to noise in the workplace (occupational noise) has been estimated to

account for about 10% of the burden of adult hearing loss in Western countries,

and is well-known as occupational noise-induced hearing loss (ONIHL) [20, 25].

Loss of hearing caused by ONIHL is a significant problem in terms of not only

health but economically. As for Australia, there were about 16,500 successful

compensation claims from industrial workers for permanent impairment due to

noise from the year 2002 to 2007 [19]. This means not only individual workers

but all their families, business owners, the whole industry and the wider society

have to bear the burden of ONIHL. Besides the harmful effects on hearing from
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the exposure to loud noise, it also leads to annoyance and fatigue in the indi-

viduals, which could result in serious health conditions such as hypertension and

heart disease [19]. The ONIHL and many of its effects can be prevented often by

proper workplace design, with sufficient equipment and training provided to con-

trol occupational noise levels and workers exposures. A good solution to reduce

the ONIHL is to protect the ears from exposure to intense environmental noise

by using hearing protection devices (HPDs).

2.3 Hearing Protection

The engineering of conventional hearing protectors is considered a relatively ma-

ture technology that has been continuously evolving over the past one and a half

centuries. They include designs with frequency-independent attenuation, with

attenuation that increases with sound pressure level (SPL) to provide protection

against impulsive sounds, with attenuation that is specifically designed to the

application, and with earplugs that can be fitted to individual ear canals [27]. A

common drawback of those passive HPDs is that they suppress both noise and

speech, which prohibit the face-to-face communication under extremely noisy en-

vironments such as in factories. This leads to the lack of situational awareness

resulting in serious injury and death. In order to communicate with coworkers

under such conditions, people would choose not to use hearing protection and

expose themselves back to the danger of ONIHL.

Of more recent development is the incorporation of low cost with high per-

formance digital signal processors to allow speech communication and/or situ-

ational awareness in extreme noise [28]. One way to do this is the use of elec-

tronic components that amplify the sounds reaching the ear inside the hearing

protectors, particularly earmuffs (which can provide overprotection from envir-

onmental noise with passive attenuation), up to specified limits. Although such

level-dependent HPDs can improve the user’s audibility of speech and perform-

ance at work [29–31], they are still unable to restore all dimensions of situational

awareness compared to human hearing. Another signal processing strategy for

HPDs is to employ an active noise reduction system to detect the surrounding
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sounds with microphones attached to the earmuff or earplug, then invert the

sounds in phase, and broadcast them into the ears using loudspeakers [32]. Such

technique can be categorised into two methods, namely feedforward (a micro-

phone is placed outside each earcup) and feedback (microphones are placed inside

earcups) noise cancellations [33]. Although the HPDs incorporating the active

noise reduction techniques can provide additional noise reduction at frequencies

from approximately 32 Hz to 500 Hz compared to passive hearing protectors,

acoustical constraints make it difficult to achieve better noise reduction at higher

frequencies. Furthermore, they also suppress speech together with noise, and im-

pede source localisation due to the directional characteristics and positions of the

microphones [34].

This thesis exploits the possibility of employing speech enhancement in hear-

ing protectors to reduce as much noise as possible while maintaining the speech

signals. By isolating and enhancing speech while reducing harmful background

noise, users are able to hear speech and stay protected whilst remaining aware

of their surrounding in high noise environments. Such technology aims at adapt-

ing quickly to any changes in background noise, so that users can communicate

effectively with others under every kind of scenarios, without the need to take

on and off their HPDs. This type of electronic HPDs can be termed as assistive

listening devices, as shown in Figure 2.1 1. The focus point of such devices is to

develop speech enhancement algorithms which can attenuate as much noise power

as possible, while leaving speech as undistorted as possible. By starting from the

spatial cues, new techniques can be investigated and developed to provide very

little alteration of spatial information. This shall allow a high noise suppression

while still providing the desirable spatial and low distortion properties of the

desirable information.

1The devices shown in the figure are developed and manufactured by Sensear Pty. Ltd. The
company’s website can be found at http://www.sensear.com/.
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Figure 2.1: Assistive listening devices.

2.4 Human Spatial Hearing

This section discusses the different localisation cues utilised by human auditory

system to localise sound sources in three dimensions. Such understanding is

important when building binaural HPD that is capable of maintaining situation

awareness in extremely noisy environment.

There are three distinct perceptual effects that support the fact that an im-

provement of speech intelligibility in noise can be achieved by listening with two

ears rather than with one. The first being the Binaural summation effect, which

states that one can identify more easily the target speech component when two

identical mixtures of speech and noise (with same input signal-to-noise ratios

(SNRs)) are presented to the two ears. The equivalent SNR benefit by the bin-

aural summation effect is in the range of 0.5 to 2 dB [35]. Secondly, the head

shadow effect, which is purely a physical effect caused by the direction of the

speech and noise sources with respective to the head. In many real scenarios the

speech source would be closer to one ear than to the other, creating a “best-ear”

side where the SNR is higher (up to 10 dB have been recorded [35]). Due to

this head shadow effect, the listener can use the best-ear to listen the presen-

ted speech. By the definition of the third effect, namely the binaural unmasking
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effect, the other ear (with lower SNR) can lead to further speech intelligibility

improvements, which is purely caused by the spatial processing of the binaural

cues inside human ears [35].

The primary cues that influence the spatial sound perception by people include

the following auditory cues [36]

1. the interaural time difference (ITD),

2. the interaural level difference (ILD),

3. monaural spectral cues depending on the shape of the outer ear (pinna),

4. cues from torso reflection and diffraction,

5. the ratio of direct to reverberant energy,

6. cue changes by voluntary head movements, and

7. familiarity with the sound source,

as well as visual cues and other non-auditory cues [37]. It should be noted that ex-

cept for source familiarity, all the auditory cues come from the physics of sound

propagation and vary with azimuth, elevation, range, and frequency [36]. Al-

though all of the cues should be present and consistent for optimum sound re-

production, some of these cues are stronger than the others, particularly the ITD

and ILD cues, typically also known as the binaural cues. In this thesis, we will

only consider these two binaural cues as they are the main cues responsible for

localisation in the azimuthal (horizontal) plane, which is crucial in the workplaces

compared to other cues.

The binaural cues are obtained from a sound wave impinging on the two ears

from a certain direction, with a particular time and intensity difference between

the two ears, which are independent of the source spectrum (see Figure 2.2 [38])

[39]. The well-known duplex theory by Lord Rayleigh [40] states that ITD cues

are the dominant localisation cues in the lower frequencies (< 1−1.5 kHz), while

ILD cues are dominant in the higher frequencies. The fact that ITD cues are only

usable in the lower frequencies is based on the observation that the wavelength

of the sound signal becomes smaller than the diameter of the head in the range
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Figure 2.2: Sound wave arriving at human ears, generating ITD and ILD cues.

of 1-1.5 kHz. The ILDs do occur over the entire frequency range, but usually

have a large magnitude only in the higher frequency range. However, if ILDs are

artificially introduced at lower frequencies, they can introduce a spatial percept,

while artificially introducing ITDs at higher frequencies do not lead to a spatial

percept [41]. The intention of this dissertation is not artificially creating binaural

cues, but to investigate methods to preserve both ITD and ILD when binaural

speech enhancement algorithms are employed in assistive listening devices.

2.5 Noise Reduction Techniques

Binaural signal processing for speech enhancement, to be discussed in Chapter 7,

comprises two types of noise reduction techniques, namely the single-microphone

noise reduction and the multi-microphone noise reduction. Some of the state-of-

the-art techniques will be discussed in the following sub-sections. As many noise

reduction techniques rely on a voice activity detection (VAD) algorithm, which

classifies audio frames as noise-only or speech plus noise frames. An overview of

VAD algorithms is also presented.
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2.5.1 Multi-channel Noise Reduction

Multi-channel noise reduction approaches combine and process input signals from

different microphones in order to achieve an SNR improvement. The fact that

different sources originate from different positions in space is hereby exploited:

constructive interference is created in the direction of the target speech source,

while destructive interference is created in other directions, which represents the

direction of arrival (DoA) of the interfering noise sources. As such, multi-channel

noise reduction techniques have the capability to spatially accept or reject sources

at a specific point in space. This concept is referred to as beamforming, which

was originally applied in antenna and radar [42], and then utilised for microphone

array in applications such as mobile communications and hearing aids [12, 43–46].

In general, there are two types of multi-channel techniques, namely geometry

dependent and geometry independent approaches. The former refers to conven-

tional beamforming methods where some a priori information is required to form

a beam towards the target signal. Beamforming itself can be broadly classified

into fixed beamforming and adaptive beamforming. Fixed beamforming is data

independent as a time-invariant filter is already pre-designed to capture the target

signal. Hence, optimal fixed beamformers can be constructed provided that no

model mismatch is present. As for adaptive beamforming, it is data-dependent

as it combines spatial filtering with adaptive noise suppression capability to track

variations as well as to compensate for model mismatch. Unlike the geometry

dependent methods, geometry independent techniques do not require informa-

tion about the array geometry or the source localisation. In the following sub-

sections, some examples of both geometry dependent and geometry independent

approaches are discussed.

Fixed Beamforming

Fixed beamforming is the most traditional geometry dependent multi-microphone

approach for speech enhancement. One of the most popular fixed beamformers

is the delay-and-sum beamformer [42], followed by other techniques such as the

directional microphones and the super-directive beamformers [47]. As fixed beam-

formers are data-independent techniques, an assumption has to be made about
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Figure 2.3: A general sidelobe canceller.

the target speech source location. Most often, it is assumed that the target speech

source is in the frontal direction. Unfortunately, this assumption is not always

fulfilled in some commonly encountered practical scenarios. In these cases, the

direction of the target speech source may need to be estimated using source loc-

alisation algorithms. A disadvantage of fixed beamformers for higher resolution

applications is the sensitivity to model imperfections such as microphone mis-

match, caused by environmental influences or ageing of equipments. Also, a fixed

beamformer usually requires a large number of sensors and thus it requires a high

computational cost to achieve good performance.

Adaptive Beamforming

In contrast to fixed beamformers, adaptive beamformers are data-dependent tech-

niques that can adapt to changing noise scenarios. Therefore, they are capable

of giving a better noise reduction performance in certain scenarios. The most

commonly used and computationally cheapest adaptive beamforming technique

is the so-called adaptive directional microphone (ADM) [48]. The ADM consists

of two fixed directional microphones, with one having a forward-facing spatial

pattern and the other having a backward-facing spatial pattern, followed by an

adaptive block. The adaptive part combines the two fixed spatial patterns so

that a null is formed in the direction of the strongest noise interferer.

A general class of adaptive beamforming techniques has been developed to
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minimise the total output power of the beamformer under the constraint that

the response towards the target speech directions is preserved. The so-called

minimum variance distortionless response (MVDR) beamformer [49] is the pion-

eering technique that constrains the response towards a single target direction,

which is then extended by the linearly constrained minimum variance (LCMV)

beamformer [50] to a set of linear constraints. A well-known implementation

of these beamformers is the generalized sidelobe canceller (GSC) algorithm [51],

which transforms the constrained optimisation problem into an equivalent but

easier unconstrained optimisation problem. Here, the problem is transformed

into two main parts, i.e., non-adaptive constrained and adaptive unconstrained

components. As depicted in Figure 2.3, the non-adaptive constrained component

is known as the spatial preprocessing stage that has two branches operating on

orthogonal subspaces: a fixed beamfomer which passes the target signal (main-

tains the desired constraint) and generates a so-called speech reference, and a

blocking matrix which blocks the target signal (nulls the desired constraint) and

generates so-called noise references. The adaptive unconstrained component is

an adaptive noise canceller (ANC) that cancels the residual noise from the fixed

beamformer’s output. It can be viewed as that the dimension of the adapta-

tion subspace is reduced by the blocking matrix, which enables the use of simple

adaptive algorithm such as the least mean square (LMS) algorithm.

Regrettably, GSC might also cancel out the target signal due to the presence

of steering vector errors, which are caused by wrong modelling on the target

speech location, room reverberation and microphone characteristics. The block-

ing matrix fails to block the target signal entirely and causes speech signal leakage

into the ANC, which leads to the cancellation of the speech signal. As a result,

the performance may degrade significantly [52]. Several extensions were pro-

posed to mitigate the leakage problem [53–57]. One direction of the works was

in improving the spatial preprocessing stage (fixed beamformer with the blocking

matrix) by applying space constraints to protect the target signal’s area [58–60].

For the noise cancelling stage, a way to tackle the problem is to make use of

a VAD algorithm: the ANC is only activated in noise-only periods in order to

avoid signal cancellation of the target speech signal [61]. Similar noise reduction
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approach entails the use of a non-coherent approach, i.e., a single-channel speech

enhancement technique as a post-filter for the beamformer [60].

Multi-channel Wiener Filter

One of the geometry independent classes of multi-microphone noise reduction

techniques is based on multi-channel Wiener filtering (MWF) [59, 62–66], which

is basically a generalisation of single-microphone techniques [67]. The MWF pro-

duces a minimum mean square error (MMSE) estimate of the speech compon-

ent in a reference microphone signal, by exploiting speech and noise correlation

matrices (second-order statistics). The formulation was extended to the speech

distortion weighted MWF (SDW-MWF) to provide an explicit trade-off between

speech distortion and noise reduction [64–66]. This extension is equivalent to

applying additional single-microphone noise reduction to the output of a multi-

microphone noise reduction algorithm. In contrast to the previously discussed

adaptive beamformers, the SDW-MWF can adapt to both changing speech and

changing noise scenarios. In principle, the SDW-MWF does not require a pri-

ori knowledge or assumptions about the target speech location and microphone

characteristics, unlike the GSC. It is therefore expected to be more robust to the

beamforming approaches, which was indeed presented in [52].

Blind Signal Separation

An alternative for the geometry independent multi-channel approach is the blind

signal separation (BSS), which was originally suggested by Herault and Jutten in

the mid-80s [68]. As the name suggests, BSS attempts to recover a set of unob-

served signals from several observed mixtures with no a priori information about

the array geometry and the localisation [69]. In speech processing context, BSS

techniques consider the microphone signals as different observations of mixtures

of audio signals, whereby each audio signal is a filtered version of a certain source

signal. Under the assumptions that the sources are statistically independent, the

number of microphones is at least equal to the number of sources, and at most

one source is Gaussian distributed, the original source signals can be recovered

(up to a scaling and permutation) using BSS algorithms such as Independent
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Component Analysis (ICA) [70, 71].

The BSS techniques for acoustic signal separation can be divided into three

classes, namely, higher-order-based BSS [71, 72], second-order-based BSS [73–75]

and the latest time-frequency masking technique [76, 77]. These three approaches

require different assumptions regarding the signal statistics. For example, higher-

order-based BSS generally requires assumption about the density functions of the

sources [78], while second-order based BSS, on the other hand, requires assump-

tion about the second-order statistics such as nonstationarity or nonwhiteness

[74]. In contract, the time-frequency masking technique exploits the sparseness

in the time-frequency spectrum of the sound source to achieve source separation.

It is known to be able to separate an arbitrary number of sources with just two

anechoic mixtures provided there is not much overlap in the time-frequency rep-

resentations of the sources, which is often true for speech signals [77]. The BSS

problems can be solved in either frequency-domain or/and time-domain. For BSS

in frequency-domain, the observed convolutive mixture per frequency bin can be

approximated as an easier instantaneous mixture, so that the BSS problem is

solvable by the standard BSS algorithm [71]. However, as each frequency bin

is processed separately, the inherent BSS permutation and scaling ambiguities

impose a problem, such that different frequency bins have to be re-aligned in

a postprocessing stage [79]. For time-domain techniques, the BSS techniques

considers the original convolutive BSS problem in the time domain [75], so that

permutation and scaling ambiguities are not an issue. Even so, a disadvantage is

that the algorithms in time-domain involve computationally expensive operations

on large matrices.

Further works have been proposed to combine the knowledge in time domain

and frequency domain for BSS. For frequency-domain BSS techniques, the prob-

lem was formulated as constrained optimisation problems where the time domain

constraints on the unmixing matrices were added to ease the permutation ef-

fects associated with convolutive mixtures [80, 81]. For time-domain techniques,

a computationally cheaper variant using block-online adaptation combined with

frequency-domain fast convolution techniques was therefore proposed [82]. Nev-

ertheless, as far as speech enhancement is concerned, BSS is not the most relevant
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technique because all separated sources from all observations are of interest to

BSS. However, in speech enhancement, there is usually only one source of interest

in a noisy environment. As such, work have been done to transform BSS into a

speech enhancement tool, i.e., BSS becomes blind signal extraction (BSE) which

acts like a self-designed GSC beamformer [83]. However, when compared to the

other afore-mentioned multi-channel approaches, the computation complexity of

BSS makes this popular class of technique less appealing for a hearing protection

device.

2.5.2 Single-channel Noise Reduction

Although multi-microphone methods often lead to better performance when com-

pared to the single-microphone methods, their usability is often limited by the

additional costs, usually for matched microphones, power usage, computational

complexity, and size demands. Most of the time, only a single-microphone solu-

tion is preferred for wearable hearing devices. Although single-channel noise

reduction algorithms usually provide very modest or hardly any improvement in

intelligibility [84], they do improve quality aspects of the signals [85], which helps

to increase the comfort and reduce listener’s fatigue in extreme noise conditions.

As previously mentioned, single-channel noise reduction techniques are also

important in the context of multi-microphone systems, because these can often

be decomposed into a concatenation or a postfilter of a beamformer or a BSS

algorithm. The typical aim of single-microphone method in these techniques is

to reduce the remaining noise coming from the same direction as the target,

and to adapt to the temporal changes of the statistics of the sound sources. As

such, single-channel noise reduction systems play an important role in stand-alone

systems or as a post-processing scheme for multi-microphone methods.

The focus of the following text is on the concise description of the various

building blocks in the state-of-the-art speech enhancement system, as illustrated

in Figure 2.4.
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Figure 2.4: General single-channel speech enhancement system.

Speech Enhancement Framework

Figure 2.4 shows an analysis-modification-synthesis (AMS) system for speech en-

hancement. The system produces the estimate x̂(n) of the underlying clean speech

signal x(n) based on a noisy input speech signal y(n). This begins by dividing

the noisy input signal into generally overlapping signal frames within which un-

derlying statistical properties can be assumed invariant. Then, the frames are

windowed by an analysis window before a transformation is applied to the win-

dowed frame to produce transform coefficients Y (k,m) where k and m are the

transform coefficient index and frame index, respectively. The noisy transform

coefficients are then modified by applying a scalar gain to each coefficient inde-

pendently before the enhanced transform coefficients are inversely transformed.

The resulting time frames are overlap-added using a synthesis window to produce

the enhanced noise reduced estimate x̂(n).

The transformation serves several purposes. First, it may act as a decorrelator

to deliver noisy transform coefficients which are uncorrelated or even statistically

independent. Most of the existing systems compute short-time Fourier transform

(STFT) using a discrete Fourier transform (DFT), because the DFT can be im-

plemented computationally efficient, which delivers approximately uncorrelated

transform coefficients. This leads to an enhancement in the performance and

a straightforward interpretation in terms of spectral signal content. The latter

point is important because some systems are based on models of speech produc-

tion [86] or based on auditory models [87]. In the general AMS system, the task
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is to find the target speech signal estimate by building a spectral weighting gain

function that contains a noise power spectral density (PSD) estimate and an SNR

estimate.

Finding the Target Estimate

The critical point in the speech enhancement system is finding the gain values

that lead to a suitably enhanced output signal with only the noisy input signal

available at the microphone. Often, estimates of the target signal are derived

under the assumption that target and noise are both present in the noisy ob-

servation. However, this is not always the case since speech signals have pauses

between syllables and words. Furthermore, many speech transform coefficients

are essentially zero, even during speech activity. Thus, the gain function has to

be carefully designed taking into account these problems. Continuous noise PSD

estimation and SNR estimation have to be performed in order to ensure that the

distortion of target speech can be maintained as low as possible. All these blocks

will be explicitly discussed in Chapters 3, 4, and 5.

A Priori Knowledge and Assumptions

In order to estimate a target signal from a noisy observation, one should have some

knowledge about the signals, for example that noise is additive and independent of

the target signal. The earlier proposed speech enhancement methods are based on

these assumptions only. For example, the spectral subtraction approach [88, 89]

is a method for finding an estimate of the target STFT. The spectral subtraction

approach is computationally extremely simple, but is often not optimal in any

sense, and is hardly ever used as a stand-alone algorithm, as it tends to produce

an annoying musical-like residual noise.

Generally speaking, any available a priori knowledge could be used in the es-

timation process. For single-channel speech enhancement, this a priori knowledge

comes in three different classes, namely, i) knowledge about the target signal, ii)

knowledge about the noise signal, and iii) the knowledge (or assumption) that the

enhanced signal is to be listened by a human. These classes of knowledge are not

mutually exclusive; in fact, enhancement systems exist which utilise knowledge
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from all three categories. However, while systems which rely heavily on a a pri-

ori knowledge or assumptions may perform very well when the assumptions are

valid, they may perform poorly when the acoustical situation does not match the

underlying assumptions. Thus, exploiting a priori knowledge involves a trade-

off between optimum system performance and robustness to changing acoustical

scenarios. In the context of this thesis, the focus is more on the stochastic pro-

cesses and the actual characteristics of the observed signals instead of the a priori

assumptions. As such, solutions with as less a priori information as possible are

investigated in Chapters 3, 4, and 5. This is to build a robust single-channel

speech enhancement system that is capable to perform similarly well in different

adverse noisy environments.

2.5.3 Voice Activity Detection (VAD)

A VAD algorithm classifies audio frames as either noise-only or speech plus noise

frames. The VAD makes a binary decision on a frame-by-frame basis, whereby

frames are typically 20-40 ms. VAD algorithms are commonly used in both

single and multi-channel noise reduction algorithms. In single-microphone noise

reduction, where an estimate of the noise spectrum is often required, a VAD can

be used so that the noise spectrum is updated during noise-only periods. For

adaptive beamforming, it was noted that the ANC is usually only updated in

noise-only periods to avoid speech cancellation, again by using a VAD. Finally,

the multi-channel Wiener filter (MWF) technique requires a VAD to estimate the

speech plus noise and noise-only correlation matrices (second-order statistics) in

periods of speech plus noise and noise-only.

As VADs are so widely used, many algorithms have been proposed in literat-

ure [67]. In essence, VADs exploit the different properties and features of speech

and noise, e.g., short-term energy, zero-crossing rate, speech and noise probability

distributions, or combinations of properties. Many VAD algorithms are known

to perform poorly if the noise is non-stationary, and at low input SNR levels.

For single-microphone noise reduction, some techniques have therefore been de-

veloped to obtain an estimate of the noise spectrum without using a VAD. The
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best-known techniques are probably the Minimum Statistics [90] and Minima-

Controlled Recursive Averaging [91] techniques. These techniques could indeed

provide good alternatives to VAD-based estimation, as the noise spectrum can be

continuously updated and thus better tracked, compared to only updating during

noise-only periods.

In this thesis, the use of VAD is avoided to ensure that more robust online

speech enhancement algorithms can be developed. The ideas of developing com-

putationally cheap noise spectrum estimation algorithms without using a VAD

have been proposed in Chapter 5.

2.6 Summary

In this chapter, the background of the problems to be tackled in this thesis has

been given. In a nutshell, HPDs are very important for individuals that work

in extremely noisy environment. The traditional passive HPDs block out all

sounds coming from the surrounding, including the desired speech. In this case,

digital signal processing (DSP) techniques can be implemented into HPDs to

allow speech communication to take place among workers. A speech enhance-

ment framework can be considered as it can reduce the background noise while

preserving the speech signal. It is also possible to have algorithms with low com-

putational complexity in speech enhancement algorithms to ensure low battery

consumption and alleviate the need to charge battery during working hours. An

important aspect of the speech enhancement algorithm is to ensure that the spa-

tial awareness can be preserved. The following chapters focus on proposing new

methods for speech enhancement algorithms, which aim at developing efficient

binaural frameworks in Chapter 7 that are capable of reducing as much noise as

possible without introducing speech distortion and without distorting the spatial

cues. In the next chapter, a new single-channel speech enhancement algorithm

without requiring a priori information will be proposed.



Chapter 3

Speech Enhancement using A

Posteriori SNR and a Sigmoid

Function

Science progresses best when observations force us

to alter our preconceptions.

– Vera Rubin

3.1 Introduction

It is well known that the single-channel speech enhancement solutions have a

classic trade-off between signal-to-noise ratio (SNR) and speech distortion [67].

Moreover, SS based algorithms are prone to generate speech artifacts commonly

known as musical tones, a phenomenon due to errors in noise statistics estimation

[67]. The challenge in noise estimation is to control the update so it is not affected

by the speech. Consequently, when speech is coming into the noise estimate, it

will be biased. One of the solutions for noise estimation is to employ voice

activity detection (VAD) based algorithms [92]. However, VAD algorithms often

miss-detect speech onsets at low SNR and cause the noise estimate to be affected

by the speech energy [91]. There are a multitude of methods suggested to control

of noise update [90, 91, 93]. All of them can be employed in this work but we

assume an ideal estimation in order to highlight the work in this study.

28
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A main task for speech enhancement techniques to be deemed practical is the

mapping mechanism of the SNR measure to the gain function that is applied

on the input data. The a posteriori SNR and the a priori SNR, which contain

the estimation of speech and noise probability density functions (PDFs), are the

common SNR measures used for this purpose. Since temporal averaging is often

needed for both speech and noise estimates, this would change the distribution

of the SNR estimates. Therefore, a more flexible gain function is required so that

it can be mapped effectively to the SNR estimate to provide a good trade-off

among noise reduction, speech distortion and musical noise. Instead of using the

a priori SNR as in [94, 95], we propose to use the a posteriori SNR estimate in

this chapter, as it provides an efficient way to optimise the gain function as well

as the noise floor.

The use of the sigmoid (SIG) function for speech enhancement has been pro-

posed in [95]. The study showed that SIG function has benefits for hearing

impaired people. A more comprehensive description of the use of the SIG func-

tion for speech enhancement is found in [94]. Even though both [94, 95] use the a

priori SNR estimation in the gain function, they did not provide a clear picture

on how the mean and the slope should be estimated. Sigmoid functions naturally

maps the SNR estimate into a gain function between zero and one. Thus, we

propose to investigate the optimisation of the parameters in SIG function in or-

der to have a full use of the gain function and its applicability over a wide range

of scenarios. More specifically, SIG function is optimised based on the percep-

tual evaluation of speech quality (PESQ) measure and the log-likelihood ratio

(LLR) measure. Both of these measures correlates well with subjective listening

evaluations when compared to other objective measures [96]. This has also been

verified in subjective evaluations.

The contributions in this chapter include the direct use of the a posteriori SNR

in the SIG function and the establishment of the relationship between the SNR

estimate and the gain functions. This study has direct impact for other speech

enhancement techniques and gives a framework for finding new and improved

enhancement functions.
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3.2 Conventional Spectral Gain Function

3.2.1 Signal Model

For single-channel applications, the corrupted speech sequence can be represented

by an additive observation model y(n) = x(n) + v(n), where y(n) represents the

observed signal at discrete-time index n, x(n) is the clean speech signal and v(n) is

the additive random noise, uncorrelated with the clean signal. The goal of speech

enhancement is to form an estimate x̂(n) of the original clean speech signal x(n)

based on the observed signal y(n).

As speech signals can assume to be short-time stationary, i.e., stationary

within short periods of time (typically 5 − 30ms), the signals have to be pro-

cessed in frames of proper length. The principle of the frame-based processing is

explained using the prominent example of the discrete Fourier transform (DFT)-

based short-time Fourier transform (STFT), which is defined as

Y (k,m) =
N∑
n=1

y (mR + n)wa (n) exp

(
−j2πkn

N

)
(3.1)

where m and k are the frame number and frequency bin index, respectively. The

analysis window function is denoted by wa(n), while the frame shift between two

consecutive frames in samples specified by R, with N denotes the frame duration

in samples. The frame is processed in the frequency domain and is then applied

with an inverse DFT (IDFT) and a synthesis window ws(n). Since the frames

are overlapping, the respective samples of the current frame have to be added to

the previous frame, which is known as the overlap-add method. The benefit of

overlapping frames is that a smooth transition between consecutive frames can

be achieved. The window functions wa(n) = ws(n) = w(n) and frame shift R

have to be chosen such that perfect reconstruction is achieved.

Noise reduction can be viewed as the application of a non-negative real-valued

spectral weighting gain G (k,m), to each frame m and each frequency bin k of

the observed signal spectrum

Y (k,m) = X (k,m) + V (k,m) (3.2)

where X (k,m) and V (k,m) are zero-mean (complex-valued) random variables
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representing DFT coefficients of the the speech target and additive noise, respect-

ively. The DFT coefficients of both X (k,m) and V (k,m) can be assumed to be

statistically independent across time and frequency, only when the signal frames

are sufficiently long, with their overlap being sufficiently small. The spectral vari-

ances are denoted as λx(k,m) = E (|X (k,m) |2) and λv(k,m) = E (|V (k,m) |2).

Let ξ (k,m) = λx (k,m) /λv (k,m) and γ (k,m) = |Y (k,m) |2/λv (k,m) denote

the a priori and a posteriori SNR, respectively. Then, an estimate X̂ (k,m) of

the original signal spectrum can be formed as

X̂ (k,m) = G (k,m)Y (k,m) . (3.3)

Since, generally, the statistical properties of speech signals can change for every

single frame, and the gain function G (k,m) is time-variant, this implies that its

coefficients are to be adapted continuously over time.

3.2.2 Wiener Filter

In literature, the gain function is often built by optimally deriving an estimate

of the underlying clean DFT coefficient in some statistical sense, by using e.g.,

the maximum likelihood (ML) estimators, the maximum a posteriori (MAP) es-

timators and the minimum mean square error (MMSE) estimators. Among the

different approaches, the simplest approach is to use a linear MMSE estimator

to predict the clean speech DFT coefficients, which is often referred to as the

Wiener filter (WF) [97]. It can be derived by minimising the mean square error

(MSE) while putting a constraint to the estimator to be linear in Y (k,m). This

leads to the simple WF gain function

GWF (k,m) =
λx (k,m)

λx (k,m) + λv (k,m)
=

ξ (k,m)

1 + ξ (k,m)
. (3.4)

However, the estimation of the clean signal variance is not trivial. By using the

ML estimator λx (k,m) ≈ |Y (k,m) |2 − λv (k,m), it leads to

GWF (k,m) =
|Y (k,m) |2 − λv (k,m)

|Y (k,m) |2
= 1− 1

γ (k,m)
. (3.5)

The WF gain function thus only depends on the PDF of the actual signals, and

is independent of the actual distribution of speech and noise DFT coefficients. If

the speech and noise DFT coefficients are complex Gaussian, then WF is optimal

amongst all estimators.
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3.2.3 Spectral Subtraction

Next, the concept of spectral subtraction, which is very similar to the WF, is

illustrated. The basic idea is to subtract the noise power in each frequency bin

from the power of the noisy signal

λx (k,m) = |Y (k,m) |2 − λv (k,m)

= |Y (k,m) |2
(

1− λv (k,m)

|Y (k,m) |2

)
= |Y (k,m) |2|GPS(k,m)|2

(3.6)

which is referred to as power subtraction. Comparing Eqs. (3.5) and (3.6), the

relationship between the WF and spectral subtraction can be seen as

GPS (k,m) =

√
1− λv (k,m)

|Y (k,m) |2
=
√
GWF (k,m). (3.7)

Hence, the concept of power subtraction is identical to applying the square root

of the WF.

Another commonly used spectral subtraction rule is known as magnitude sub-

traction, which differs from power subtraction in that the subtraction is based on

magnitude spectra instead of power spectra

E (|X (k,m) |) = |Y (k,m) | −
√
λv (k,m)

= |Y (k,m) |

(
1−

√
λv (k,m)

|Y (k,m) |

)
= |Y (k,m) |GMS(k,m).

(3.8)

Both subtraction rules and the Wiener filter can be subsumed in a generalised

spectral gain function

GSS (k,m) =

(
1−

(
λv (k,m)

|Y (k,m) |2

)p1)p2
(3.9)

where the parameters p1 and p2 are to be chosen according to Table 3.1.

p1 p2

Wiener filter 1 1
power subtraction 1 0.5

magnitude subtraction 0.5 1

Table 3.1: Parameters for different subtraction rules.
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3.2.4 Statistically Motivated Estimators

Since the year 1984, Ephraim and Malah [98] presented the very first work of

statistical model-based approach for speech enhancement with an MMSE mag-

nitude DFT estimator under the assumptions that both speech and noise com-

plex DFT coefficients have a complex-Gaussian distribution. However, literature

studies show that the speech DFT coefficients are better modelled by heavy-tailed

super-Gaussian distributions such as the Gamma and the Laplace distributions,

suggesting that better estimators could be found if these statistical characterist-

ics were taken into account. Hence, complex DFT MMSE, MDFT MMSE, and

magnitude DFT MAP estimators have been presented under a super-Gaussian

PDF for the speech DFT coefficients [99–101].

Non-linear estimators can be derived in a Bayesian framework by minimising

a non-negative cost-function, such as the square-error cost function, which leads

to the MMSE estimator [102]. Besides the square-error function, many other

cost-functions, which were stated to be perceptually more relevant to speech

processing, have also been proposed. Table 3.2 shows different cost functions

derived for estimating the complex or the magnitude DFT coefficients, where ζ

and ν indicate the shape parameters of the assumed clean speech distribution

[103]. Here, B denotes the power law applied to the magnitude DFT coefficients

of real and estimated clean speech in the squared difference. The exponent P is

applied to the clean speech magnitude DFT coefficients to perceptually weight the

squared difference. The cost-functions listed Table 3.2 usually lead to estimators

that can be formulated as variants of conditional mean estimators. It has to

be mentioned that the development of super-Gaussian complex and magnitude

DFT estimators was made under conflicting assumptions. The complex DFT

estimators were derived by assuming that the real and imaginary parts of DFT

coefficients are independent, while the magnitude MMSE estimators was derived

by making assumptions that the speech phase is uniformly distributed and the

magnitude DFT is generalised-Gamma distributed [103]. Therefore, the work

in [104] proposed a unified framework that allows to derive both complex and

magnitude DFT estimators under the same consistent statistical assumptions.
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Magnitude DFT Estimators
Cost function Assumed distribution ref.

E

((
A(k,m)− Â(k,m)

)2
)

ζ = 2, ν = 1 [98]

E

((
A(k,m)− Â(k,m)

)2
)

ζ = 1 and ζ = 2 [106–108]

E

((
A(k,m)2 − Â(k,m)2

)2
)

ζ = 2, ν = 1 [109]

E

((
A(k,m)2 − Â(k,m)2

)2
)

ζ = 2 [110]

E

((
log{A(k,m)} − log{Â(k,m)}

)2
)

ζ = 2, ν = 1 [111]

E

((
log{A(k,m)} − log{Â(k,m)}

)2
)

ζ = 2 [112]

E

((
A(k,m)B − Â(k,m)B

)2
)

ζ = 2, ν = 1 [113]

E

((
A(k,m)B − Â(k,m)B

)2
)

ζ = 2 [114, 115]

E

(
A(k,m)P

(
A(k,m)− Â(k,m)

)2
)

ζ = 2, ν = 1 [116]

E
(
A(k,m)−2P(A(k,m)B − Â(k,m)B)2

)
ζ = 2, ν = 1 [117]

Complex DFT Estimators

E

((
S(k,m)− Ŝ(k,m)

)2
)

ζ = 1 and ζ = 2 [104, 118]

Table 3.2: Overview of non-linear DFT estimators presented in literature.

Although much work had been done to propose non-linear MMSE estimat-

ors based on a priori assumptions about the speech and noise distributions, the

cost functions often lead to solutions without closed-form expression. Also, when

short and/or overlapping frames are used for spectral analysis, the assumption

about the inter-frame independence will not be valid anymore [105]. This would

cause a conflict since most statistically motivated estimators are derived by as-

suming the frames are statistically independent. By taking the assumption about

the dependency between successive frames into account would again result in es-

timators without closed-form solutions. As such, they are often prohibitive to

be implemented in mobile devices. Also, since speech is highly non-stationary

and a wide range of different noises can be encountered in a real environment,

their DFT distributions would change from time to time and from place to place.

In those cases, the solutions derived from explicit mathematical expressions may

have poorer performance than expectation.
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3.3 Behaviour of the A Posteriori SNR

As can be seen in the previous sub-section, the a posteriori SNR involves calcu-

lation of ensemble averages, which cannot be done and has to be estimated since

only a limited number of sample functions of the random process is available in

practice. This is usually done by using first recursively averaging periodograms,

such that the estimate of the a posteriori SNR is given by

γ̂(k,m) =
λ̂y(k,m)

λ̂v(k,m)
(3.10)

where both the noisy speech estimate λ̂y(k,m) and the noise estimate λ̂v(k,m)

can be obtained as

λ̂y(k,m) = αλ̂y(k,m− 1) + (1− α)|Y (k,m)|2 (3.11)

λ̂v(k,m) = αλ̂v(k,m− 1) + (1− α)|V (k,m)|2 (3.12)

and α is the averaging constants. Ideally, the averaging constants should be

chosen as closed to one as possible, e.g., α ≈ 1 to obtain reliable estimate with low

variance. However, this estimate is not capable of capturing the non-stationary

nature of speech signals, and will introduce undesired reverberant effects in the

output signals. Choosing an α value close to 0 means that the SNR estimate

depends only on the current frame, which contains large fluctuations and may

result in an increase of noise artifacts. Therefore, a compromise is required in

practice in the choice of the smoothing constants.

Practically, two different averaging parameters, αy and αv, have to be used

for noisy speech signal and noise, respectively. The value of αy should be notably

smaller than αv since noise can be assumed to be much more short-time stationary

than speech. As such, when considering that the noise reference is not perfect

and the speech is leaking into the noise estimate, the speech components in the

noise estimate can be smoothed by the longer averaging time. Since the averaging

time in the speech estimate is shorter, the speech components in the numerator

stands out more, resulting in a less biased a posteriori SNR estimate.

Now consider the case during speech pauses, i.e., Y (k,m) ≡ V (k,m), the

a posteriori SNR depends on both the smoothing parameters. More precisely,



Chapter 3: Speech Enhancement using A Posteriori SNR and SIG Function 36

the SNR estimate ideally should be γ̂(k,m) = 1 (0 decibel (dB)) when speech

is absent, by applying different values of smoothing factors, αy > αv however

leads to an SNR estimate spreading around 0 dB. Such distribution has been

investigated on many occasions. If the noise power spectral density (PSD) is

assumed to be complex Gaussian distributed, it can be shown that the numerator

and the denominator of the a posteriori SNR estimate are random variables

of Chi-Square distributions with two degrees of freedom [119]. Since the PSD

estimate is made up of a sum of M Chi-Square random distributions with two

degrees of freedom each, this results in a Chi-Square distribution with 2M degrees

of freedom [92]. The relationship between M and α can be derived as [120]

M =
1 + α

1− α
1

1 + 2
∑∞

m=1 α
mψ(m)

(3.13)

where ψ(m) can be computed by

ψ(l) =
(
∑K−1

µ=1 w(µ)w(µ+ lR))2

(
∑K−1

µ=1 w
2(µ))2

. (3.14)

Then, it is shown that quotient of two Chi-Square variables can be represented

by Fisher’s F -distribution with Qy = 2My and Qv = 2Mv degrees of freedom

[121].

In order to validate this, the SNR measure was experimentally calculated in

a range of noise environments and was compared with the F -distribution. As

depicted in Figures 3.1 and 3.2, the measure was found to follow closely with

the F distribution in pink noise and factory noise as taken from the NOISEX-92

database [122]. It can be observed, however, that there are small but significant

deviation for the upper tail at higher frequency range. This is the region that

determines the amount of trade-off among speech distortion, noise reduction and

musical noise to be generated in the speech enhancement system. If a spectral

gain function is built based on statistical assumptions of speech and noise DFT

distributions, the performance can be very limited by such false alarms in the

distribution mapping. The problem can be exaggerated in highly variable envir-

onments such as babble noise, as can be seen in Figure 3.3 where the assumption

is totally violated.
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Figure 3.1: Comparison between theoretical F-distribution and histograms at
different frequency bins in pink noise environment.
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Figure 3.2: Comparison between theoretical F-distribution and histograms at
different frequency bins in factory noise environment.
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Figure 3.3: Comparison between theoretical F-distribution and histograms at
different frequency bins in babble noise environment.
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3.4 SNR Estimation and Gain Function

For spectral gain functions that only utilises the a posteriori SNR estimate, the

main problem is that both the SNR estimate and the gain function comprise too

many variations, which leads to musical noise. There have been many works pro-

posed to suppress musical noise in literature. One notable work is to use Bartlett

averaging periodogram for the SNR estimate and to use an adaptive exponential

averaging to smooth the spectral subtraction (SS) gain function [123]. In this

work, the former problem is dealt with by averaging the magnitude spectrum

instead of the power spectrum estimate over time. In this case, the a posteriori

SNR can be estimated as

γ̂(k,m) =
λ̂y(k,m)

λ̂v(k,m)
(3.15)

where both the speech estimate λ̂y(k,m) and the noise estimate λ̂v(k,m) can be

obtained as

λ̂y(k,m) = αyλ̂y(k,m− 1) + (1− αy)|Y (k,m)| (3.16)

λ̂v(k,m) = αvλ̂v(k,m− 1) + (1− αv)|V (k,m)| (3.17)

and αv and αy can be obtained by

αy = exp

(
−2.2R

txfs

)
(3.18)

and

αv = exp

(
−2.2R

tvfs

)
(3.19)

where fs is the sampling rate, ty and tv denote the time averaging constants for

both speech and noise, respectively.

The variability of the gain function is then studied by investigating how the

SNR estimate can be mapped by the speech estimation gain function such that

noise components will be attenuated while the speech components will be main-

tained, without generating large musical noise. In this case, the parameters of

the gain function can be tuned. It is also natural for a gain function to operate

between zero and one. In this chapter, two gain functions have been studied. We
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consider the SS function, GSS(k,m), given here as

GSS(k,m) = max

(
ε, 1− β 1

γ̂(k,m)p

)
(3.20)

where β and p are the oversubtraction factor and the power factor, respectively.

The factor β is used to control the amount of speech spectral distortion, while

the power factor p < 1 can be used to achieve high noise suppression under low

SNR [124]. In addition to that, a lower p value can also allow more variations

in the noise estimate. However, for p < 1, the gain function at high SNR region

will also be attenuated and will not approach unity gain. Thus, the noise floor

ε is introduced to control the amount of perceived residual noise and to avoid

annoying musical noise [89]. The amount of musical noise is depending on the

slope of the gain function and how often the SNR values come above the noise

floor during noise only periods. A lower ε threshold can be chosen for a larger β

value, which gives higher noise suppression with little musical noise, but at the

same time suppresses low energy speech parts.

In order to provide a higher flexibility for speech enhancement and to control

the shape of the gain function, the SIG gain function is investigated. It is given

by

GSIG(k,m) = max

(
ε,

1

1 + exp [−a (γ̂(k,m)− c)]

)
(3.21)

or

GSIG(k,m) = max

ε, 1−
1− tanh

(
a(γ̂(k,m)−c)

2

)
2

 (3.22)

where a and c are the slope and the mean, respectively. This function allows

the control of the SIG function’s mean and slope. As such it provides a mean to

suppress the noise as well as to maintain the unity gain at high SNR region.

The parameters of a gain function are optimised in terms of the level of noise

suppression and the amount of musical noise generated. As such, the gain function

is highly sensitive to changes in the SNR estimates when speech is active but has

a constant value for noise only periods. According to Figure 3.4, which plots

the PDF of SNR estimate for white noise at 938 Hz mapped with several gain

functions, the SNR estimate at noise only periods is distributed approximately

between 0.5 and 1.5. This means that attenuation shall only be performed when

the SNR estimate falls within that region. From the figure, the blue dotted line
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Figure 3.4: PDF of SNR estimate for white noise at 938 Hz mapped with (i) a
spectral subtraction function with power spectrum estimates (SS1, p = 2, β =
1.9), (ii) a spectral subtraction function with amplitude spectrum estimates (SS2,
p = 1, β = 1.3), and (iii) a sigmoid function (SIG).

and the green dashed line indicate a SS function with power spectrum estimates

with p = 2, β = 1.9 (SS1) and a SS function with amplitude spectrum estimates

with p = 1, β = 1.3 (SS2), respectively. The SIG function is represent by the

red solid line. It can be observed that the gain values for both SS function are

significantly lower than the SIG function when the a posteriori SNR is larger than

1.5. For SIG function in Eq. (3.21) or (3.22), by mapping the gain function to the

SNR estimate, the parameters a and c can be optimised for varying noise types

and SNRs. The mean value c can be optimised based on objective evaluation

and the SNR estimate, while the slope a is more of a challenge since a larger a

indicates more speech distortion while a smaller a indicates lower noise reduction.

Furthermore, the optimisation problem is exacerbated by the type of noise that

corrupts the noisy speech. Thus, it is important to understand the complication

in parameters selection considering the wide options.

3.5 Optimisation

The performance of a single channel speech enhancement is often determined by

how much and how well noise is suppressed without introducing any speech dis-

tortion. The evaluation is always done by subjective listening tests, or objective

measurement that can more or less represent the listening experience. This sec-

tion aims to optimise the parameters in the gain function based on a proposed
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multi-objective optimisation algorithm, which can be formulated as

max
a

W PESQ− (1−W ) LLR (3.23)

where W denotes a trade off between two objective measures, 0 ≤ W ≤ 1. This

measure is used as a composite measure since conventional objective measures

do not correlate highly with overall speech quality [96]. Here, PESQ and LLR

measures are used as the criteria of the optimisation problem. PESQ measure

has been proposed in ITU-T Recommendation P.862 and has recently been sug-

gested to be more reliable than other traditional objective measures for speech

quality [96]. It was implemented based on the steps in [67], which consists of pre-

processing and filtering, time alignment, auditory transformation, computation of

the difference between loudness spectra and time averaging of both reference and

test signals. A higher PESQ score yields a better perceived speech quality [67].

The LLR measure was reported in [96] as a reliable objective measure for speech

distortion. It is a speech quality objective measure that evaluate the dissimilarity

of the all-pole models between the clean and the processed speech signals [67],

dLLR

(
~lx̂,~lx

)
=
~lx̂Rx

~lTx̂
~lxRx

~lTx
(3.24)

where ~lx and ~lx̂ are the linear predictive coding (LPC) coefficients of the clean

speech signal and the processed speech signal respectively, and Rx is the autocor-

relation matrix of the clean speech signal. A lower LLR score indicates a better

speech quality.

We begin with the evaluation of (i) SS function with power spectrum estimates

(SS1); (ii) SS function with amplitude spectrum estimates (SS2) and (iii) SIG

function. By mapping the gain functions to the PDF of SNR estimate as shown

in Figure 3.4, parameters β, a and c were chosen such that the gain functions

would stay constant during noise only periods to avoid musical noise. Since the

SNR estimate is distributed mainly between 0.5 and 1.5 during noise only periods,

the gain functions should be constant up to SNR = 1.5 in order to minimise the

amount of musical noise. With this in mind, the parameters for SS1 and SS2 are

optimised based on the mapping of the gain functions to the fitted distribution in

Figure 3.4, the objective measures (PESQ and LLR) and the informal listening
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tests. Hence, the optimal parameters are β = 1.9 for SS1 with p = 2, and

β = 1.3 for SS2 with p = 1. This is consistent with the findings in [67] that the

oversubtraction factor should range from 1.3 to 2.0 for low SNR conditions. The

noise floor for the gain functions was set as a constant value ε = −20 dB.

For SIG function, from an exhaustive study based on the similar procedure

used for SS function, by using the NOISEX-92 database, and with the help from

the objective measure in Eq. (3.23), we have obtained the optimised mean value

as c = 1.7 from the distribution of SNR estimate. The slope can be set to a = 7

to achieve the same amount of noise suppression when compared to SS1 and SS2

as shown in Figure 3.4. However, in order to find the optimal performance of

SIG function in different noise conditions and SNRs, we optimise a based on the

objective function defined in Eq. (3.23).

3.6 Experimental Results

The evaluation of the speech enhancement gain functions was done by using a

database of noisy speech corpus named NOIZEUS [67]. The database contains

30 IEEE sentences produced by 3 male and 3 female speakers and corrupted by

8 different types of noise at global SNR levels of 0 dB, 5 dB, 10 dB and 15 dB.

In this work, white noise, pink noise and factory noise were used for evaluation.

The recursive averaging constants were chosen as αV = 0.9912 with 1 second

averaging time and αX = 0.8636 with 60 millisecond averaging time. The frame

size was chosen as K = 256 with frame rate R = 64. A sampling frequency of

fs = 8000 Hz and a 256 points Hamming Window were applied.

By using the cost function as defined in Eq. (3.23), with W = 0.5, the optimal

points for SIG function (SIGopt) at different noise conditions and SNRs were

determined. Tables 3.3, 3.4, and 3.5 summarise the mean value for 30 NOIZEUS

sentences that had been corrupted by white, pink and factory noise, respectively.

In these three tables, SIGopt at different SNRs and noise conditions are compared

to the corresponding results obtained from the the noisy signal, SS1 and SS2. The

optimum points for SIG function with the corresponding slope value a, which were

obtained from Eq. (3.23), can be identified from Figure 3.5. As observed, with
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SNR Noisy SS1 SS2 SIGopt
0 -0.0378 0.1575 0.1303 0.2726
5 0.1235 0.2569 0.2352 0.4082
10 0.3346 0.3930 0.3925 0.5670
15 0.5739 0.5307 0.5577 0.7264

Table 3.3: Optimal value of objective function, white noise.

SNR Noisy SS1 SS2 SIGopt
0 0.0855 0.4423 0.4005 0.2910
5 0.3123 0.5502 0.7288 0.7736
10 0.5579 0.6359 0.7903 0.9265
15 0.8035 0.7399 0.8814 1.0580

Table 3.4: Optimal value of objective function, pink noise.

SNR Noisy SS1 SS2 SIGopt
0 0.4446 0.5559 0.6405 0.7713
5 0.6846 0.6764 0.7444 0.9111
10 0.9192 0.7960 0.8592 1.056
15 1.1379 0.9396 1.0018 1.217

Table 3.5: Optimal value of objective function, factory noise.

the flexibility of the parameters a and c, the optimal values of SIGopt are much

higher than the results of both the SS functions. However, for pink noise at 0

dB SNR, the performance of SIG is slightly lower than SS1 and SS2. Despite

that, the tables show that there are significant improvements between SIGopt at

0 dB SNR pink noise and the noisy signal. The possible solution to increase the

objective scores for SIG function at 0 dB SNR pink noise is to increase its mean

value, c. Besides that, we can also observe that the optimal a becomes smaller

with an increase of SNR. This is because the cost function finds the optimal

points of the gain function that minimise speech distortion. Although a larger a

leads to a higher noise reduction, it will increase the amount of speech distortion

in the enhanced speech signal. This indicates that the gain function can be less

aggressive at higher SNR for lower speech distortion.

Table 3.6 shows the results from both LLR and PESQ measures. Similarly,

for both individual objective measures, the performance of SIGopt is slightly

better than the performance of SS1 and SS2 except for 0 dB SNR pink noise

that acts as an outlier in these results. From the tables, it can be observed that
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LLR PESQ
white noise

SNR Noisy SS1 SS2 SIGopt Noisy SS1 SS2 SIGopt
0 1.5978 1.4843 1.4949 1.4340 1.5221 1.7994 1.7556 1.9800
5 1.4978 1.4383 1.4352 1.3480 1.7448 1.9521 1.9056 2.1680
10 1.3708 1.3609 1.3471 1.2570 2.0401 2.1470 2.1320 2.3960
15 1.2245 1.2601 1.2386 1.1530 2.3724 2.3214 2.3541 2.6170

pink noise
0 1.4225 1.3221 1.2659 1.3100 1.5935 2.2067 2.0669 1.8920
5 1.2867 1.2429 1.1057 1.0750 1.9114 2.3432 2.5633 2.6260
10 1.1383 1.1794 1.0915 0.9941 2.2541 2.4512 2.6721 2.8530
15 0.9920 1.1021 1.0441 0.9189 2.5991 2.5820 2.8068 3.0580

factory noise
0 1.1480 1.2071 1.1066 1.0220 2.0371 2.3188 2.3876 2.5680
5 1.0047 1.0873 1.0339 0.9331 2.3740 2.4401 2.5226 2.7630
10 0.8680 0.9897 0.9498 0.8395 2.7065 2.5818 2.6683 2.9700
15 0.7519 0.9002 0.8682 0.7448 3.0277 2.7794 2.8718 3.2240

Table 3.6: Average results for LLR and PESQ measures for 3 types of noise.

both measures show similar behaviour in defining the quality of a speech signal

in terms of speech distortion.

In order to validate the performance of objective measures, informal subjective

listening tests had been performed in factory noise at both 0 dB and 10 dB SNRs.

The listening tests were conducted with closed-headphones on ten listeners with

age ranged from 20-25 years old. According to the amount of perceived noise

and speech distortion, each listener was required to rate each signal from a scale

between one and five: 5 = Excellent, 4 = Good, 3 = Fair and 1 = Bad. All

the listening results were averaged to obtain a mean opinion score (MOS) as

described in [67]. For each listener, the applied procedures are: (1) clean speech

and noisy speech were played and repeated upon request; (2) test signals were

randomly played. The used parameters are: b = 1.9 for SS1, b = 1.3 for SS2,

a = 1.1, c = 1.7 for SIG at 0 dB factory noise, and a = 1.7, c = 1.7 for SIG at 10

dB factory noise.

Table 3.7 lists the subjective MOS results of the noisy speech signal and the

enhanced signals. For factory noise at both 0 dB and 10 dB, a human listener

prefers the SIGopt approach when compared to SS1 and SS2 methods. These

results match the performance of LLR and PESQ measures in Table 3.6.
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SNR Noisy SS1 SS2 SIGopt
0 dB 1.83 2.08 2.33 2.75
10 dB 3.33 3.33 2.83 3.50

Table 3.7: Subjective MOS of the speech signals in factory noise.
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Figure 3.5: Cost function for optimisation for different slope a with mean c = 1.7
at different SNRs: (a) white noise; (b) pink noise; and (c) factory noise.
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3.7 Summary

This chapter reviews the single-channel speech enhancement gain functions in

the literature and presents a methodology to optimise the mean and the slope of

the sigmoid function, which does not require any a priori information about the

speech signal. It was shown that the SNR estimate and the gain function impact

the objective measures and provide varying subjective quality. The gain function

parameters were designed such that during the noise only periods it provides a

constant suppression thus avoiding annoying non-linear artefacts (musical noise).

This was done by mapping the function to the distribution of the SNR estimate.

Optimisation of the sigmoid function was done based on two widely used object-

ive measures: PESQ and LLR. Experimental results prove that with the proper

choice of parameters, the sigmoid function can be optimised to enhance the qual-

ity of a noisy speech while maintaining more energy of the speech components

when compared to the state-of-the-art spectral subtraction function. In the next

chapter, a solution for SIG function with a priori SNR estimate, together with

a metric to measure the trade-off between noise reduction, speech distortion and

musical noise, will be proposed.



Chapter 4

Speech Enhancement using a

Modified Sigmoid (MSIG)

Function with A Priori SNR

Estimate

The important thing in science is not so much to obtain

new facts as to discover new ways of

thinking about them.

– Sir William Bragg

4.1 Introduction

Over the past five decades, a vast amount of short-time spectral domain speech

enhancement algorithms have been published and developed for applications such

as mobile phones and hearing aids. In terms of single channel approach, the best

known methods are the spectral subtraction (SS) [88, 89, 93], the minimum mean

square error (MMSE) based estimator [98, 111], and the Wiener filter (WF) [125].

Among these algorithms, SS is more often utilised in real world implementation

due to its relative simplicity, which only requires an estimate of the noise power

spectrum for computing the a posteriori signal-to-noise ratio (SNR). For MMSE

based algorithms and WF method, a priori SNR, which involves an estimate of

47
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the clean speech signal, is required. Although this increases the complexity of the

problem, it was stated in the literature that the performance of the gain functions

is mainly determined by the a priori SNR, while the a posteriori SNR acts only

as a correction parameter for low a priori SNR [126]. Since SS employs only

the a posteriori SNR without utilising the statistics and the distributions of the

stochastic signal process, its performance is limited, which results in audible sound

artifacts in the enhanced speech signal known as the musical noise. In order to

solve this, a speech enhancement scheme in the modulation domain rather than in

the conventional acoustic domain has been proposed in the literature [127, 128].

However, a low delay solution to reduce the musical noise can be achieved by

improving the a priori SNR estimate in the acoustic domain.

The most widely used approach for estimating the a priori SNR is the decision-

directed (DD) approach [98]. The DD approach performs a linear combination of

two components: one being an estimate of previous a priori SNR and another be-

ing the maximum likelihood (ML) SNR estimate. By applying a weighting factor

close to unity of the past a priori SNR estimate, the DD approach corresponds

to a highly smoothed version of the a posteriori SNR, which reduces the musical

noise [126]. The drawback of reducing the variance in the a priori SNR estimate

is that it cannot react quickly to abrupt changes in the instantaneous SNR. This

gives rise to a performance degradation in speech enhancement scheme due to

the speech transient distortion. In order to reduce the transient distortion, many

algorithms have been proposed in the literature [129–134]. Most of them have

outperformed the traditional DD approach in terms of objective evaluations [135].

In general, the performance of a speech enhancement scheme depends on the

joint temporal dynamics between the SNR estimate and the gain function [115].

For instance, the MMSE-log spectral amplitude (LSA) estimator with the DD

a priori SNR estimate can generate speech signals without audible musical noise,

provided that the weighting factor is close to unity [67, 111]. Unlike the LSA

approach, WF with the DD approach generates more speech distortion and mu-

sical noise. The main reason behind this is that the WF is a more aggressive gain

function for low SNR. The result is a tendency to suppress more weak-speech com-

ponents together with the residual noise. Thus, when compared to WF method,
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the LSA approach is preferred for less musical noise and speech distortion. In

addition to that, much progress has been made in the development of MMSE es-

timators based on different cost functions and/or different statistical prior models

to improve speech quality [100, 114, 115, 136]. However, these algorithms involve

the calculation of the confluent hypergeometric functions, which require a lot

more computational complexity to implement when compared to WF and LSA

methods.

Here, we are interested in developing a low complexity gain function, which

employs the a priori SNR estimate with good noise suppression performance for

real-time implementation. As such, the WF and LSA approaches will be used as

the benchmark. Another method to obtain the gain function is to use a sigmoid

(SIG) function. The rationale for using SIG function as a gain function is that it is

a logistic function and can be viewed as a general cumulative distribution function

(CDF) [5]. This gain function provides several parameters that can be adjusted

to flexibly model exponential distributions. By optimising the parameters of a

SIG function, a well-balanced trade-off between noise reduction, speech distortion

and musical noise can be achieved [5]. Although this can also be achieved by

employing an over-subtraction parameter on WF, only the mean of WF will be

shifted while the shape will remain unchanged. This will give different sensitivity

in the feedback when the gain is applied to the a priori SNR estimate. Therefore,

a modified WF is not preferable as it does not provide as much flexibility offered

by SIG function.

In this work, a modified sigmoid (MSIG) gain function has been proposed to

increase the flexibility of the speech enhancement gain function and to provide a

vehicle to enhance the speech quality in high noise conditions. The MSIG func-

tion combines a logistic function with a hyperbolic tangent function, providing a

more adjustable gain function with three controllable parameters. Optimization

has been performed on these parameters to fit the MSIG function to either the

LSA approach, WF method or SIG function to demonstrate the flexibility of the

proposed gain function. In addition, a modified decision-directed (MDD) SNR

estimator, which basically nullifies the one frame delay in the conventional DD
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SNR estimator without increasing the computational complexity, has been de-

veloped. This is achieved by matching the estimate of the clean speech spectrum

and the a priori SNR estimate with the noisy speech spectrum in the current

frame rather than the previous one.

The remainder of this chapter is organised as follows. Section 4.2 gives a sys-

tem overview. Section 4.3 shows the proposed SNR estimate. Section 4.4 demon-

strates the modified gain function. Section 4.5 outlines the objective measures

used for performance evaluation and Section 4.6 presents the results. Section 4.7

concludes the chapter.

4.2 System Overview

The goal of speech enhancement is to compute the enhanced speech signal x̂(n),

given a noisy signal y(n) = x(n)+v(n), where x(n) is the clean speech signal and

v(n) is the uncorrelated additive noise. By using the short-time Fourier transform

(STFT), the spectral components of the noisy speech Y (k,m) can be obtained

by1

Y (k,m) =
N∑
n=1

y (mR + n)w (n) exp

(
−j2πkn

N

)
(4.1)

where k is the frequency bin index, m is the frame index, N is the frame duration

in samples, R is the frame shift in samples, and w(n) is a window function. The

clean speech spectrum estimate X̂(k,m) is then obtained by

X̂(k,m) = G(k,m)Y (k,m) (4.2)

where G(k,m) is a non-linear spectral gain function. The gain function can be

expressed as a function of the a priori SNR

ξ(k,m) =
E {|X(k,m)|2}
E {|V (k,m)|2}

=
λx(k,m)

λv(k,m)
(4.3)

and/or the a posteriori SNR

γ(k,m) =
|Y (k,m)|2

E {|V (k,m)|2}
=
|Y (k,m)|2

λv(k,m)
(4.4)

where λx(k,m) and λv(k,m) denote clean speech power spectral density (PSD)

and noise PSD, respectively.

1For convenience, we reproduce the equations from Chapter 3.
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The gain function is often derived from MMSE optimisation criteria. One

of those is the WF method, which minimises the expected value E{|X(k,m) −

X̂(k,m)|2}. It can be computed using the a priori SNR as

GWF(k,m) =
ξ(k,m)

1 + ξ(k,m)
. (4.5)

Other widely used algorithms are based on a direct estimate of the clean speech

spectral magnitude. One of them is the LSA estimator, which can be obtained

by minimising E{[log(|X(k,m)|) − log(|X̂(k,m)|)]2} [111]. The resulting gain

function for the LSA approach can be obtained as

GLSA(k,m) = min

{
ς,

ξ(k,m)

1 + ξ(k,m)

[
1

2

∫ ∞
ν(k,m)

e−t

t
dt

]}
(4.6)

with

ν(k,m) =
ξ(k,m)

1 + ξ(k,m)
γ(k,m) (4.7)

where ς denotes a practical upper bound used to prevent a large gain value at

low a posteriori SNR. Here, we choose ς = 10.

4.3 A Priori SNR Estimation

Prior to the computation of the spectral gain function, two parameters have to

be estimated: the noise PSD and the a priori SNR. In this work, the noise PSD

is estimated by using the MMSE noise estimator in [137]. Meanwhile, for the

estimation of the a priori SNR, the most widespread method is the DD approach,

given by [98]

ξ̂DD(k,m) = max

{
β
|X̂(k,m− 1)|2

λ̂v(k,m)
+ (1− β)P [γ(k,m)− 1], ξo

}
(4.8)

where λ̂v(k,m) and X̂(k,m−1) denote the estimated noise PSD and the estimated

clean speech spectrum from the preceding frame, respectively. The parameter

β denotes the smoothing factor, P [.] denotes the half-wave rectification and ξo

denotes a SNR floor. As observed from the equation, the first term is the a priori

SNR estimate in the previous frame while the second term is an ML estimate

computed from the a posteriori SNR. The advantage of the DD approach is its

capability to eliminate musical noise based on the choice of β in the conditional
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smoothing procedure [126]. It was suggested to set β close to unity so that

the musical noise can be eliminated, particularly in conjunction with the MMSE

estimator approach. However, this leads to a slow update of the a priori SNR

estimate, resulting in speech transient distortion, especially in speech onsets. This

is due to little influence of the second term (1− β)P [γ(k,m)− 1] in the update.

In addition, the DD approach based on Eq. (4.8) has an extra frame delay dur-

ing speech transients since it employs the previous frame clean speech spectrum

estimate. As a consequence, the gain function matches the previous frame instead

of the current one. Although the delay can be reduced by choosing a smaller β

in Eq. (4.8), more musical noise will be perceived since (1− β)P [γ(k,m)− 1] is

usually unsmoothed. Thus, we propose a MDD approach to reduce the delay in

speech transients by matching both estimates of the clean speech spectrum and

the a priori SNR estimate with the current noisy speech spectrum. The first term

of the DD approach is modified such that the gain function at previous frame is

mapped with the current noisy speech spectrum rather than the previous one.

As such, the MDD approach is given by

ξ̂MDD(k,m) = max

{
β
|G(.)(k,m− 1)Y (k,m)|2

λ̂v(k,m)
+ (1− β)P [γ(k,m)− 1], ξo

}
(4.9)

where G(.) indicates that the same gain function is used to obtain both the a priori

SNR estimate and the speech estimate. The advantage of this new approach

is that it has the same computational complexity as the DD approach while

having a better enhanced speech quality, which makes it suitable for real-time

implementation.

According to Eq. (4.9), the first term of the MDD approach does not contain

an estimate of the a priori SNR at previous frame when compared to the original

method. Therefore, the MDD approach is no longer representing a conditional

first order recursive averaging algorithm as in Eq. (4.8). This means that it

increases the sensitivity of the a priori SNR estimate towards abrupt changes in

speech signal, which directly reduces the speech transient distortion. However,

such variance in the a priori SNR estimate can lead to audible musical noise

due to the higher sensitivity to changes. In order to reduce, or eliminate such

musical noise, a first order recursive smoothing procedure can be applied in the
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a posteriori SNR estimation in Eq. (4.4) as [5]

γ̂(k,m) =
λy(k,m)

λ̂v(k,m)
(4.10)

where

λy(k,m) = αyλy(k,m− 1) + (1− αy)|Y (k,m)|2. (4.11)

The parameter λy is the noisy speech PSD, which is obtained by smoothing the

magnitude square of the noisy signal. The smoothing constant is defined as

αy = exp
(
−2.2R
tyfs

)
, where R is the frame rate from Eq. (4.1), while ty and fs

denote the time averaging constant and the sampling rate, respectively.

4.4 Modified Sigmoid Gain Function

Most of the gain functions developed for speech enhancement schemes are based

on optimisation criteria, such as the LSA approach, the WF method and all other

MMSE-based algorithms [100, 114, 136]. The problem is that the optimisation

of the criteria is made under certain model conditions such as stationarity and

certain distributions. Ideally it is desirable to have a gain function that offers op-

timal performance in all scenarios. This will lead to different cost functions and

gain functions giving different performance in different background noise scen-

arios. Apart from that, some of them involve complex mathematical equations

that require large computational load to solve, making them sometimes less at-

tractive in real world scenarios. Thus, we propose to design a gain function with

low complexity and high flexibility, while having similar or better performance

when compared to most of the MMSE estimators. The important consideration

is to have control over the shape of the gain function. For this purpose, a flexible

sigmoid-shape function is utilised. By designing the SIG function with different

shapes, a similar performance as the MMSE-based estimators will be obtained.

The rationale behind using the SIG function is that it has a general CDF function

with a shape that can be adjusted by several tunable parameters. In that case,

the quality of the enhanced speech can be improved.

In previous work [5], a SIG function has been presented to be mapped with the

a posteriori SNR. However, instead of mapping with the a posteriori SNR, which
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limits the performance of the gain function, here the SIG function is mapped with

the a priori SNR estimate. The gain function is given as

GSIG(k,m) =
1

1 + exp
[
−a
(
ξ̂ (k,m)− c

)] (4.12)

where a and c are parameters that control the slope and the mean of the gain

curve, respectively. Both parameters control the amount of musical noise, speech

distortion and noise reduction in the enhanced speech. In order to obtain a

balanced trade-off among them, the sigmoid slope has to be sensitive towards

speech and less sensitive towards the variation of noise. In this case, the mean of

the SIG function has to be less than 1. This is not plausible as when the mean

value is approaching zero, the gain value will not reach zero until a very small SNR

value, which leads to insufficient noise reduction. To provide more noise reduction

at low SNR conditions, a MSIG function, which has three parameters that can

be adjusted or optimised for better enhanced speech quality, is developed. The

proposed function is obtained by multiplying the original logistic function in Eq.

(4.12) with a hyperbolic tangent function as

GMSIG(k,m) =
1− exp

(
−a1ξ̂ (k,m)

)
1 + exp

(
−a1ξ̂ (k,m)

)
 1

1 + exp
(
−a2

(
ξ̂ (k,m)− c

))
 .

(4.13)

By changing the parameter values, the behaviour of the MSIG function can

be made similar to the different conventional gain functions, such as the LSA,

the WF and the SIG approaches. To achieve this, an optimisation problem has

been set up. The problem can be formulated as

min
z
‖GMSIG (z, x)−D(x)‖2

2 (4.14)

where z = [a1 a2 c] and D(x) is a gain function chosen from WF, LSA and SIG.

The optimisation problem in Eq. (4.14) is a non-linear optimisation problem in

terms of the parameter z. A solution for the problem can be obtained by using

the minimisation function lsqnonlin in MATLAB. This solves the non-linear least-

square curve fitting problem by using a trust region reflective Newton method. As

such, MSIG parameters that best fit the gain function in D(x) in the least-square

sense can be found in Section 4.6.
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4.5 Representative Objective Measures

Many objective measurement algorithms have been derived in the literature for

evaluating the performance of speech enhancement algorithms [67, 96]. The most

widely used methods include the perceptual evaluation of speech quality (PESQ)

measure [138] and the segmental SNR (SNRseg) measure [139]. The PESQ meas-

ure, which was not originally designed to evaluate the performance of speech en-

hancement algorithms, has been found to have a good correlation overall with

mean opinion score (MOS) [96]. It predicts the MOS scores which yields a result

from 1 to 5, where a higher score indicates a better speech quality. Meanwhile, the

SNRseg measure is also preferred among the vast amount of objective measures

as it has been found to correlate best with background noise reduction [96].

In this chapter, both the PESQ measure and the SNRseg measure were used

to evaluate the performance of the proposed algorithms. The PESQ measure was

implemented based on the procedures presented in [67]. The SNRseg measure is

defined as [67]

SNRseg =
1

M

M−1∑
m=0

10 log10

||x(m)||2

||x(m)− x̂(m)||2
(4.15)

where the vector x(m) represents a clean speech (time-domain) frame, and x̂(m)

is the enhanced speech frame. In order to discard non-speech frames, each frame

was threshold by a −10 dB lower bound and a 35 dB upper bound.

The performance of the speech enhancement scheme has a trade-off among

musical noise, speech distortion and noise reduction. The PESQ measure and the

SNRseg measure can not represent the whole picture of these trade-offs. There-

fore, an objective evaluation metric is also utilised to evaluate and compare the

results among the amount of musical noise, speech distortion and noise reduction

generated from the speech enhancement scheme.

First of all, the musical noise and the noise reduction should only be calculated

during noise-only periods in short-time spectral domain. Since in practical situ-

ations the true noise PSD is often unknown, a reference VAD for the clean speech

is required for performance evaluation without the knowledge of noise character-

istics. In order to obtain the VAD decisions at different frames and frequency

bins, a multi decisions sub-band VAD (MDSVAD) is utilised [140]. Given two
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hypotheses, H0 (k,m) andH1 (k,m), which indicate speech absence and presence,

respectively in the kth frequency bin of the mth frame, the MDSVAD is given by

D (k,m) =

1 if H0 (k,m)

0 if H1 (k,m) .

(4.16)

The amount of musical noise is believed to be highly correlated with the num-

ber of isolated spectral components and their level of isolation [141]. Since such

components have relatively high power, they can be perceived as tonal sounds

that are strongly related to the weight of skirt of the probability density function

(PDF). A signal with skirt can be identified using higher-order statistics, such

as kurtosis. However, in order to identify only the musical-noise components,

a kurtosis ratio (KurtR) is used to measure the change in kurtosis between the

noisy signal and the enhanced signal. In [141], this ratio is derived as a function

controlled by the over-subtraction factor in the SS function as well as the shape

parameters from the distribution model of the speech or noise signal. The KurtR

in this chapter is determined by the actual noisy speech signal and the enhanced

speech signal during noise-only periods. Such measure is defined as

KurtR = E

{
Kx̂(k)

Ky(k)

}
(4.17)

where Kx̂(k) and Ky(k) denote the kurtosis of the enhanced signal and the noisy

signal, respectively at k-th frequency bin. Both of them are computed only during

speech absence periods, as given by

Kx̂(k) =

∑M−1
m=0 |X̂ (k,m)D(k,m)|4[∑M−1
m=0 |X̂ (k,m)D(k,m)|2

]2 − 2 (4.18)

and

Ky(k) =

∑M−1
m=0 |Y (k,m)D(k,m)|4[∑M−1
m=0 |Y (k,m)D(k,m)|2

]2 − 2. (4.19)

A smaller value of KurtR in Eq. (4.17) indicates less musical noise.

Meanwhile, the amount of noise reduction can be defined as the input noise

power in dB minus the output noise power in dB. This noise reduction ratio

(NRR) is defined during noise-only periods as

NRR [dB] = 10 log10

∑M−1
m=0

∑K
k=1 |Y (k,m)D(k,m)|2∑M−1

m=0

∑K
k=1 |X̂ (k,m)D(k,m)|2

. (4.20)
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For speech distortion measure, the log-likelihood ratio (LLR) measure is used.

It is a spectral distance measure that models the mismatch between the formants

of the clean and enhanced speech signals [142]. Similar to Eq. (3.24), the LLR

measure is defined as [142]

dLLR

(
~lx̂,~lx

)
=
~lx̂Rx

~lTx̂
~lxRx

~lTx
(4.21)

where ~lx and ~lx̂ are the linear predictive coding (LPC) coefficient vectors of the

clean speech signal and the enhanced speech signal respectively, and Rx is the

autocorrelation matrix of the clean speech signal. A lower LLR score indicates a

better speech quality.

The objective evaluation metric provides a multi-criteria evaluation for the

various parameters that define the speech enhancement methods. This helps to

identify reasonable parameters and to provide an indication of parameter sens-

itivity. As such the objective evaluation has been used to obtain reasonable

candidates for listening tests.

4.6 Experimental Evaluation

4.6.1 Parameter Optimisation of the MSIG Function

The parameters of the MSIG function were fitted to either WF, LSA or SIG

function by using Eq. (4.14). For the SIG function, the parameters chosen were

a = 1 and c = 0.7. In the optimisation procedure, the initial estimates of MSIG

parameters were set as z0 = [0 0 0]. An upper bound constraint was employed in

the optimisation procedure, such that zub = [15 1 1]. The curve fitting was done

under the condition that the instantaneous SNR is equal to the a priori SNR.

The results of the curve fitting can be observed in Table 4.1, where the optimised

parameters for three different MSIG curves from Eq. (4.13) are displayed.

Figure 4.1 plots the MSIG curves as functions of the a priori SNR, together

with the WF gain in Eq. (4.5), the LSA approach in Eq. (4.6) and the SIG

function from Eq. (4.12). From the figure, MSIG-fix1 is fitted to WF, but with

slightly higher attenuation at low SNR conditions (below −4 dB). Also, MSIG-

fix2 is fitted to the LSA estimator but is a more aggressive gain function below
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Functions
Parameters

Fitted Curve
a1 a2 c

MSIG-fix1 2.3918 0.2120 -1.7071 LSA
MSIG-fix2 11.6869 0.4337 0.7556 WF
MSIG-fix3 15 0.6351 0.2243 SIG

Table 4.1: MSIG parameters.

−10 dB SNR. The least aggressive gain function can be found in MSIG-fix3,

which does not really match the SIG function. This is because of the upper

bound constraint of the parameter a1, which offers sufficiently small gain values

at lower SNR region. If the upper bounds were not imposed, MSIG will fully fit

the SIG function at a1 = 92043, a2 = 1 and c = 0.7. An advantage of all the

MSIG functions over the conventional methods is a lower gain value at low SNR,

while having a larger gain value at high SNR region. This allows more noise to

be suppressed and more speech components to be preserved.

4.6.2 Experimental Setup

For objective evaluation, 30 IEEE speech sequences were taken from NOIZEUS

speech database [67] and were added with pink noise. The tests were done with

0.01 step for both 0 ≤ tx ≤ 0.1 and 0.9 ≤ β ≤ 0.99. The smoothing constant

αy was plotted instead of tx, in conjunction to β for consistency in terms of the

frame rate. The reference MDSVAD in Eq. (4.16) were generated from the same

speech sequences but with 50 dB global SNR to reduce miss-detections of speech.

All results were generated with K = 512 frequency bins. A square-root Hann

window was used for w(n) with 50% overlap (R = 256). The value of the a priori

SNR floor was chosen as ξo = −25 dB. In addition, a constant residual noise

floor, ε = −15 dB was employed for all the gain functions, such that

G(.)(k,m) = max
{
ε, G(.)(k,m)

}
. (4.22)

The results of the performance evaluation will differ with the noise estimate

λ̂v(k,m). In this experiment, the results were generated with the MMSE noise

estimator in [137]. As such, a consistent simulation could be run, where the only

changes in the system were the gain functions and the SNR estimators.
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The performance of the proposed approach was further verified by subjective

listening tests, where the listeners provided ratings for each individual component

of a noisy speech signal - the speech signal, the background noise, and the musical

noise [96]. The listener was prompted to rate the noisy and the enhanced speech

signal on the following three criteria:

1. SPCH: the speech signal using a 5 point scale of signal distortion;

2. NSE: the noise using a 5 point scale of background intrusiveness;

3. MUSIC: the musical noise using a 5 point scale of musicalness.

The SPCH, NSE and MUSIC scales are described in Table 4.2. Note that those

numbers are not absolute scales but serve as an indication of hearing experience

to evaluate speech quality. A total of eight listeners (six males, two females aged

between 20-30) were recruited for the listening tests. Five separate sentences,

consisting of three male spoken sentences and two female spoken sentences, were

included for the tests.They were taken from the same NOIZEUS database used

for objective evaluations. Each of them were corrupted with either pink noise

or factory noise, at 0 dB and 15 dB SNRs. Tests were performed using audio-

technica ATH-ESW9 headphones. The subjects were categorised into two groups:

one group was required to start the tests with 0 dB SNR cases, while the other

group began the tests from 15 dB SNR cases. During the tests, the listeners were

not given information about the type of the gain function and the method for

the SNR estimate used in each speech. The listeners were allowed to listen to

each sentence several times with access to the clean speech signal and noisy signal

references. The average duration of a test was approximately 2 hours per subject.

4.6.3 Evaluation of the Proposed MDD in Estimating A

Priori SNR

The performance of the MDD approach in estimating the a priori SNR is com-

pared with the DD approach and a reference method from [132]. Instead of using a

fixed smoothing factor β, the reference method, ξref modifies the DD approach by
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SPCH

Rating Description
5 No degradation, very natural
4 Little degradation, fairly natural
3 Somewhat degraded, somewhat natural
2 Fairly degraded, fairly unnatural
1 Very degraded, very unnatural

NSE

Rating Description
5 Not noticeable
4 Somewhat noticeable
3 Noticeable but not intrusive
2 Fairly conspicuous, somewhat intrusive
1 Very conspicuous, very intrusive

MUSIC

Rating Description
5 Not perceptible
4 Somewhat perceptible
3 Perceptible but not annoying
2 Fairly conspicuous, somewhat annoying
1 Very conspicuous, very annoying

Table 4.2: Description of the SPCH, NSE and MUSIC scales used in the listening
tests.

using a sigmoid function to control the weighting value for β. Figure 4.2 shows

an example of the a priori SNR estimation for ξDD, ξref and ξMDD approaches

with different gain functions when speech is detected. It can be observed that

the a priori SNR for all the gain functions can be represented as the smoothed

version of the a posteriori SNR. For the conventional DD approach, ξ̂DD(k,m)

follows the γ(k,m) − 1 estimate with one frame delay in speech frames when β

is close to 1, (β = 0.98). Both the reference method and the MDD approach

improve the DD approach in terms of reduction in the delays in speech onsets.

However, when the speech stops, ξMDD follows the a posteriori SNR estimate but

ξref gets a one frame delay. Thus, the proposed method is superior in estimating

the a priori SNR. It is a direct yet effective solution to reduce and eliminate the

distortion at speech transients. The same patterns of improvement can be seen



Chapter 4: Speech Enhancement using MSIG with A Priori SNR Estimate 61

for all the evaluated gain functions. In addition, the proposed method has poten-

tially lower computational complexity when compared to the reference method

in [132], which is beneficial for many real-time applications.

4.6.4 Objective Performance Evaluation

Evaluation is performed for both DD and MDD SNR estimators, for different gain

functions, which include the WF, LSA, SIG, MSIG-fix1, MSIG-fix2, and MSIG-

fix3 methods. The measurements employed are the PESQ measures, the SNRseg

measures, and the evaluation metric which include the KurtR, NRR and LLR

measures. For PESQ, SNRseg and NRR, higher scores indicate better results

and better speech quality. Meanwhile, lower KurtR and LLR scores mean less

musical noise and less speech distortion, respectively.

4.6.4.1 PESQ Evaluation

Figures 4.3-4.4 and 4.5-4.6 show the PESQ results for the DD and MDD ap-

proaches, respectively, for 0 dB and 15 dB SNRs. The PESQ scores obtained

from the WF, LSA and MSIG-fix1 gain functions have a similar trend. They

have better results at small values of β and αy, while having performance drop

when both β and αy are increasing. This is because speech starts to sound un-

natural and degraded when more smoothing is applied to the WF, LSA and

MSIG-fix1 approaches. In addition, the decreasing rate of the PESQ scores for

the MDD approach for an increasing β and αy is slower than the DD approach,

resulting in a better PESQ results for the MDD approach when both β and αy

are large values.

For the SIG function, while the DD approach follows the previously described

trend, the MDD approach has a different trend. At 0 dB SNR, the SIG function

with the MDD approach has better PESQ results for all β values at a large αy.

While at 15 dB SNR, it has the optimal PESQ scores at a smaller αy, of which

the values are the same for all β. This indicates that even with the same values

of β and αy, the amount of smoothing varies for different gain functions. Since

the MDD approach provides better PESQ scores at most β values, particularly

for β > 0.94, it is the preferred choice for SNR estimate when compared to the



Chapter 4: Speech Enhancement using MSIG with A Priori SNR Estimate 62

DD approach.

The contour shape obtained from MSIG-fix2 is similar to MSIG-fix3, but

totally different from WF, LSA, MSIG-fix1 and SIG. Both of them have better

PESQ results recorded when β and αy are large. This is because both MSIG-fix2

and MSIG-fix3, together with the SIG function, are non-aggressive gain functions.

As shown in Figure 4.1, they do not provide much noise suppression at low SNR.

Therefore, by providing more smoothing to the SNR estimates for these two gain

functions help to reduce noise variations, which leads to better PESQ scores.

In terms of the comparison between the SNR estimates, MSIG-fix2 has better

PESQ scores in conjunction with the MDD approach when compared to the DD

approach, while MSIG-fix3 has better PESQ scores when the DD approach is

employed.

As observed from the figures, both the WF and MSIG-fix1 have the best

PESQ results among all gain functions, with the MDD approach having the least

parameter sensitivity over a wide range of parameters and the best scores for

15 dB global SNR conditions. By taking this into account with the observation

that better PESQ results have been obtained for the MDD approach for increasing

β and αy, MDD performs better than DD, particularly for WF, LSA and MSIG-

fix1 in terms of the PESQ measure.

4.6.4.2 SNRseg Evaluation

Figures 4.7-4.10 present the SNRseg results for the DD and MDD approaches with

0 dB and 15 dB SNRs. All evaluated gain functions give better SNRseg results

for the MDD approach when compared with the DD approach for large value

of β. In particular, the MDD approach has a significant improvement over the

DD approach for the WF, LSA, MSIG-fix1 and SIG gain functions for all β and

αy. This indicates that the segmental SNR increases when the delay in speech

transients is reduced and removed. Also, the WF and MSIG-fix1 perform best

when β and αy are small, while LSA has better SNRseg results at high smoothing

setting.

For MSIG-fix2 at 0 dB SNR, apart from having the optimal point at different

smoothing parameters, the SNRseg results for both DD and MDD approaches are
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very similar. For MSIG-fix3, it has poorer SNRseg scores for the MDD approach

at 0 dB when compared to the DD approach. Despite that, at 15 dB SNR both

MSIG-fix2 and MSIG-fix3 give better SNRseg results for the MDD approach. For

SIG function, the MDD approach has similar performance with the DD approach

when less smoothing is applied, but it becomes better than the DD approach for

increasing β and αy.

4.6.4.3 Objective Speech Distortion, Musical Noise and Noise Sup-

pression Evaluation

Figures 4.11-4.12 and 4.13-4.14 present the results from the objective evaluation

metric for the DD and MDD approaches at 0 dB and 15 dB SNRs, respectively. In

terms of the amount of musical noise generated, KurtR decreases with increasing

values of β and αy for all evaluated gain functions with one exception (MSIG-

fix3). The MSIG-fix3 function is a rather flat function over a range of input SNRs

that lacks distinctiveness resulting in poor performance in terms of musical noise.

For the rest of the evaluated gain functions, the DD approach performs better

than MDD for KurtR with a few exceptions, which is due to the higher sensitivity

to changes in MDD that provides capability to track speech onsets. For WF and

MSIG-fix1, both the DD and MDD approaches have almost identical results for

the KurtR measure at β > 0.98. Meanwhile, at 15 dB SNR, there is a significant

improvement in performance for the MDD approach over the DD approach in

conjunction with both WF and MSIG-fix1 functions when β is large. These

results are the best among all evaluated gain functions. Since less musical noise

is generated with large smoothing parameters, the MDD approach is a better

choice for both WF and MSIG-fix1 approaches.

While WF and MSIG-fix1 are the best gain functions to be used for the

MDD approach in terms of the KurtR measure, LSA performs the best for the

DD approach with large smoothing parameters. On the other hand, for less

smoothing applied, SIG is the best gain functions among all. Apart from that,

MSIG-fix2 and MSIG-fix3 perform worst in KurtR results among all evaluated

gain functions. This is because both gain functions are less aggressive and are not

directly propositional towards the a priori SNR as shown in Figure 4.1. There
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is a drop in gain values between ξ = −5 dB and ξ = 0 dB, which should be the

main factor that isolated spectral components were formed after the processing.

The results from the NRR measure are almost inversely proportional to the

KurtR measure. All evaluated gain functions show poorer performance for the

MDD approach when compared to the DD approach. This can be explained as

MDD has more variations in noise when compared to the DD approach. However,

the remaining residual noise in the enhanced signal helps to mask the musical

noise. This acts as a good compromise between the amount of musical noise and

noise reduction for the MDD approach.

In terms of the amount of speech distortion generated, LLR is almost directly

proportional to the NRR measure. From the figures, a small LLR can be ob-

tained for a decreasing β and αy. At small β and αy values, the DD approach

performs better than the MDD approach. Meanwhile, at large β and αy values,

the MDD approach generally gives less speech distortion when compared to the

DD approach. This indicates that with a large smoothing parameters, the MDD

approach performs better than the DD approach, particularly for the WF, LSA

and MSIG-fix1 gain functions.

4.6.5 Subjective Listening Tests

Subjective listening tests were performed to validate the results from the objective

measures. The description of the tests setup can be found in Section 4.6.2. Prior

to the subjective tests, appropriate choice of parameters β and αy has to be

determined.

4.6.5.1 Selection of Smoothing Parameters

Tables 4.3 and 4.4 summarise the best smoothing parameters for different gain

functions and different SNR levels. As can be seen in the tables, a small value for

β is preferred for lower speech distortion in the case of WF, LSA, SIG and MSIG-

fix1 gain functions. This is validated from the LLR, PESQ and SNRseg results.

However, there is a trade-off because of the resulting high level of annoying mu-

sical noise in the output when both β and αy are small. Also, small values in β
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and αy give low NRR values, which is not desirable in most situations. In addi-

tion, an increment of both β and αy does not give a direct drop in speech quality.

This means that by choosing appropriate values for both smoothing parameters,

a balanced trade-off can be obtained. Meanwhile, for MSIG-fix2 and MSIG-fix3,

better PESQ, SNRseg and LLR results are recorded at larger values for β and

αy. This motivates the use of MSIG functions as they are able to show similar

preferred smoothing parameters from all the objective measurement results.

The last columns in Tables 4.3 and 4.4 also show the smoothing parameters

chosen for the listening test. The value β for each gain function and each SNR

condition was chosen such that the smallest value was selected so that the KurtR

was at its minimum value. This is to keep the speech distortion as low as possible

while having the lowest possible level of audible musical noise. The value αy was

chosen as the mean of αy values from all the objective measures. This have been

found to be a reasonable compromise between the aforementioned trade-offs.

4.6.5.2 Objective Measurement with Selected Smoothing Parameters

Objective measurement was also performed for the selected parameters listed in

Tables 4.3 and 4.4, using the NOIZEUS database. Tables 4.5 lists the average

results for pink noise, where ∆ indicates the improvement between the enhanced

signals and the noisy signals. According to the table, WF, LSA, and MSIG-

fix1 have better performance particularly in terms of noise reduction as reflected

by the results from SNRseg and NRR measures. When comparing both DD

and MDD a priori SNR estimates, WF and MSIG-fix1 perform best with MDD

approach, as indicated by larger NRR results while having smaller KurtR values.

While for LSA, DD has slightly less musical noise when compared to MDD, with

approximately similar NRR results. For MSIG-fix2 and MSIG-fix3, their results

indicate less noise reduction when compared to WF, LSA and MSIG-fix1. In

terms of KurtR measure, MSIG-fix2 with DD approach has similar amount of

musical noise when compared to WF and MSIG-fix1. For MSIG-fix2 with MDD

approach and MSIG-fix3 with both DD and MDD approaches, KurtR results are

large. In terms of the least amount of musical noise generated, the SIG function

has the smallest KurtR values, but with the least amount of noise reduction
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from SNRseg and NRR measures. As for the amount of speech distortion, all

evaluated gain functions have almost similar performance, as shown by PESQ

and LLR scores, except for SIG with slightly poorer performance when compared

to others.

Table 4.6 shows the average results for the factory noise. The results are

similar to the results from pink noise, except for some cases from the KurtR

values. As observed in 15 dB SNR, the DD approach has smaller KurtR results

for all evaluated gain functions when compared to the MDD approach for factory

noise. Here, MSIG-fix3 has the smallest KurtR results, which is similar to the

results from the SIG function. However, since MSIG-fix3 has larger SNRseg and

similarly small NRR results when compared with the SIG function, more distorted

noise would be perceived as musical noise.

4.6.5.3 Evaluation for Listening Tests

Tables 4.7 and 4.8 tabulate the average results of the subjective listening tests,

and also the overall performance of each gain function by taking the average

of SPCH, NSE and MUSIC. From the overall scales, it can be observed that

although the difference is not that significant, the listeners preferred the signals

with WF and MSIG-fix1 gain functions, both combined with the MDD approach.

The results are consistent for both noise types. For the LSA method, the overall

performance between the DD and the MDD approach are almost identical, while

LSA with DD approach has recorded the least amount of musical noise particu-

larly in the pink noise. For the MSIG-fix2 and MSIG-fix3 functions, the audible

musical noise is more prominent which is reflected in the MUSIC column. This

trend is particularly obvious with the MDD approach, which aligns with the ob-

jective results. As for the SIG function, there is less musical noise in the output,

but also a very small amount of noise suppression. The MDD approach helps

to reduce audible noise and increase noise reduction for aggressive gain functions

such as WF and MSIG-fix1. While for other less aggressive gain functions, the

DD approach can be sufficient. As for factory noise, particularly at 15 dB SNR,

the subjective results are almost the same for each a priori SNR estimate and

every gain function. The suggested reason behind this is that the factory noise is
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less intrusive than the pink noise. Thus, less noise with less audible musical noise

was perceived when the noise floor was fixed at −15 dB for the gain functions.

4.7 Summary

In this chapter, a new MSIG has been developed to provide flexibility to the gain

function that can be optimised to match various criteria to achieve a comprom-

ised trade-off among speech distortion, noise reduction and musical noise. In

addition, a new approach to estimate the a priori SNR has been proposed for the

MDD, which reduces and eliminates the speech transient distortion. The musical

noise has been further reduced by applying more smoothing to the a posteriori

SNR by using a recursive averaging algorithm. As such, the level of smoothing is

controlled by the parameters β and αy. Performance evaluation shows that the

proposed MDD performs better than the traditional DD. The MSIG-fix1 function

has similar performance compared to the conventional gain functions. At large

smoothing parameters, MSIG-fix2 and MSIG-fix3 generate the lowest speech dis-

tortion among all evaluated gain functions. Finally, subjective listening tests

verify the findings from the objective measurements and give confidence that the

chosen objective measures reflect the true subjective experience. The proposed

algorithms and the findings in the performance measures help to develop a prom-

ising binaural speech enhancement algorithm, which will be discussed in Chapter

7.
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Figure 4.1: Gain curves of different algorithms, as functions of the a priori SNR
ξ(k,m), where γ(k,m) = ξ(k,m) + 1.
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Figure 4.2: Comparison between MDSVAD decisions, γ(k,m) − 1 (blue dashed
line), ξ̂DD(k,m) (black solid line), ξ̂ref(k,m) (green solid line) and ξ̂MDD(k,m)
(red dotted line) at 937.5 Hz and 15 dB SNR. Here, β = 0.98 were applied for
ξ̂DD(k,m) and ξ̂MDD(k,m), while αy = 0.3 were employed for all evaluated a priori
SNR estimators.
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Figure 4.3: Average PESQ scores with ξ̂DD at SNR = 0 dB.
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Figure 4.4: Average PESQ scores with ξ̂MDD at SNR = 0 dB.
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Figure 4.5: Average PESQ scores with ξ̂DD at SNR = 15 dB.
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Figure 4.6: Average PESQ scores with ξ̂MDD at SNR = 15 dB.
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Figure 4.7: Average SNRseg values with ξ̂DD at SNR = 0 dB.
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Figure 4.8: Average SNRseg values with ξ̂MDD at SNR = 0 dB.



Chapter 4: Speech Enhancement using MSIG with A Priori SNR Estimate 72

8.5

9

9.5

10

10.5

mean SNRseg
WF

α
y

0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

mean SNRseg
LSA

0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

mean SNRseg
SIG

 

 

0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

8.5

9

9.5

10

10.5

mean SNRseg
MSIG−fix1

α
y

β
0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

mean SNRseg
MSIG−fix2

β
0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

mean SNRseg
MSIG−fix3

β

 

 

0.9 0.92 0.94 0.96 0.98
0

0.2

0.4

0.6

Figure 4.9: Average SNRseg values with ξ̂DD at SNR = 15 dB.
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Figure 4.10: Average SNRseg values with ξ̂MDD at SNR = 15 dB.
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Figure 4.11: Average results for KurtR, NRR and LLR measures with ξ̂DD at
SNR = 0 dB.
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Figure 4.12: Average results KurtR, NRR and LLR measures with ξ̂MDD at SNR
= 0 dB.
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Figure 4.13: Average results KurtR, NRR and LLR measures with ξ̂DD at SNR
= 15 dB.
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Figure 4.14: Average results KurtR, NRR and LLR measures with ξ̂MDD at SNR
= 15 dB.
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SNR PESQ SNRseg KurtR NRR LLR Test

WF
β

0 dB 0.90 0.90 0.91 0.94 0.90
0.91

15 dB 0.90 0.90 0.98 0.95 0.90

αy
0 dB 0-0.2 0-0.4 0.7 0.7 0-0.3

0.35
15 dB 0 0-0.2 0-0.5 0.2-0.3 0-0.2

LSA
β

0 dB 0.90 0.90 0.97 0.95 0.90
0.95

15 dB 0.90 0.90 0.99 0.96 0.90

αy
0 dB 0.1-0.5 0.3-0.4 0 0.6-0.7 0-0.7

0.39
15 dB 0.1-0.4 0.2 0-0.2 0.3-0.4 0-0.4

SIG
β

0 dB 0.90 0.90 0.99 0.98 0.90
0.98

15 dB 0.90 0.90 0.99 0.98 0.90

αy
0 dB 0-0.1 0-0.1 0.6 0.6-0.7 0-0.6

0.40
15 dB 0-0.3 0-0.2 0.2-0.6 0-0.5 0-0.3

MSIG-fix1
β

0 dB 0.90 0.90 0.90 0.94 0.90
0.90

15 dB 0.90 0.90 0.98 0.97 0.90

αy
0 dB 0-0.2 0-0.4 0.7 0.6-0.7 0-0.4

0.35
15 dB 0 0-0.2 0-0.5 0.1-0.3 0-0.1

MSIG-fix2
β

0 dB 0.90 0.93 0.98 0.99 0.90
0.98

15 dB 0.94 0.90 0.98 0.99 0.90

αy
0 dB 0.6-0.7 0.5 0.7 0.2-0.7 0.6-0.7

0.52
15 dB 0.2-0.3 0-0.5 0.7 0-0.4 0

MSIG-fix3
β

0 dB 0.95 0.96 0.99 0.97 0.90
0.97

15 dB 0.95 0.94 0.99 0.99 0.90

αy
0 dB 0.5-0.6 0.5-0.6 0.6-0.7 0.6-0.7 0.7

0.52
15 dB 0.3 0.2-0.3 0.6-0.7 0-0.6 0

Table 4.3: Approximated best smoothing values for different gain functions with
DD approach.
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SNR PESQ SNRseg KurtR NRR LLR Test

WF
β

0 dB 0.90 0.90 0.96 0.98 0.90
0.96

15 dB 0.90 0.90 0.98 0.98 0.90

αy
0 dB 0-0.6 0.2-0.4 0.7 0.6 0.4-0.6

0.49
15 dB 0-0.3 0-0.3 0-0.6 0-0.4 0-0.4

LSA
β

0 dB 0.90 0.94 0.97 0.98 0.90
0.97

15 dB 0.90 0.90 0.98 0.99 0.90

αy
0 dB 0.3-0.6 0.2-0.3 0.5 0.2-0.4 0.4-0.6

0.36
15 dB 0.2 0-0.2 0.2-0.4 0.2-0.4 0

SIG
β

0 dB 0.90 0.97 0.98 0.97 0.90
0.97

15 dB 0.90 0.90 0.98 0.98 0.90

αy
0 dB 0.6 0.2-0.4 0.7 0.6 0.7

0.49
15 dB 0.2 0.1-0.2 0.2-0.6 0.1-0.4 0.4-0.5

MSIG-fix1
β

0 dB 0.90 0.90 0.96 0.97 0.90
0.96

15 dB 0.90 0.90 0.98 0.98 0.90

αy
0 dB 0.2-0.4 0-0.5 0.6 0.7 0.3-0.6

0.48
15 dB 0-0.3 0-0.3 0-0.6 0-0.4 0-0.4

MSIG-fix2
β

0 dB 0.93 0.99 0.99 0.97 0.94
0.97

15 dB 0.98 0.90 0.99 0.98 0.91

αy
0 dB 0.7 0.2-0.7 0.7 0.7 0.7

0.56
15 dB 0.2-0.3 0-0.2 0.4-0.7 0.3 0.5-0.6

MSIG-fix3
β

0 dB 0.97 0.99 0.90 0.99 0.90
0.90

15 dB 0.99 0.98 0.90 0.99 0.99

αy
0 dB 0.6-0.7 0.4-0.7 0 0.7 0.7

0.50
15 dB 0.1-0.3 0.2 0.7 0.1-0.4 0.1-0.6

Table 4.4: Approximated best smoothing values for different gain functions with
MDD approach.
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0 dB SNR

Signal
∆PESQ ∆SNRseg KurtR NRR ∆LLR

DD MDD DD MDD DD MDD DD MDD DD MDD

WF 0.5 0.5 3.9 3.9 2.3 1.8 14.2 14.6 -0.2 -0.2
LSA 0.5 0.5 3.7 3.9 1.5 2.1 14.4 14.3 -0.2 -0.2
SIG 0.3 0.4 2.7 2.9 1.6 2.6 9.5 8.7 -0.1 -0.1

MSIG-fix1 0.5 0.5 4.0 3.9 2.5 1.7 14.1 14.6 -0.2 -0.2
MSIG-fix2 0.5 0.5 3.6 3.7 2.2 4.3 13.8 12.3 -0.2 -0.2
MSIG-fix3 0.5 0.4 3.4 3.1 3.7 4.8 11.5 9.0 -0.2 -0.2

15 dB SNR

WF 0.6 0.6 3.5 3.4 2.9 2.3 13.7 14.1 -0.3 -0.3
LSA 0.6 0.6 3.1 3.5 2.3 2.3 13.9 14.1 -0.3 -0.3
SIG 0.5 0.5 3.0 3.4 1.7 2.5 9.3 8.7 -0.2 -0.3

MSIG-fix1 0.6 0.6 3.5 3.4 3.2 2.3 13.6 14.1 -0.3 -0.2
MSIG-fix2 0.6 0.6 2.9 3.6 2.9 4.3 13.1 12.0 -0.3 -0.3
MSIG-fix3 0.5 0.5 3.3 3.4 4.0 4.8 10.9 8.9 -0.3 -0.3

Table 4.5: Objective results for pink noise with selected parameters.

0 dB SNR

Signal
∆PESQ ∆SNRseg KurtR NRR ∆LLR

DD MDD DD MDD DD MDD DD MDD DD MDD

WF 0.6 0.6 4.6 4.5 4.1 4.1 13.9 14.3 -0.1 -0.1
LSA 0.6 0.6 4.5 4.6 3.4 4.0 14.2 14.1 -0.1 -0.1
SIG 0.4 0.4 3.4 3.4 2.2 3.1 9.8 9.0 -0.1 -0.2

MSIG-fix1 0.6 0.6 4.6 4.5 4.2 4.1 13.8 14.4 -0.1 -0.1
MSIG-fix2 0.6 0.6 4.4 4.5 3.4 4.1 13.4 12.2 -0.1 -0.2
MSIG-fix3 0.5 0.5 4.3 4.0 3.4 3.9 11.4 9.3 -0.2 -0.2

15 dB SNR

WF 0.5 0.5 5.0 4.9 3.8 4.2 12.3 12.5 0.1 0.1
LSA 0.5 0.6 4.7 4.9 3.6 4.3 12.4 13.0 0.1 0.1
SIG 0.4 0.4 4.3 4.4 2.4 2.9 9.1 8.5 0 0

MSIG-fix1 0.5 0.5 5.0 4.9 3.8 4.3 12.1 12.5 0.1 0.1
MSIG-fix2 0.5 0.5 4.6 5.1 3.3 3.4 11.6 10.7 0.1 0
MSIG-fix3 0.4 0.4 5.0 5.0 2.8 2.9 9.8 8.3 0 0

Table 4.6: Objective results for factory noise with selected parameters.
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SNR Signal
SPCH NSE MUSIC Overall

DD MDD DD MDD DD MDD DD MDD

0 dB

Noisy 3.0 1.0 5.0 2.98
WF 3.5 3.6 2.6 2.8 3.4 3.5 3.16 3.28
LSA 3.3 3.5 2.2 2.4 4.1 3.8 3.21 3.22
SIG 3.0 3.2 1.4 1.5 4.6 4.1 2.97 2.92

MSIG-fix1 3.7 3.7 2.9 2.9 3.1 3.5 3.20 3.35
MSIG-fix2 3.8 4.0 3.0 3.7 2.5 1.7 3.08 3.12
MSIG-fix3 4.1 4.2 4.0 4.2 1.3 1.0 3.12 3.12

15 dB

Noisy 4.0 1.6 5.0 3.51
WF 4.6 4.6 3.5 3.6 3.7 4.0 3.91 4.09
LSA 4.4 4.4 3.1 3.3 4.2 4.1 3.91 3.94
SIG 4.1 4.2 2.1 2.4 4.8 4.1 3.66 3.54

MSIG-fix1 4.7 4.9 3.8 3.7 3.6 4.0 3.99 4.18
MSIG-fix2 4.9 4.9 3.8 4.3 3.4 2.5 4.00 3.86
MSIG-fix3 4.9 4.9 4.4 4.5 2.4 1.5 3.86 3.58

Table 4.7: Subjective results for pink noise.

SNR Signal
SPCH NSE MUSIC Overall

DD MDD DD MDD DD MDD DD MDD

0 dB

Noisy 3.9 1.7 5.0 3.52
WF 4.6 4.6 3.5 3.6 4.5 4.6 4.18 4.26
LSA 4.4 4.5 3.3 3.3 4.7 4.6 4.14 4.14
SIG 4.1 4.2 2.4 2.4 4.9 4.6 3.79 3.73

MSIG-fix1 4.7 4.7 3.6 3.6 4.3 4.5 4.18 4.28
MSIG-fix2 4.7 4.7 3.7 3.9 4.0 3.1 4.13 3.90
MSIG-fix3 4.7 4.7 3.9 4.0 2.6 2.1 3.75 3.62

15 dB

Noisy 4.5 2.8 5.0 4.09
WF 4.9 4.9 4.1 4.1 4.9 4.9 4.61 4.62
LSA 4.9 4.9 4.0 4.1 4.9 4.9 4.58 4.59
SIG 4.7 4.7 3.4 3.4 4.9 4.7 4.33 4.29

MSIG-fix1 4.9 4.9 4.1 4.1 4.8 4.9 4.60 4.63
MSIG-fix2 4.9 4.9 4.2 4.2 4.8 4.3 4.60 4.45
MSIG-fix3 4.9 4.9 4.2 4.3 4.1 3.7 4.40 4.27

Table 4.8: Subjective results for factory noise.



Chapter 5

Noise Estimation for Speech

Enhancement

Research is to see what everybody else has seen,

and to think what nobody else has thought.

– Albert Szent-Gyorgyi

5.1 Introduction

This chapter will focus on noise estimation for speech enhancement. As the noise

power may change rapidly over time, its estimate has to be updated as often as

possible. Using an overestimate or an underestimate of the true, but unknown,

spectral noise power will lead to an over-attenuation or under-attenuation of the

noisy signal. This might lead to a large amount of speech distortion and remaining

noise when employed in a speech enhancement framework. One way to estimate

the spectral noise power is during periods where speech is present or absent. This

requires detection of speech presence by using a voice activity detection (VAD),

see e.g., [92, 143, 144]. However, in non-stationary noise scenarios, this detection

is difficult, as a sudden rise in the noise power can be treated as a speech onset. In

addition, if the noise spectral power changes during speech presence, this change

can only be detected with a delay.

To improve estimation of the spectral noise power, several approaches have

been proposed in literature. Among the most established estimators are those

81
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based on minimum statistics (MS) [90, 91, 145]. In [90] the power spectrum of

the noisy signal is estimated on a frame basis and observed over a finite win-

dow of about 1-3 seconds time-span. In general, MS based spectral noise power

estimators utilises the assumption that speech is absent during at least a small

part within the observed window. The spectral noise power is then obtained from

the minimum of the estimated power spectrum of the noisy signal. This makes

MS robust, however, if the noise power rises within the observed window, noise

spectrum will be underestimated or tracked with a certain delay. The amount

of delay generally depends on the buffer length chosen for the finite window. A

shorter buffer length results in a shorter maximum delay. However, decreasing the

buffer length is not plausible as this increases the chance that speech is not absent

within this observed window. The consequence of this is that the spectral noise

power may be overestimated, as the estimator might track instances of the noisy

spectral power instead of the noise spectral power. Thus in [90] mechanisms are

proposed to enable tracking of rising noise powers within the observed window,

but still with a rather large delay. The local underestimation of the noise power

is likely to result in annoying artifacts, like residual noise and musical noise, when

the noise power estimate is applied in a speech enhancement framework.

The methods in [91, 145, 146] are based on a recursive averaging of the noisy

spectral power using the speech presence probability (SPP), which is obtained

from the ratio of the likelihood functions of speech presence and speech absence.

As oppose to the likelihood of speech absence, the likelihood of speech presence

contains the a priori signal-to-noise ratio (SNR). In case the a priori SNR is zero,

both likelihood functions overlap such that there will be no distinction between

speech presence and absence. In [91, 145, 146], the a priori SNR is estimated

adaptively on a short-time scale. In speech absence the adapted a priori SNR

estimate is close to zero, and the two likelihood functions eventually overlap. The

resulting a posteriori SPP yields only the a priori SPP, which is independent of

the observed signal. This problem is tackled in [91], where low values for the

a posteriori SPP are enabled by an additional adaptation of the a priori SPP

with respect to the observation. However, as the methods in [145] and [146] are

based on MS principles, they show also a delay in tracking the rising spectral
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noise powers similarly to [90].

Recent works in spectral noise power estimation generally focus on tracking

of the spectral noise power with a shorter delay and lower complexity, i.e., the

minimum mean square error (MMSE)-based approaches [137, 147]. They are

computationally less demanding and at the same time robust to increasing noise

levels as shown in a comparison presented in [148]. In the MMSE-based estim-

ator, first a limited maximum likelihood (ML) estimate of the a priori SNR is

used to obtain an MMSE estimate of the noise periodogram. Nevertheless, un-

der the given a priori SNR estimate, the resulting MMSE estimate exhibits a

bias which can be computed analytically. In order to compensate for the bias,

a second estimate of the a priori SNR is required. It has been shown in [149]

that under the given ML a priori SNR estimator, the MMSE-based spectral noise

power estimator can be interpreted as a VAD-based estimator. To improve the

MMSE-based spectral noise power estimator, the algorithm in [137] was mod-

ified in [149] such that it evolves into a soft SPP instead of a hard SPP (i.e.,

VAD)-based estimator, which automatically makes the estimator unbiased. The

proposed estimator exhibits a computational complexity that is even lower than

that of the MMSE-based approach [137] while maintaining its fast noise tracking

performance without requiring a bias compensation.

In this chapter, two algorithms for noise estimation, which focus on low track-

ing delay and low computational complexity for hearing protection devices, are

proposed. The first method, namely step-size controlled (SSC) noise estimator,

does not require the estimation of statistical properties of noise and speech. An

estimation procedure is developed by comparing the noise estimate with the

smoothed noisy speech spectrum at every time frame. Based on this comparison,

the noise estimate is updated from its own feedback using a defined step-size.

The step-size is optimised such that it can track the true noise estimate while

still providing robustness to speech onsets for varying noise conditions and vary-

ing SNRs. The step-size is optimised by using the golden section search (GSS)

approach, with cost function based on the symmetric logarithmic-error distortion

measure (LogErr) and the perceptual evaluation of speech quality (PESQ) ob-

jective measure. The advantage of the proposed method is that the noise tracking
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does not depend on the search window length and does not require any bias com-

pensation. The second method, called the soft VAD (SVAD) approach, does not

really mean a VAD but a recursive averaging that relies on a modified SPP. For

this method, a flexible sigmoid function can be used to replace the SPP algorithm

in [149]. This function offers the possibility to alter the slope and the mean of the

SPP independently to achieve a desired trade-off between noise overestimation

and underestimation. We also argue that a soft SPP is insufficient for the noise

tracking, and so improve it by employing harder decisions based on conditional

smoothing.

5.2 Step-size Controlled Noise PSD Estimator

A SSC noise power spectral density (PSD) estimator is proposed in this section.

It is motivated by the well-known sigma-delta modulation for encoding analog

signals into digital signals or higher-resolution digital signals into lower-resolution

digital signals. As the low-resolution signal typically changes more quickly than

the high-resolution signal, the conversion is done using error feedback, where the

difference between the two signals is measured, and the low-resolution signal can

be filtered to recover the high-resolution signal with little or no loss of fidelity.

With this in mind, to obtain a noise estimate without using any prior knowledge

of the noise statistics, lets consider the following two hypotheses

H0(k,m) : Y (k,m) = V (k,m)

H1(k,m) : Y (k,m) = X(k,m) + V (k,m).
(5.1)

Let Λ(k,m) denote the noise estimate. The hypotheses in Eq. (5.1) have the

following properties

Λ(k,m)|H0(k,m) : noise level only changes over long period of time

Λ(k,m)|H1(k,m) : speech has large changes in the envelope.
(5.2)

Now consider an estimator that can track slow variations in Λ(k,m)|H0(k,m)

but is not fast in tracking large deviations within short durations as in the case

of Λ(k,m)|H0(k,m). Such an estimator can be found by controlling the feedback

of the estimate Λ(k,m) from previous frame at current frame with a constant
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step-size. This is done by firstly initialising Λ(k,m) to be equal to the noisy

speech estimate λy(k,m), given by

λy(k,m) = αyλy(k,m− 1) + (1− αy)|Y (k,m)|2 (5.3)

where αy = exp (−2.2R) / (tyfs) is the smoothing constant, with R denotes the

frame rate and fs denotes the sampling frequency. This smoothing constant

determines the tracking capability and the estimation error of the speech estimate.

Since Y (k,m) contains both speech and noise, αy is chosen such that it represents

a short-term speech estimate.

After that, the following steps are computed for every time frame

If Λ(k,m− 1) ≤ λy(k,m)

Then

Λ(k,m) = (1 + δ1)Λ(k,m− 1)

Otherwise

Λ(k,m) = (1− δ2)Λ(k,m− 1)

(5.4)

where δ1 and δ2 denote the step-size constants. The noise estimate Λ(k,m) can be

smoothed again using Eq. (5.3) with a larger time constant to reduce variations

λv(k,m) = αvλv(k,m− 1) + (1− αv)|Λ(k,m)| (5.5)

where αv is calculated same way as αy, but with longer averaging, such that

αv > αy. A motivation for the update in Eq. (5.4) can be illustrated in Figure

5.1, which shows the noisy speech estimate λy(k,m) and the noise estimates,

Λ(k,m) and λv(k,m), respectively, for noisy speech corrupted by factory noise.

By using the step-size constants δ1 and δ2, the noise estimate Λ(k,m) can track

variations in the background noise but is not sensitive to large deviations, which

represent the speech onsets. The long-term estimate λv(k,m) is shown to have

much less variations than Λ(k,m).

The noise estimator becomes unbiased when both step-size constants are

equal, i.e., δ1 = δ2 = δ. As such, the performance of this estimator depends

on neither a bias compensation nor the window length. The resulting Λ(k,m)

will be very robust against speech onsets since the comparison only measures if

the current short-term noisy speech estimate λy(k,m) is larger or smaller than the
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Figure 5.1: Speech corrupted by factory noise: comparison between short-term
noisy speech estimate λy(k,m) (dotted line) and noise estimate before smoothing
Λ(k,m) (solid line) and after smoothing λv(k,m) (dash-dot line) at 1562.5 Hz.

previous noise estimate Λ(k,m − 1). Also, the simplicity of this noise estimator

makes it applicable for real time application.

5.2.1 Step-size Optimisation

The objective is to obtain the optimal step-size δopt., which can be used for

different types and levels of noise. This is done based on the performance of noise

tracking and speech quality. The noise tracking capability is evaluated by using

the LogErr measure [137]

LogErr =
1

KM

K∑
k=1

M∑
m=1

∣∣∣∣10 log10

σ2
v(k,m)

Λ(k,m)

∣∣∣∣ [dB] (5.6)

where σ2
v(k,m) denotes the true noise power spectrum obtained by recursive

smoothing the noise periodogram |V (k,m)|2

σ2
v(k,m) = 0.9σ2

v(k,m− 1) + 0.1|V (k,m)|2. (5.7)

The speech quality performance is evaluated by using the PESQ measure. PESQ

has been proposed in ITU-T Recommendation P.862 and has been suggested to

be a reliable objective measure for speech quality [96].

Thus, the optimisation problem is formulated as

F (δ) = min
δ
WLogErr(δ)− (1−W )PESQ(δ) (5.8)



Chapter 5: Noise Estimation for Speech Enhancement 87

where 0 ≤ W ≤ 1 represents the trade-off between two objective measures. Here

W is chosen as W = 0.5 . The search of δopt. is done by using the GSS method.

Let the search interval be [δi, δj], the measurement points within the first interval

[δi, δj] are

δa = $δi + (1−$) δj δb = (1−$) δi +$δj (5.9)

where $ =
√

5−1
2

denotes the golden search ratio. The search intervals [δi, δj] and

the measurement points [δa, δb] are repeatedly updated by using the following

steps

If F (δa) ≤ F (δb) then

Update δj = δb δ′b = δa δ′a = $δi + (1−$) δj

Otherwise

Update δi = δa δ′a = δb δ′b = (1−$) δi +$δj.

(5.10)

The GSS is terminated if |δb − δa| < ς, where ς denotes the error tolerance of

δopt.. The optimal value δopt. is set as the smallest value among δa and δb.

In order to obtain an optimal δopt. for SSC noise PSD estimator, 24 Eng-

lish spoken utterances were used. The speech enhancement system in [5] was

employed. The parameters used for the step-size optimisation are chosen from

empirical studies, such that δi = 0.01, δj = 0.05, and ς = 0.000001. The op-

timal step-size δopt. is obtained by computing F (δ) for each speech sentence in

the database at each global SNR. Table 5.1 shows the mean values of δopt. with

their standard deviations. As observed, δopt. decreases when the input SNR in-

creases. This follows naturally from the fact that higher noise levels would have

larger variations in the PSD estimate, thus a larger δ is required under lower

input SNR. However, for factory noise, the mean value at 10 dB SNR is larger

when compared to the mean value at 5 dB SNR. This is due to the fact that

the noise variations is small at high SNR. As such, the noise estimate becomes

more sensitive to large variations in speech onsets. This is particularly noticeable

when the factory noise is non-stationary and is usually concentrated in the low

frequency range. The results also show that the standard deviation for factory

noise is much larger compared to the standard deviation for pink noise. By tak-

ing the average of the values in Table 5.1, step-size is set as δ = 0.04 for the

performance evaluation later in this chapter.
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SNR Pink Noise Factory Noise

-5 0.0483±0.0011 0.0415±0.0115
0 0.0478±0.0014 0.0344±0.0156
5 0.0476±0.0023 0.0316±0.0187
10 0.0418±0.0131 0.0341±0.0192

Table 5.1: Optimal step-size values δopt. (mean ± standard deviation).

5.2.2 Varying Smoothing Factors

As mentioned in the previous section, the SSC noise estimate tends to become

more sensitive to large variations in speech onsets at high input SNR, and tracks

the speech estimate instead of the noise estimate. One way to avoid this is to let δ

vary depending on the noise types and input SNRs, which is not what we desired.

Here, we utilise the fact that since the constant step-size δ follows the noisy

speech estimate λy(k,m) in order to update the estimate Λ(k,m), the amount

of fluctuations in λy(k,m) decides the performance of the noise tracker. By

employing a shorter averaging for αy, the estimate Λ(k,m) would track the small

variations in noise estimate and would be less sensitive to the large fluctuations

in speech estimate under high input SNR. However, in this case if the variations

of |Y (k,m)|2 is large, i.e., when the input SNR is very low, Λ(k,m) will also

have a large variation and will probably underestimate the high level noise since

the step-size δ = 0.04 is small. Thus, a mechanism is proposed to use a longer

averaging at low SNR and a shorter one at high SNR, given by

If 5dB < 10 log10E
(
λy(k,m)

λv(k,m)

)
≤ 10dB then

ty = −
(

ty,2−ty,1
SNR2−SNR1

)
SNR1 + ty,1 +

(
ty,2−ty,1

SNR2−SNR1

)(
10 log10E

(
λy(k,m)

λv(k,m)

))
Otherwise

If 10 log10E
(
λy(k,m)

λv(k,m)

)
≤ 5dB then ty = ty,1

Otherwise ty = ty,2
(5.11)

where ty,1 > ty,2 and SNR1 < SNR2 are different fixed time constants and input

SNR in dB, respectively. Similar to Eq. (5.11), shorter averaging is also applied

to λv(k,m) at higher input SNR, with tv,1 > tv,2 and SNR1 < SNR2.
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5.3 Soft VAD Noise PSD Estimator

Now, we will focus on the second main study in this chapter, namely the SVAD

Noise PSD Estimator. Again, given two hypothesis, H0(k,m) and H1(k,m),

which denote, respectively, speech absence and speech presence in the kth fre-

quency bin of the mth frame. Under the assumption that the STFT coefficients

of both speech and noise are complex Gaussian distributed, the conditional prob-

ability density functions (PDFs) of the observation are given by [91]

P (Y (k,m)|H0(k,m)) =
1

λv(k,m)π
exp

(
−|Y (k,m)|2

λv(k,m)

)
(5.12)

P (Y (k,m)|H1(k,m)) =
1

(λx(k,m) + λv(k,m))π
exp

(
− |Y (k,m)|2

λx(k,m) + λv(k,m)

)
(5.13)

where λx(k,m) = E {|X(k,m)|2 |H1(k,m)} is the speech power spectrum and

λv(k,m) = E {|V (k,m)|2} indicates the noise power spectrum. As such, the

a posteriori SNR and the a priori SNR can be defined respectively as γ = |Y (k,m)|2
λv(k,m)

and ξ = λx(k,m)
λv(k,m)

. By applying Bayes’ theorem, the a posteriori SPP p(k,m) =

P (H1(k,m)|Y (k,m)) can be obtained from Eqs. (5.12) and (5.13) at every time-

frequency point as [91]

p(k,m) =

{
1 +

P (H0(k,m))

P (H1(k,m))
(1 + ξ(k,m)) exp

(
−γ̂(k,m)

ξ(k,m)

1 + ξ(k,m)

)}−1

(5.14)

where P (H0(k,m)) and P (H1(k,m)) denote, respectively, the a priori probabil-

ities for speech absence and speech presence.

As the noise power spectrum λv(k,m) is practically unknown, it has to be

estimated. A direct way of obtaining the estimate λ̂v(k,m) is by applying a

temporal recursive smoothing to the noisy observation during speech absence

periods only, such that

H0(k,m) : λ̂v(k,m) = αvλ̂v(k,m− 1) + (1− αv) |Y (k,m)|2

H1(k,m) : λ̂v(k,m) = λ̂v(k,m− 1)
(5.15)

where αv(k,m) denotes the smoothing factor for the noise PSD estimate. By ap-

plying the a posteriori SPP from Eq. (5.14) to Eq. (5.15), the recursive averaging
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becomes [91]

λ̂v(k,m) = p(k,m)λ̂v(k,m− 1)

+ (1− p(k,m))
[
αvλ̂v(k,m− 1) + (1− αv) |Y (k,m)|2

]
.

(5.16)

Whereas such SPP based noise power estimator can also be derived in the MMSE

sense as in [149]. That results in

λ̂v(k,m) = αvλ̂v(k,m− 1)

+ (1− αv)
[
p(k,m)λ̂v(k,m− 1) + (1− p(k,m)) |Y (k,m)|2

]
(5.17)

which is actually identical to Eq. (5.16) with different arrangement of parameters.

In this case, the main factor that updates the noise power estimate lies in the

a priori estimation of ξ, P (H0(k,m)) and P (H1(k,m)) in Eq. (5.14), where

P (H1(k,m)) = 1− P (H0(k,m)).

5.3.1 Speech Presence Probability

The a posteriori SPP in Eq. (5.14) requires an estimate of the a priori SNR,

ξ(k,m), which tends to zero in speech absence, and is gradually increasing with

speech power spectrum. However, when ξ(k,m) = 0, i.e., λx(k,m) = 0, the

likelihoods of speech absence in Eq. (5.12) and speech presence in Eq. (5.13)

become identical. As such, the a posteriori SPP becomes

p(k,m) = P (H1(k,m)|Y (k,m), ξ(k,m) = 0) = P (H1(k,m)) (5.18)

which is independent of the noisy observation, Y (k,m). In this case, speech ab-

sence cannot be detected unless P (H1(k,m)) is modified based on the observation

signal, as shown in [91].

To solve the problem, it is proposed in [149] to replace the a priori SNR,

ξ(k,m) by a fixed parameter, ξH1 , which represents the typical a priori SNR value

when speech is active. Such fixed optimal is obtained at 10 log10 (ξH1) = 15dB

by minimising the probability of error, Pε, which is a function of P (H0(k,m))

and P (H1(k,m)) [149]. However, according to the result in [149], it can be

seen that 12dB ≤ 10 log10 (ξH1) ≤ 18dB yields about similar probability of error.

While Pε was obtained by assuming uniform priors for speech probability, i.e.,
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P (H0(k,m)) = P (H1(k,m)) = 0.5, that indicates a worst case scenario and may

not hold in practice. This reflects that ξH1 = 15dB is not the only possible value

to be used to estimate p(k,m). By choosing different values of ξH1 , the speed of

p(k,m) to switch between speech absence and presence can be altered.

In addition, by employing fixed priors, the a posteriori SPP will be mapped

directly to the a posteriori SNR estimate γ̂(k,m). As such, p(k,m) yields a value

that is close to zero when γ̂(k,m) is small, and close to one when γ̂(k,m) is

sufficiently large. In between zero and one is a soft transition determined by

ξH1(k,m), P (H0(k,m)) and P (H1(k,m)). However, since γ̂(k,m) is an estimate

based on the magnitude power of the raw observation |Y (k,m)|2, variations can

grow very large. By tracking these variations with the soft decisions between

zero and one, p(k,m) becomes an estimate with large fluctuations as well. This

increases the probability of noise being overestimated or underestimated locally,

which results in speech distortion or annoying artifacts perceived as musical noise.

5.3.2 Interpretation of SPP as a Flexible Sigmoid Func-

tion

To avoid the procedures of finding another so-called optimal ξH1 with different

assumptions of P (H0(k,m)) and P (H1(k,m)), a sigmoid function is employed

to model the a posteriori SPP in Eq. (5.14). This sigmoid function is defined as

psig(k,m) = {1 + exp (−asig(k,m) (γ̂(k,m)− csig(k,m)))}−1 (5.19)

where asig(k,m) and csig(k,m) indicate, respectively, the slope and the mean of

the sigmoid function. Both are given by

asig(k,m) =
ξH1

1 + ξH1

, (5.20)

csig(k,m) = log

(
P (H0(k,m))

P (H1(k,m))
(1 + ξH1)

)
1 + ξH1

ξH1

. (5.21)

As mentioned in the previous section, when P (H0(k,m)) = P (H1(k,m)), ξH1

can be any value of 12dB ≤ 10 log10 (ξH1) ≤ 18dB . By substituting these val-

ues into the slope and the mean of the sigmoid function, one obtains 0.94 ≤

asig(k,m) ≤ 0.98 and 3 ≤ csig(k,m) ≤ 4.23. This reflects that as long as the
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range of asig(k,m) and csig(k,m) is satisfied, any value of ξH1 , P (H0(k,m))

and P (H1(k,m)) can be used, provided that 10 log10 (ξH1) ∈ [12dB, 18dB] and

P (H0(k,m)) + P (H1(k,m)) = 1. Since different values of ξH1 can be used, such

that ξa for asig(k,m) and ξc for csig(k,m), the slope and the mean can be con-

trolled independently. As such, the a posteriori SPP can be fully controlled to

achieve a desired trade-off between noise overestimation and underestimation.

5.3.3 Conditional Smoothing for the Sigmoid Function

Literally speaking, rather than having a soft transition between the absolute

speech absence and speech presence, the a posteriori SPP can be categorised into

three regions, as

p′(k,m) =


less likely speech presence, p(k,m)sig(k,m) ≤ p1(k,m)

more likely speech presence, p1(k,m) < psig(k,m) ≤ p2(k,m)

most likely speech presence, psig(k,m) > p3(k,m)

(5.22)

where 0 < p1(k,m) < p2(k,m) < p3(k,m) ≤ 1 are different values of the sig-

moid function. For the region where speech is less likely to present, i.e., when

γ̂(k,m) ≈ 0, in case speech is active, psig(k,m) should be prevented from getting

too close to zero. By doing so, the noise PSD estimate yields a comprised weight

of sum between the estimated noise PSD at previous frames and the instance

noisy observations. The result is an even smoothed estimate compared to the

original noise PSD estimate when γ̂(k,m) is small, which reduces the likelihood

of noise being overestimated and underestimated locally. While for the regions

where speech is either more likely or most likely to present, the soft transitions of

psig(k,m) might not be sufficient for the noise PSD estimate to change from using

the previous noise PSD estimates to tracking the current noisy observations and

vice versa. Accordingly, to avoid those pitfalls, multi-level decisions are imposed

on psig(k,m) to realise an improved a posteriori SPP estimate. A solution for this
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is proposed as

p′(k,m) =


P1, psig(k,m) ≤ 0.3

P2, 0.3 < psig(k,m) ≤ 0.6

min {P3, psig(k,m)} , psig(k,m) > 0.6

(5.23)

where Pi = exp (−2.2R) / (tifs) indicates the exponential smoothing constant,

with ti, i = [1, 2, 3] denotes the averaging time constant, with t1 < t2 � t3.

Note that instead of having a fixed smoothing constant, p′(k,m) is assigned with

psig(k,m) for psig(k,m) > 0.6 to keep the noise PSD estimate as robust to speech

onsets as possible. While the noise power estimate may cease to update when

the noise level would make an abrupt step from one sample to another, such that

p′(k,m) = 1, the upper bound P3 is employed to prevent such stagnation in the

estimate.

5.4 Experimental Results

The proposed methods (SSC and SVAD) are compared to four reference methods,

namely the MS algorithm [90], the improved minima controlled recursive aver-

aging (IMCRA) method [91], the Hendriks’ MMSE (HenMMSE) approach [137]

and the Gerkmann’s SPP (GerkSPP) with fixed priors approach [149]. The para-

meters used for the proposed method are: for SSC, ty,1 = 0.06, ty,1 = 0, tv,1 = 1,

tv,2 = 0.01, SNR1 = 0 dB SNR2 = 5 dB; while for SVAD, ξa = ξb = 17dB,

P (H0(k,m)) = 0.3, P (H1) = 0.7, t1 = 0.05, t2 = 0.08 and t3 = 240. Per-

formance evaluations were conducted using NOIZEUS database which contains

30 IEEE sentences spoken by 3 male and 3 female speakers [67]. The signals

were corrupted by pink noise or a white Gaussian noise (WGN) at input SNRs

of −5, 0, 5, 10, and 15dBs. The modulated noise were created by modulating

WGN using the function f (n) = 1 + 0.5 sin (2πnfmod/fs), where n is the time-

sample index and fmod = 0.5Hz is the modulation frequency. The LogErr was

used to measure the noise tracking performance [137]. Unlike Eq. (5.6), in or-

der to evaluate both overestimation and underestimation, it is defined here as

LogErr = LEOv + LEUn, where LEOv and LEUn denote, respectively, the LogErr
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for noise power overestimation and noise power underestimation. Both are given

as [149]

LEOv =
1

KM

K−1∑
k=0

M−1∑
m=0

∣∣∣∣∣min

[
0, 10 log10

(
λv(k,m)

λ̂v(k,m)

)]∣∣∣∣∣ (5.24)

and

LEUn =
1

KM

K−1∑
k=0

M−1∑
m=0

max

[
0, 10 log10

(
λv(k,m)

λ̂v(k,m)

)]
(5.25)

where K and M values are, respectively, the total number of frequency bins and

frames. A larger value of LogErr indicates a better performance. All signals are

sampled at fs = 16kHz. For STFT a square-root-Hann window was applied with

K = 512 and R = 256 samples. Instead of taking the direct estimate of the

noise periodograms, the true noise PSD, λv(k,m) was obtained by a recursive

smoothing given as

λv(m) = 0.9λv(m− 1) + 0.1|V (m)|2. (5.26)

Apart from that, the estimated noise power was evaluated in a speech en-

hancement system in terms of the kurtosis ratio (KurtR), the noise reduction

ratio (NRR) and the log-likelihood ratio (LLR) [6]. They measure the trade-off

between the amount of musical noise, noise reduction and speech distortion gen-

erated after the speech signal processing. The PESQ measure was also utilised as

an indication for overall perceptual performance of the processed speech signals.

Lower values of KurtR and LLR with larger NRR and larger PESQ are required

for an improved performance. The modified sigmoid (MSIG) function [6] with

parameters a1 = 3, a2 = 1 and c = 0.7 and the modified decision-directed (MDD)

algorithm [6] with smoothing constants β = 0.98 and αy = 0.172 were employed

correspondingly for the gain function and the a priori SNR estimate in the speech

enhancement framework.

Before evaluating the proposed and reference methods, we show the effects of

employing the varying smoothing factors for SSC approach, as illustrated in sub-

section 5.2.2. Figure 5.2 shows the noise PSD tracking performance of the SSC

method with different parameters as described in the figure’s caption. A speech

sequence of 26 seconds was utilised and was corrupted by pink noise from 0 dB

SNR to 10 dB SNR and then back to 0 dB SNR. The depicted results show that

SSC3 improves the performance of SSC with less overestimation of noise PSD at
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high SNR when compared to SSC1, and with less underestimation of noise PSD

at low SNR when compared to SSC2. Consistent results have also been shown

from LogErr measure in sub-plots (a) and (b) in Figure 5.3, where pink noise is

used for evaluation in NOIZEUS database under global input SNRs from −5 dB

to 15 dB. It also shows that SSC3 improves the performance of SSC1 with slightly

larger PESQ scores under high input SNR, where ∆ indicates the improvement in

PESQ scores between the processed speech signals and the observed noisy signals.

Although SSC2 has the largest PESQ results, there are higher amount of musical

noise and residual noise remained unattenuated as depicted in larger KurtR and

smaller NRR scores. Meanwhile, Figure 5.4 shows the results obtained by using

modulated WGN, with similar patterns compared to the results obtained from

pink noise. It can be seen that SSC3 performs even better in non-stationary noise

when compared SSC1, with smaller KurtR, larger NRR and larger PESQ scores.

Clearly, the depicted results from Figures 5.2 to 5.4 have shown that SSC3 is a

better choice than SSC1 and SSC2 in terms of better noise tracking and speech

quality. Therefore, SSC3 would be used for the following performance evaluation

and is represented by SSC to avoid any confusion.

With the same speech-in-noise scenario as in Figure 5.2, Figure 5.5 shows

noise tracking performance for all the evaluated noise PSD tracking algorithms:

the reference methods (MS, IMCRA, HenMMSE and GerkSPP) and the proposed

algorithms (SSC and SVAD). Two main issues are of interest from the figure: how

each noise PSD tracking algorithm reacts to different amount of fluctuations in

noise and to the step changes in noise level. Under low input SNR, both proposed

methods track the noise PSD very well, which are highly comparable with MS

and IMCRA methods. The SVAD approach follows the variation of the true

noise PSD while the SSC algorithm represents a highly smoothed noise PSD

estimator. Meanwhile, there are higher amount of fluctuations observed for both

HenMMSE and GerkSPP approaches, which can lead to more overestimation

and underestimation of the noise PSD, particularly the underestimation at 23

seconds. Such phenomenon is more obvious under high input SNR, where the

IMCRA approach is more biased to overestimation, while the GerkSPP method

has more frequent overestimation and underestimation at local time-frequency
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Figure 5.2: SSC tracking performance for pink noise at 0 dB SNR (0-8s), 10 dB
SNR (8s-17s) and 0 dB SNR (17s-26s). (b)-(d) Comparison between true noise
PSD (green line) and SSC method with different parameters; SSC1 : ty = ty,1, tv =
tv,1, SSC2 : ty = ty,2, tv = tv,2, SSC3 : ty and tv computed with Eq. (5.11).
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Figure 5.3: SSC performance for pink noise.
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Figure 5.4: SSC performance for modulated WGN.
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points compared to other evaluated methods. Improvement to the GerkSPP

method has been shown in the SVAD approach, with significantly less errors in

the noise power estimates, particularly when there are changes in noise level (9

seconds and 17 seconds). For other evaluated algorithms, when the noise level

goes down, the SSC method tends to overestimate noise PSD, whereas both

HenMMSE and GerkSPP tend to underestimate the noise power more often. It

is worth to re-emphasise that the performance of SSC in tracking the noise PSD

is very much depending on the time averaging of the speech estimate and the

step-size used to update the noise estimate. When the noise volume goes up, the

MS and IMCRA require longer time-frames to pick-up the noise PSD compared

to the other methods.

Results from the objective evaluation of the noise tracking performance are

shown in Figures 5.6 and 5.7. It can be seen that for more stationary noise such

as pink noise, MS, IMCRA and SVAD perform better than the other evaluated

methods. The proposed SVAD method has the lowest LogErr under low input

SNR, but has slightly higher LogErr at 15 dB input SNR when compared to MS

and IMCRA due to the higher overestimation in local time-frames as depicted

in Figure 5.5. IMCRA has lower LogErr compared to MS (with significantly

smaller LEUn and slightly larger LEOv values), and records the lowest LogErr

under high input SNR. For other evaluated methods, the GerkSPP approach

has very large LEUn but small LEOv, particularly at low input SNR. The SSC

algorithm has comparable results when compared to HenMMSE but has higher

LogErr under 15 dB due to larger PSD overestimation. However, SSC would have

lower delay considering that it has the lowest computational complexity among

all the evaluated methods. For non-stationary noise such as the modulated WGN,

HenMMSE, SPP and SVAD has comparable better noise tracking performance,

with SVAD having the best results under low input SNR. MS and IMCRA perform

relatively poor at this type of noise as they are slow in tracking the sudden rise

in the noise PSD, with MS performing the poorest among all evaluated methods.

The SSC approach has slightly better noise tracking performance compared to

IMCRA, with different tracking nature that tends to overestimate instead of

underestimating the fast changing noise PSD when compared to MS and IMCRA.
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Figures 5.8 and 5.9 show the results from objective measurement after different

noise PSD estimation methods applied to a speech enhancement system. It can

again be seen from Figure 5.8 that IMCRA and SVAD perform well in terms of

the trade-off measures (low KurtR with high NRR values) and PESQ measure

for pink noise. However, IMCRA (and MS) cannot track non-stationary noise,

which is inferred from the large KurtR and small NRR and PESQ results in Figure

5.9. Although HenMMSE and GerkSPP can track fast changes in non-stationary

noise, both of these methods have larger KurtR values when compared to SVAD,

which indicates more musical noise can be audible. As for the SSC method, it

has poorer PESQ results among the evaluated algorithms due to the tendency to

overestimate noise, particularly for modulated WGN in Figure 5.9. In general,

either in more stationary or highly non-stationary noise types, SVAD performs

the best among all evaluated algorithms in terms of noise tracking performance

and the trade-off performance among the amount of musical noise, residual noise

and speech distortion generated from the system.
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Figure 5.5: Noise tracking performance for pink noise. (a) Speech corrupted by
pink noise at 0 dB SNR (0-8s), 10 dB SNR (8s-17s) and 0 dB SNR (17s-26s).
(b)-(g) Comparison between true noise PSD (green line) and processed noise PSD
at 937.5 Hz.
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Figure 5.6: Log error performance for pink noise. The lower part of the bars
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Figure 5.7: Log error performance for modulated WGN.
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Figure 5.8: Mean performance for pink noise.
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Figure 5.9: Mean performance for modulated WGN.
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5.5 Summary

In this chapter, two noise estimators, namely the SSC noise PSD estimator and

the SVAD noise PSD estimator have been proposed. The SSC algorithm employs

a fixed step-size to track the variations in the noise spectrum based on the noisy

speech spectrum in the preceding frame. The step-size is optimised such that it

works over different noisy situations. Two noise environment were included for the

optimisation procedure in this work, namely the pink noise and the factory noise.

Despite having the results that show different values of step-size can be used

for different noisy scenario, a fixed value is selected in performance comparison

with other reference methods. The evaluation show that the proposed method

performs relatively well at very noisy environment, but becomes poorer under

higher input SNR conditions due the the tendency to overestimate noise power.

This is improved by using speech and noise estimates with shorter averaging

time constants. The second approach called the SVAD algorithm, employs a

sigmoid function to represent the conditional SPP. The advantage is that the

slope and mean of the sigmoid curve can be adjusted independently, thus the

SPP can be more flexibly characterised for a compromised trade-off between noise

overestimation and underestimation. Also, to cope with two issues: (i) since

speech can also be present at very low SNR, and (ii) the transitions between

speech absent and present states are slow, the soft decisions are modified by

employing different exponential smoothing at different regions of the sigmoid

function. This results in similar or better noise tracking and speech quality

performance when compared to other evaluated algorithms.



Chapter 6

Multi-channel Wiener Filter

There’s a way to do it better -

find it.

– Thomas A. Edison

6.1 Introduction

This chapter describes the limitations in speech distortion weighted MWF (SDW-

MWF) and provides novel solutions to improve its performance and also have a

practically useful solution. The SDW-MWF is promising as it does not require

prior knowledge about the location of the desired speech signal and the micro-

phone characteristics [13, 65]. As a result, it is more robust against microphone

mismatch when compared to the well-known beamformer, the generalized side-

lobe canceller (GSC) [51]. Similar to the GSC, SDW-MWF relies on a voice

activity detection (VAD) algorithm to update the noise statistics in noise-only

segments, and the signal statistics during voiced segments. As a VAD estimate

is required in practice, wrong estimation often occurs under non-stationary and

highly noisy environments, which leads to greater second order estimation errors

and causes performance degradation in the SDW-MWF method [16, 52].

Alternatively, the SDW-MWF solution can be decomposed into a rank-one

problem, namely the R1-MWF method that consists of a spatial filter and a

single-channel postfilter [17, 150]. Although R1-MWF is more robust against

the estimation errors, the single-channel postfilter may not be optimal in terms

105
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of spectral tracking, since it is based on correlation matrices that are adapted

slowly over time. This has been improved by using a multi-channel speech pres-

ence probability (MC-SPP) algorithm to adapt the noise statistics continuously

over time [151]. Instead of using MC-SPP, a more direct speech presence probab-

ility (SPP) estimate can be obtained by taking one of the microphone inputs as

reference, as used in [15] to adapt the parameter that trades off noise reduction

and speech distortion. To increase the accuracy in speech detection, both MC-

SPP and SPP require accurate estimates of a priori speech absence probability

(SAP) and a priori signal-to-noise ratio (SNR), which in turn increase the pro-

cessing delay. To avoid this, fixed prior estimates can be used not only to reduce

the delay but also to maintain the accuracy in noise tracking in single-channel

speech enhancement framework [9, 149].

This thesis proposes a soft-VAD based SDW-MWF solution that aims to re-

duce the second order statistics errors by avoiding the subtraction of noise-only

correlation matrix from the speech-plus-noise correlation matrix. In that case,

the desired signal is estimated from the reference microphone by using a single-

channel speech enhancement framework from [7], which shows good performance

in terms of trade-off among noise reduction, speech distortion and musical noise.

The rank-one solution has also been investigated for such alternative formulation,

which is faster in spectral tracking based on the single-channel noise reduction

algorithm. Although it would require the estimation of the speech correlation

matrix, the matrix inverse could be avoided making it more robust to the estim-

ation errors [17]. In addition, the noise power spectral density (PSD) estimate in

the reference channel is obtained by the modified SPP with fixed priors approach

in [9], which is then employed to continuously update both speech plus noise and

noise only second order statistics.

6.2 Multi-channel Wiener Filter

6.2.1 Signal Model and Notation

Let Yl (k,m), l = 1, ..., L, denote the microphone signals in time-frequency do-

main, where k is the frequency bin index, m is the frame index and L is the
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number of microphones. The received signals are given by

Yl (k,m) = Xl (k,m) + Vl (k,m) (6.1)

where Xl (k,m) and Vl (k,m) are the short-time Fourier transform (STFT) rep-

resentations of the target signal and the uncorrelated noise components of the

l-th microphone, respectively. Here, speech enhancement is performed to remove

the unwanted noise while preserving the target speech signal. This can be done

by applying a set of filters w(k,m) to the observed signal, such that

Z (k,m) = wH (k,m) y (k,m) (6.2)

where Z is the output signal, and y (k,m) ∈ CL×1 is a stacked vector given as1

y (k,m) = [Y1 (k,m) Y2 (k,m) , ..., YL (k,m)]T

= x (k,m) + v (k,m)
(6.3)

with T indicating the transpose operator. The correlation matrices for the noisy

speech Ry(k,m), the clean speech Rx(k,m), and the background noise Rv(k,m)

are then defined, respectively, as

Ry(k,m) = E
{
y(k,m)yH(k,m)

}
,

Rx(k,m) = E
{
x(k,m)xH(k,m)

}
,

Rv(k,m) = E
{
v(k,m)vH(k,m)

}
,

(6.4)

where E and H denote, respectively, the expected value and Hermitian transpose

operators.

6.2.2 Formulation of Multi-channel Wiener Filter

The multi-channel Wiener filter (MWF) optimally estimates the speech signal,

based on an MMSE criterion as

wMWF(k,m) = arg min
w(k,m)

E
{∣∣Xref(k,m)−wH(k,m)y(k,m)

∣∣2} (6.5)

where the desired signal in this case is the unknown speech component Xref from

the reference microphone. The drawback is that some residual noise will still

1Although the signal vectors contain complex-valued frequency-domain variables, they are
denoted with lower-case letters throughout the thesis to distinguish them from matrices.



Chapter 6: Multi-channel Wiener Filter 108

remain in the output signal, Z, which can be reduced by allowing a trade-off

between noise reduction and speech distortion. This can be done by modifying

the design criterion of the MWF as [65, 150]

wMWFµ(k,m) = arg min
w(k,m)

E
{∣∣Xref(k,m)−wH(k,m)x(k,m)

∣∣2}+

µE
{∣∣wH(k,m)v(k,m)

∣∣2} (6.6)

where speech and noise are assumed to be uncorrelated, and µ is the trade-off

parameter. A larger µ value here indicates more residual noise reduction at the

expense of higher speech distortion. The solution of MWFµ can then be obtained

as

wMWFµ(k,m) = [Rx(k,m) + µRv(k,m)]−1 Rx(k,m)eref (6.7)

where eref = [0...0 1 0...0]T is an L-element zero vector with the unity corresponds

to the rth element of the microphones. Here, the correlation matrices Ry(k,m)

and Rv(k,m) can be recursively updated by using a VAD as

H0(k,m) :

R̂v(k,m) = (1− αvv) R̂v(k,m− 1) + αvvy(k,m)yH(k,m)

R̂y(k,m) = R̂y(k,m− 1)

H1(k,m) :

R̂y(k,m) = (1− αyy) R̂y(k,m− 1) + αyyy(k,m)yH(k,m)

R̂v(k,m) = R̂v(k,m− 1)

(6.8)

where H0(k,m) and H1(k,m) denote speech absence and speech presence in the

kth frequency bin of the mth frame, respectively. Both smoothing factors αyy and

αvv have to be chosen carefully to reflect the degree of stationarity of speech and

noise signals.

From Eq. (6.7), it can be observed that an estimation of Rx is required, which

is usually obtained by [65]

Rx(k,m) = Ry(k,m)−Rv(k,m). (6.9)

However, estimation errors in both of the complex-valued correlation matrices

Ry(k,m) and Rv(k,m) can result in a very poor estimate of Rx. Although this

can be avoided by obtaining a pre-determined Rx(k,m) estimate either with a
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calibration sequence [63], or by deriving a mathematical model [59, 152]. These

methods rely on the a priori information, making them less attractive for on-line

applications.

6.3 Proposed Method

6.3.1 Formulation of Proposed MWF and Estimation of

Noisy and Noise Correlation Matrices

In order to avoid the aforementioned problems, a bi-criteria optimization problem

for MWF is proposed. This consists of a criterion to minimise the error in Eq.

(6.5) and another criterion to minimise the noise power. One way to formulate

such problem is to use the weighted sum between the two criteria as given by

wMWFλ(k,m) = arg min
w(k,m)

(1− λ)E
{∣∣Xref(k,m)−wH(k,m)y(k,m)

∣∣2}+

λ
(
E
{∣∣wH(k,m)v(k,m)

∣∣2})
(6.10)

where λ is a weighting value between 0 and 1. The solution of the problem can

then be found as

wMWFλ(k,m) = [(1− λ) Ry(k,m) + λRv(k,m)]−1 (1− λ) ryx(k,m) (6.11)

where ryx(k,m) = E {y(k,m)X∗ref(k,m)}. It can be seen that by formulating

the problem in this way, the estimation of the clean speech correlation matrix

Rx(k,m) can be averted. Also, a set of pareto solutions can be found by varying

λ, but this is not in the scope of this thesis.

Apart from that, instead of using a VAD to estimate the correlation matrices,

the frame and frequency dependant modified SPP, p(k,m) from [9] is employed.
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This allows both R̂v(k,m) and R̂y(k,m) from Eq. (6.8) to be updated as

R̂v(k,m) = (1− p(k,m))

×
[
(1− αvv(k,m)) R̂v(k,m− 1) + αvv(k,m)y(k,m)yH(k,m)

]
+ p(k,m)R̂v(k,m− 1)

= [p(k,m) + (1− αvv(k,m)) (1− p(k,m))] R̂v(k,m− 1)

+ αvv(k,m) (1− p(k,m)) y(k,m)yH(k,m)

= (1− α̃v(k,m)) R̂v(k,m− 1) + α̃v(k,m)y(k,m)yH(k,m)

(6.12)

R̂y(k,m) = (1− p(k,m)) R̂y(k,m− 1) + p(k,m)

×
[
(1− αyy(k,m)) R̂y(k,m− 1) + αyy(k,m)y(k,m)yH(k,m)

]
= [(1− p(k,m)) + p(k,m) (1− αyy(k,m))] R̂y(k,m− 1)

+ p(k,m)αyy(k,m)y(k,m)yH(k,m)

= (1− α̃y(k,m)) R̂y(k,m− 1) + α̃y(k,m)y(k,m)yH(k,m)

(6.13)

where α̃v(k,m) and α̃y(k,m) denote, respectively, α̃v(k,m) = αvv (1− p(k,m))

and α̃y(k,m) = αyyp(k,m). Here, αvv and αyy denote, respectively, the fixed

smoothing factor for noise correlation matrix and speech plus noise correlation

matrix.

6.3.2 Formulation of Rank-one MWF

In the case of a single target speech source, the speech signal vector can be defined

as

x(k,m) = a(k,m)S(k,m) (6.14)

where the L-dimensional steering vector a(k,m) contains the acoustic transfer

functions from the speech source to the microphones and S is the speech signal.

The speech correlation matrix is thus a rank-one matrix, such that

Rx(k,m) = Φssa(k,m)aH(k,m) (6.15)

where Φss = E {|S|2} is the power of the speech signal.
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Another way to write Eq. (6.11) is

wMWF(k,m) = [(1− λ) Rx(k,m) + (1− λ) Rv(k,m) + λRv(k,m)]−1

× (1− λ) ryx(k,m)

= [Rx(k,m) + ψRv(k,m)]−1 ryx(k,m)

(6.16)

where ψ = 1
1−λ . However, this expression contains Rx(k,m). To reduce the error,

the inverse of Rx(k,m) needs to be avoided. By using matrix inversion lemma

and rank-one source assumption from Eq. (6.15), Eq. (6.16) can be written as

wMWFλ(k,m) =

(
1

ψ
R−1
v (k,m)− R−1

v (k,m)Rx(k,m)R−1
v (k,m)

ψ (1 + ψ−1ΦssaH(k,m)R−1
v (k,m)a(k,m))

)
× ryx(k,m)

=
1

ψ
R−1
v (k,m)

(
I− Φssa(k,m)aH(k,m)R−1

v (k,m)

ψ + ΦssaH(k,m)R−1
v (k,m)a(k,m)

)
× ΦssFa(k,m)

=
1

ψ
R−1
v (k,m)

(
a(k,m)− Φssa(k,m)aH(k,m)R−1

v (k,m)a(k,m)

ψ + ΦssaH(k,m)R−1
v (k,m)a(k,m)

)
× ΦssF (k,m)

=
1

ψ
R−1
v (k,m)

(
1− Φssa

H(k,m)R−1
v (k,m)a(k,m)

ψ + ΦssaH(k,m)R−1
v (k,m)a(k,m)

)
× ΦssF (k,m)a(k,m)

=
1

ψ
R−1
v (k,m)

(
ψ

ψ + ΦssaH(k,m)R−1
v (k,m)a(k,m)

)
× ΦssF (k,m)a(k,m).

(6.17)

That can be written in a rank-one formulation, which does not involve speech

power and steering vectors, as

wMWFλ−rank1(k,m) =
R−1
v (k,m)ryx(k,m)

ψ + %
(6.18)

with

%(k,m) = Φssa
H(k,m)R−1

v (k,m)a(k,m)

= ΦssTr
{
aH(k,m)R−1

v (k,m)a(k,m)
}

= Tr {R−1
v (k,m)Rx(k,m)} .

(6.19)
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6.3.3 Employing Single-channel Algorithm

From Eq. (6.11), it can be seen that the proposed solution requires an estimate

of the clean speech reference Xref(k,m). As opposed to previous methods [59,

63, 152], we propose to estimate Xref(k,m) by utilising a single-channel speech

enhancement method and to use one microphone in the array as a reference. As

such, the raw estimate of ryx(k,m) can be defined as

r̂yx(k,m) = y(k,m)G(k,m)(X∗ref(k,m) + V ∗r (k,m)) (6.20)

where Xref(k,m) = Aref(k,m)S(k,m) with Aref(k,m) denotes the acoustic trans-

fer function (ATF) of the target speech signal, S(k,m) at the reference chan-

nel. Here, G(k,m) is a spectral weighting gain function, which involves the

computation of the a posteriori and a priori SNR estimates. In contrast to

Rx(k,m)eref = (Ry(k,m) − Rv(k,m))eref from Eq. (6.7) and Eq. (6.9), which

takes the reference vector directly from the second order clean speech estimate,

Eq. (6.20) uses an SNR based gain function to adapt the noisy stacked vectors

to the desired clean speech signal. Such implementation is capable of generating

a better clean speech estimate and improving the speech quality of the enhanced

signal.

In this thesis, G(k,m) in Eq. (6.20) is taken from the modified sigmoid

(MSIG) gain function from Chapter 4 [7]. As the beamformer tries to adapt to the

clean speech reference, an important aspect of the single-channel estimate is that

the speech distortion has to be as small as possible. This can be done by setting

smaller values for the SNR smoothing parameters from [7], i.e., β ≈ 0.9 and

αy ≈ 0, such that the amount of speech distortion can be kept as low as possible

while not having a large amount of musical noise. Apart from that, further

reduction of musical noise is proposed by having r̂yx(k,m) updated recursively as

r̂yx(k,m) = (1− αx)r̂yx(k,m− 1) + αxy (k,m) X̂∗ref (k,m) (6.21)

where αx is the smoothing factor for target speech signal, and X̂ref(k,m) =

G(k,m)(Xref(k,m) + Vr(k,m)) indicates the clean speech estimate from the ref-

erence microphone.

The SNR estimates for G(k,m) require the estimation of the noise PSD at the
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reference channel. Here, the soft VAD (SVAD) noise PSD estimate in Chapter 5,

which involves the calculation of the modified SPP [9], is used. This implies that

the same SPP estimate can be used for estimating the noise PSD in the reference

channel and also the correlation matrices in Eqs. (6.12) and (6.13).

6.4 Performance evaluation

Measurements were performed with 2 microphones (with inter-element space of

1 cm) embedded in the left side of a pair of earmuffs on a manikin so that the

head-shadowing effect is included. The manikin was placed close to the center

of a room with dimensions 3.05 m × 3.05 m, with a reverberation time T60 of

approximately 0.2 s. The loudspeakers were positioned at 1 m from the center

of the head, with the speech located at 0◦ and the non-stationary factory noise

rendered at 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦ to the left of the head. The

speech signals consists of 5 (2 male and 3 female) sentences with length ranging

from 11 s to 22 s. The signals were sampled at fs = 16 kHz. An STFT length of

K = 512 was used with a frame rate of R = 256 and a square-root Hann window.

Evaluation includes wMWFµ from Eq. (6.6) with µ = 5, the output signal

from reference microphone using MSIG function with a noise floor of −15 dB ,

wMWFλ1 from Eq. (6.11) with λ ≈ (µ− 1) /µ = 0.8 and wMWFλ2 with λ(k,m) =

1−p(k,m). The smoothing constants are estimated by α = exp(−2.2R
tfs

), with tx =

ty = 0.02 s and tv = 2 s. The performance is measured by the speech intelligibility

weighted segmental SNR in frequency domain (IFWSNRseg) [67, 153]

IFWSNRseg =
10

M

M−1∑
m=0

∑K−1
k=0 Bk log10

A2(k,m)

A2(k,m)−Â2(k,m)∑K−1
k=0 Bk

(6.22)

where Bk is the ANSI SII weight placed on the kth frequency bin [154], K is the

number of bands, M is the number of frames, A(k,m) and Â(k,m) are spectrum

amplitudes of the clean speech signal and enhanced speech signal, respectively.

Each frame is threshold by a −10 dB lower bound and a 35 dB upper bound to

discard non-speech frames.

In addition, segmental noise attenuation (NATTseg) and segmental speech
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preservation (SPREseg) measures are utilised to study if a difference in IFWS-

NRseg is due to more noise reduction or less speech distortion. Both are given,

respectively, by [155]

NATTseg =
1

M

M−1∑
m=0

10 log10

||vt(m)||2

||ṽt(m)||2
(6.23)

SPREseg =
1

M

M−1∑
m=0

10 log10

||xt(m)||2

||xt(m)− x̃t(m)||2
. (6.24)

Here, vt(m) and xt(m) are m-th frame time-domain vectors for the noise and

the clean speech signal, respectively. The signals ṽt(m) and x̃t(m) indicate both

noise and the clean signals processed with the same corresponding filters as used

to enhance the noisy signal. The widely-used perceptual evaluation of speech

quality (PESQ) measure has also been included for performance comparison [67].

Figures 6.1-6.4 show the averaged results for SNRs of −5 dB, 0 dB, 5 dB, and

10 dB, respectively. It can be observed that wMWFλ1 outperforms wMWFµ for all

objective measures in all scenarios, indicating that the proposed method allows

more noise suppression, yet does not come with higher speech distortion. When

wMWFλ1 is compared to MSIG and wMWFλ2 , it generally has larger noise reduction

but larger speech distortion as well. This is the reason why wMWFλ1 performs

better relatively to other evaluated methods at low input SNR conditions but

has a performance drop when the input SNR increases, as shown in IFWSNRseg

and PESQ results. While wMWFλ2 improves the performance of wMWFλ1 in terms

of less speech distortion, more musical noise is audible since the NATTseg values

are much lower than wMWFλ1 . When compared to MSIG from the reference

microphone, wMWFλ2 has higher noise reduction but also larger speech distortion.

However, since MWF involves temporal averaging in the second order statistics

estimation, the musical noise can be reduced, especially at low SNR conditions,

as indicated by IFWSNRseg results from Figure 6.1.

Figures 6.5-6.8 depict the results for wMWFµ-rank1 and wMWFλ-rank1, where

λ = λ1 has been used. The results of wMWFλ1 have also been plotted for compar-

ison. It can be clearly seen that wMWFλ-rank1 performs better than the others

in IFWSNRseg, SPREseg and PESQ scores at low input SNRs. However, it has

lower noise reduction performance when compared to wMWFλ1 as indicated by
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the NATTseg results. This means that wMWFλ1 might have over-attenuated the

noise causing more speech distortion, thus resulting in poorer performance in the

IFWSNRseg and PESQ scores. It is interesting to show that when the input SNR

increases, the amount of noise reduction for wMWFλ1 is dropping relatively faster

than the rank-one methods. This phenomenon leads to the fact that wMWFλ1

has the best performance recorded at high input SNR, while the performance of

wMWFµ-rank1 is merely between wMWFλ-rank1 and wMWFλ1 .
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Figure 6.1: Comparison among wMWFµ , MSIG, wMWFλ1 , and wMWFλ2 for factory
noise for input SNR −5 dB. Labels SANB on x-axis indicate the directions of
the target speech and noise, where S stands for speech and N stands for noise; A
and B represent the directions of the target speech and noise, respectively.
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Figure 6.2: Comparison among wMWFµ , MSIG, wMWFλ1 , and wMWFλ2 for factory
noise for input SNR 0 dB.
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Figure 6.3: Comparison among wMWFµ , MSIG, wMWFλ1 , and wMWFλ2 for factory
noise for input SNR 5 dB.
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Figure 6.4: Comparison among wMWFµ , MSIG, wMWFλ1 , and wMWFλ2 for factory
noise for input SNR 10 dB.
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Figure 6.5: Comparison between rank-one and general formulations for factory
noise for input SNR −5 dB.
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Figure 6.6: Comparison between rank-one and general formulations for factory
noise for input SNR 0 dB.
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Figure 6.7: Comparison between rank-one and general formulations for factory
noise for input SNR 5 dB.
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Figure 6.8: Comparison between rank-one and general formulations for factory
noise for input SNR 10 dB.
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6.5 Summary

This chapter is focused on an alternative SDW-MWF formulation that does not

require the clean speech correlation matrix estimate, as opposed to previous for-

mulations in the literature [17, 65, 150]. Furthermore, as in contrast to work that

requires calibration [63] or pre-calculation using a mathematical model [59, 152],

this work utilises single-channel noise reduction technique to estimate a refer-

ence channel, which as far as we are aware has not been considered before. In

addition, unlike the previous approach, where SPP was only used to adapt the

trade-off parameter [15], or only to estimate the noise correlation matrix [151],

it is fully utilised in the proposed framework in estimating the noise PSD in the

reference channel and also both noisy and noise correlation matrices. The rank-

one formulation for the proposed SDW-MWF is also developed for comparison.

Experimental results show that the proposed method outperforms the traditional

method for all performance measures. The rank-one solution has recorded better

performance than the general formulation in low SNR conditions. The incorpor-

ation of SPP in the trade-off parameter λ helps to reduce speech distortion, but

there is a trade-off in terms of residual noise and “musical-type” artefacts in the

enhanced signals. Such formulation will be extended to binaural configuration in

Chapter 7.



Chapter 7

Binaural Noise Reduction

Frameworks

The real voyage of discovery consists not

in seeking new landscapes but

in having new eyes.

– Marcel Proust

7.1 Introduction to Binaural Signal Processing

This chapter focuses on developing binaural noise reduction algorithms for speech

enhancement in hearing protection devices (HPDs). Several binaural techniques

have been proposed in recent years for future hearing aids, where the full-duplex

exchange of microphone signals between the two devices is feasible. For hearing

protectors where microphones are integrated into the hearing protector adjacent

to each ear, the microphone can be connected by cables, binaural processing al-

gorithms can be readily applied. The aim of binaural noise reduction techniques

is to improve the signal-to-noise ratio (SNR) of the signal, while simultaneously

preserving the binaural cues of both target speech and residual noise. The bin-

aural noise reduction techniques can be roughly divided into two classes. In the

first class, identical real-valued spectral gains are applied to one microphone sig-

nal on the left device and one microphone signal on the right device [156–160],

121
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so that the binaural cues are indeed preserved. Although the outputs of a beam-

former can be utilised to derive the spectral gain function (e.g., a superdirective

beamformer [158]), in essence these techniques can be viewed as spectral filtering

approaches, similar to techniques in single-channel noise reduction. As previously

discussed, single-channel noise reduction usually introduces speech distortion and

other artefacts, leading to limited or no speech intelligibility improvements. The

perceptual speech intelligibility improvements obtained with this class of binaural

techniques may thus also be limited, or not competitive with true beamforming

techniques. Also, another drawback of these techniques is that the interfering

sources located in the back direction cannot be suppressed due to the forward-

backward ambiguity. In order to suppress (noise) signals originating from the

back, differential microphone arrays (DMAs), which requires at least two micro-

phones placed at each side of the ears, can be used.

The second class of binaural techniques combines all microphone signals from

both ears to perform a true beamforming. Some techniques first construct a mon-

aural output and then apply a postprocessing stage to reconstruct the binaural

signals with correct binaural cues [161]. Other techniques apply fixed or adaptive

beamformers which produce a binaural ouput, whereby the beamformers are de-

signed or constrained so that the binaural cues are also preserved [11, 161–163].

For example, in [11, 162] (adaptive) beamforming is only applied in the higher

frequencies, while for the lower frequencies the (low-pass filtered) original mi-

crophone signal with correct binaural cues is used. This approach is unsuitable

for the context of this thesis as the noise components are mainly the industrial

noise which consists of low frequency components. The binaural multi-channel

Wiener filter (MWF) technique also performs a true beamforming with the mi-

crophone signals in order to produce binaural output signals, hence it belongs to

this second class of techniques [65]. However, the conventional MWF method can

only preserve binaural cues for speech but not for noise. Although the MWF cost

function has been extended such that the binaural cues of both the target speech

and the residual noise can be preserved, there is a trade-off between binaural

cue preservation and noise reduction performance [14]. Such trade-off does not

occur in the first class of binaural techniques, but these techniques may offer only
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limited speech intelligibility improvements.

Therefore, we attempt to combine concepts from both classes of binaural

techniques in this chapter, i.e., applying real-valued gain functions as well as ap-

plying beamforming techniques in order to achieve high noise suppression and

less speech distortion with binaural cues maintained. From the starting point of

human sound perception, two possible binaural noise suppression concepts are

introduced differing in the following major aspect: The first approach applies

DMAs and single-channel techniques to both sides of the devices, namely the

DMA-BPF algorithm, while the second approach utilises a beamforming tech-

nique, namely a binaural MWF. The formulation of both frameworks will be

given first, then proposed algorithms from previous chapters, which include the

new MWF framework, the proposed modified sigmoid (MSIG) gain function and

modified decision-directed (MDD) a priori SNR estimate for the single-channel

speech enhancement algorithm, and the soft VAD (SVAD) noise power spectral

density (PSD) estimation method, will be applied into the frameworks to improve

the performance. There are four research questions discussed and investigated

in this chapter: (i) What is the influence of the binaural noise reduction al-

gorithm with DMAs in a dual monaural configuration and a binaural postfilter

that combines two identical single-channel gain functions on the ability to localise

sources? (ii) Does the single-channel noise estimation algorithm affect localisa-

tion and noise reduction performance compared to the Blocking Matrix algorithm

and crossPSD algorithm? (iii) How does the proposed MWF perform in terms

of combining localisation and noise reduction performance in comparison to the

conventional speech distortion weighted MWF (SDW-MWF) approach? (iv) How

does the performance of the MWF compare to the binaural technique with DMAs

and single-channel gain functions?

7.1.1 Beamforming in Binaural Context

Consider a speech-in-noise scenario as in Figure 7.1. Each microphone l observes

a signal Yl
(
ejΩ
)
, which consists of a target speech component Xl(e

jΩ) and an

(unwanted) noise component Vl
(
ejΩ
)
. The observed l-th microphone signal, 1 ≤
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Figure 7.1: Signals arriving on the multi-microphone array of a hearing protection
device, in a speech-in-noise scenario.

l ≤ L in the hearing aid Yl(e
jΩ) can be defined as

Yl(e
jΩ) = Xl(e

jΩ) + Vl(e
jΩ). (7.1)

As in Figure 7.1, the target speech component can be a filtered version of a speech

signal S(ejΩ) produced by a target speaker, such that

Xl(e
jΩ) = Al(e

jΩ)S(ejΩ) (7.2)

where Al(e
jΩ) contains the complete acoustic transfer function (ATF) from the

speech source to l-th microphone (which includes the head-related shadow effect,

the reflections against walls and objects, and the microphone characteristics). A

more general case, in which Xl(e
jΩ) can be a superposition of multiple target
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speech sources that are all of interest to the user, can also be considered. The

noise component Vl(e
jΩ) contains all unwanted signals to be suppressed by the

noise reduction. The noise can be a superposition of different localised noise

sources as shown in Figure 7.1, but can also include diffuse noise or spatially

uncorrelated noise.

In the context of binaural signal processing, the objective is to obtain one en-

hanced single-channel signal for each ear, where different types of spatial filtering

can be applied. Ideally, these two beamformer output signals should contain the

same amount of information about the target source (position) as the original sig-

nals at the ears, i.e., the interaural time and level differences should be preserved

by the beamformer. To analyse the impact of beamforming on the binaural cues,

a scenario with Q point sources Sq(e
jΩ), q = 1, ..., Q, and a total number of L

microphones being attached to the ears, is considered. Here, ejΩ is the frequency-

domain variable and Ω is the normalised frequency. The l-th microphone signal

can then be expressed as

Xl(e
jΩ) =

Q∑
q=1

Aql(e
jΩ, φsq)Sq(e

jΩ) (7.3)

where l = 1, ..., L and Aql(e
jΩ, φsq) denotes the transfer function from the q-th

source to the l-th microphone. Spatial filtering at the left side can be written in

a general form as

Zleft(e
jΩ) =

L∑
l=1

Wl,left(e
jΩ)Xl(e

jΩ)

=

Q∑
q=1

L∑
l=1

Wl,left(e
jΩ)Aql(e

jΩ, φsq)Sq(e
jΩ)

(7.4)

where Wl,left(e
jΩ) is the filter applied to the l-th microphone signal on the left

side. The beamformer output at the right side Zright(e
jΩ) can be written similarly

to Eq. (7.4). If the spatial impression of an acoustic scene is to be preserved,

the head-related transfer functions (HRTFs), which indicate transfer functions

from the source to the respective ear in a free-field, should be maintained when

processing the signals. This requires a free-field assumption, where each source

should be maintained in free-field situation, based on the Green’s function as
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given by

g(r − r0) =
exp(−j ω

c
r)

4π|r − r0|
(7.5)

where ω is the angular frequency, c is the speed of sound, and |r−r0| is the distance

between the location points r and r0. Thus, for each individual source, the

beamformer output must be identical to the actual signals at the ears themselves.

For a single sound source located at angle φs, the signals at the respective ear

can be modeled as

Xleft(e
jΩ) = Hleft(e

jΩ, φs)S(ejΩ) = αleft(e
jΩ, φs)e

−jΩfsτleft(φs)S(ejΩ),

and Xright(e
jΩ) = Hright(e

jΩ, φs)S(ejΩ) = αright(e
jΩ, φs)e

−jΩfsτright(φs)S(ejΩ)

(7.6)

where Hleft(e
jΩ, φs) and Hright(e

jΩ, φs) denote the HRTFs. Here, fs denotes the

sampling frequency, αleft(e
jΩ, φs), τleft(φs), αright(e

jΩ, φs), and τright(φs) denote the

frequency-dependent attenuation factor and delay, at the left side and the right

side, respectively.

Comparing Eqs. (7.4) and (7.6) for the left side of the ear, it can easily be

seen that for them to be identical, the condition

L∑
l=1

Wl,left(e
jΩ)Hql(e

jΩ, φsq) = H
(q)
left(e

jΩ, φsq), ∀q (7.7)

must be fulfilled. The Q constraints define a system of linear equations, where

the number of available degrees of freedom is determined by the number of micro-

phones L. In general, a solution only exists for the case L ≥ Q, i.e., the number

of microphones needs to be greater or equal to the number of sources. Otherwise

the system is underdetermined and cannot be solved. This implies that the spa-

tial impression can in principle only be preserved for a certain number of point

sources, which is limited by the number of utilised microphones. For complex

noise fields, which may be modeled with an infinite number of point sources, the

hearing impression cannot be maintained.

7.2 DMA-BPF

Figure 7.2 shows a binaural noise suppression concept based on DMAs and two

single-channel speech enhancement algorithms. Both sides of the earmuff accom-

modate two microphones, such that a DMA can be realised on the left and right
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Figure 7.2: A binaural noise suppression approach with two DMAs, a noise PSD
estimator, and two single-channel gain functions, which are combined to form a
binaural gain function.

side. For each DMA output signal, the respective noise components are estimated

and are then used to design two independent single-channel noise suppression fil-

ters. Since, in general, the left and right channels are not identical, the resulting

filters will also be different. Processing both channels differently may corrupt the

binaural cues required for localising sound sources. Therefore, both filters are

merged to a single binaural gain function applied to both channels. The different

realisations of the individual blocks are discussed in detail subsequently.

7.2.1 DMAs Incorporating HRTFs

First-order DMAs can be realised using two microphones, which are placed on

each side of the head as shown in Figure 7.2. For sake of simplicity, we only

consider a single sound source here. Since the distance between the microphones

of a DMA is inherently small, it can be assumed that the corresponding HRTFs

have an identical magnitude and only differ in phase. Hence, they can be related

to each other at the left side as

Hleft,2(ejΩ, φs) = Hleft,1(ejΩ, φs)e
−jΩfs dc cosφs (7.8)

and at the right side as

Hright,2(ejΩ, φs) = Hright,1(ejΩ, φs)e
−jΩfs dc cosφs (7.9)
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where d is the distance between microphones. The output signal of the DMA at

the left side is then given by

YDMA,left(e
jΩ, φs) = S(ejΩ)Hleft,1(ejΩ, φs)− S(ejΩ)Hleft,2(ejΩ, φs)e

−jΩfsτ

= S(ejΩ)Hleft,1(ejΩ, φs)
(

1− e−jΩfs(τ−
d
c

cosφs)
) (7.10)

where τDMA is the delay. The HRTFs corresponding to the front microphones

appear at the output of the DMAs. The noisy output signal of the DMAs after

applying the compensation filter is now expressed as

YDMA,left(e
jΩ) = S(ejΩ)Hleft(e

jΩ, φs) + VDMA,left(e
jΩ) (7.11)

where VDMA,left(e
jΩ) is the noise component contained in the left DMA output.

Similarly, the noisy output signal at the right side is defined as YDMA,right(e
jΩ) =

S(ejΩ)Hright(e
jΩ, φs) + VDMA,right(e

jΩ). Note that Hleft(e
jΩ, φs) and Hright(e

jΩ, φs)

have been used as the HRTF of the front microphone at respective side, where

the subscripts 1 are omitted for conciseness.

7.2.2 Estimation of Noise

An essential element to design reliable postfilters, which provide good noise sup-

pression capability and keep the distortions of the target signal at minimum level,

is a good estimate of all undesired signal components. Two different methods can

be found in literature for two-channel noise reduction [164, 165]. Both schemes

require differential microphone arrays with a fixed null at φ = 180◦ as a first

processing step. This is necessary to suppress undesired signal components ori-

ginating from the back, and cannot be achieved by subsequent postprocessing.

Blocking Matrix

The first approach to estimating the undesired signal components aims at sup-

pressing the target signal by steering a null toward the desired source direction.

This is achieved by subtracting the left and right microphone signal from each

other, creating a spatial null for the front direction φ = 0◦, which is typically con-

sidered as the angular position of the desired speaker. Thereby, the speech signal

is cancelled and only the interfering signal components remain, which then serve
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as a noise estimate. However, signals arriving from φ = 180◦ result in the same

relative delay between the two channels and, thus, cannot be distinguished from

the front direction. This is known as forward-backward ambiguity and implies

that undesired signals originating from the back are suppressed in the same way

as the target signal. As a consequence, these components are not captured by

the noise estimation process and cannot be suppressed by the subsequent postfil-

ter. To tackle this, DMAs are required as a first processing step, and instead of

subtracting the microphone signals from each other, the spatial null for the front

direction is created by subtracting the two DMA output signals.

In order to allow for a cancellation of the target signal for lateral source

positions, the DMA output signals must be time-aligned and the level also has

to be equalised. Based on Eq. (7.11), an estimate of all undesired signals can be

written as

V̂ (k,m) =
αright(k, φs)e

−j2π k
K
τright(φs)

αleft(k, φs)e
−j2π k

K
τleft(φs)

YDMA,left(k,m)− YDMA,right(k,m)

= Υ(k)YDMA,left(k,m)− YDMA,right(k,m)

= Υ(k)VDMA,left(k,m)− VDMA,right(k,m)

(7.12)

where α(k, φs) and e−j2π
k
K
τ(φs) model the interaural level differences (ILDs) and

interaural time differences (ITDs), respectively. The real-value PSD of this com-

bined noise estimate is given by

Φv̂v̂(k,m) =|Υ(k)|2Φvleftvleft(k,m) + Φvrightvright(k,m)

− 2<
{

Υ(k)Φvleftvright(k,m)
} (7.13)

where <{·} indicates the real part of the complex number. From this joint noise

estimate, an estimate of the individual noise components for each of the two

channels can be obtained by firstly expressing Φvleftvright(k,m) in Eq. (7.13) in

terms of the coherence, as

Γvleftvright(k,m) =
Φvleftvright(k,m)√

Φvleftvleft(k,m)Φvrightvright(k,m)
. (7.14)

Then, by assuming that the PSDs of the noise components are identical in both

channels, i.e., Φvleftvleft(k,m) = Φvrightvright(k,m) = Φvivi(k,m), and by substituting
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Eq. (7.14) into Eq. (7.13) yields

Φv̂v̂(k,m) =
(
|Υ(k)|2 + 1

)
Φv̂iv̂i(k,m)− 2<

{
Υ(k)Γvleftvright(k,m)Φ̂vivi(k,m)

}
.

(7.15)

Finally, the noise PSD for the individual channels can be obtained by reordering

Eq. (7.15) as

Φ̂vivi(k,m) =
Φv̂v̂(k,m)

1 + |Υ(k)|2 − 2<
{

Υ(k)Γvleftvright(k,m)
} . (7.16)

The drawback of such Blocking Matrix is that the HRTFs are difficult to ob-

tain in real scenarios. Here, an assumption is made that the ILDs are independent

of frequency, i.e., αi(k,m) = α(m) [38]. The ITDs are compensated by simply

applying a scalar gain factor and estimate the ITDs based on the responses of

the left and right DMA from a certain source angle φs measured in an anechoic

chamber.

Noise Estimation Based on Cross PSD

A different approach to estimating the joint PSD of noise can be done by implicitly

assuming that Hleft(k, φs) = Hright(k, φs) = 1, which is only reasonable for a

source coming from φs = 0◦ in the free-field. For this special case, the cross-PSD

between the left and right channel is simply

Φyleftyright(k,m) = Φxx(k,m) + Φvleftvright(k,m). (7.17)

Assuming that the noise PSDs are identical for both sides, the geometric mean

of the PSDs of the left and right channel is given by√
Φyleftyleft(k,m)Φyrightyright(k,m) = Φxx(k,m) + Φvivi(k,m). (7.18)

Substituting Φxx(k,m) and Φvleftvright(k,m) in Eq. (7.17) by Eqs. (7.14) and

(7.18), respectively, yields

Φyleftyright(k,m) =
√

Φyleftyleft(k,m)Φyrightyright(k,m)− Φvivi(k,m)

+ Γvleftvright(k,m)Φvivi(k,m).
(7.19)

By reordering the equation gives the real-values estimate of the noise PSD as

Φ̂vivi(k,m) =

√
Φvleftvleft(k,m)Φvrightvright(k,m)−<

{
Φvleftvright(k,m)

}
1−<

{
Γvleftvright(k,m)

} . (7.20)
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7.2.3 Single-channel Postfilter

Once the noise components estimates are obtained, single-channel postfilters can

be designed for the left and right channel. Such postfilters have been illustrated

in Chapters 4 and 5. The basic principle of the single-channel postfilters is to

evaluate the SNR for each frequency bin and to map these values to a gain func-

tion. An important aspect of designing a single-channel gain function is to take

into account the trade-off among noise reduction, speech distortion and musical

noise. This has been explicitly discussed in Chapter 5. Here, the last processing

stage as shown in Figure 7.2, which merges the intermediate gains Gleft(k,m) and

Gright(k,m) for the left and right side to a single gain function G(k,m), is being

discussed. It has been shown in [166] that an optimal combination of the spectral

gain functions can be derived based on the cost function

J (k,m) = E{(Hleft(k,m)S(k,m)− G(k,m)|YDMA,left(k,m)|)2

+ (Hright(k,m)S(k,m)− G(k,m)|YDMA,right(k,m)|)2}
(7.21)

which indicates the sum of the power of the error signals between the true speech

components and the estimated speech components for the respective side. Min-

imising Eq. (7.21) yields the optimal binaural gain function

Gopt(k,m) =
Gleft(k,m)|YDMA,left(k,m)|2 +Gright(k,m)|YDMA,right(k,m)|2

|YDMA,left(k,m)|2 + |YDMA,right(k,m)|2
.

(7.22)

This indicates that the power of true speech components is positively proportional

to the weight applied on the corresponding gain function on each side. Note that

for the special case of |YDMA,left(k,m)|2 ≡ |YDMA,right(k,m)|2, Equation (7.23)

becomes

G(k,m) =
1

2
(Gleft(k,m) +Gright(k,m)) . (7.23)

This implies it is the average of the gain functions from respective side of the

device.
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Figure 7.3: A binaural noise suppression approach with beamforming.

7.3 Binaural Multi-channel Wiener Filter

7.3.1 Configuration and Notation

The DMA is restricted to be used on each individual ear. Here we study a full

form of beamforming which utilise all microphone elements. Now consider the

l-th microphone signal on the left side of the hearing protection device defined as

Yleft,l(k,m) = Xleft,l(k,m) + Vleft,l(k,m) l = 1, ..., L, (7.24)

where Xleft,l(k,m) and Vleft,l(k,m) represent the speech and noise components in

the microphone signal, respectively. Similarly, the observed signal at the right side

is given by Yright,l(k,m) = Xright,l(k,m)+Vright,l(k,m). The L-dimensional stacked

microphone signal vectors yleft(k,m) and yright(k,m), and the 2L-dimensional

signal vector y(k,m) are given as

y(k,m) =

 yleft(k,m)

yright(k,m)

 (7.25)

yleft(k,m) = [Yleft,1(k,m) Yleft,2(k,m) · · · Yleft,L(k,m)]T

yright(k,m) = [Yright,1(k,m) Yright,2(k,m) · · · Yright,L(k,m)]T .
(7.26)

The correlation matrix of speech plus noise Ry(k,m), the clean speech correlation
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matrix Rx(k,m), and the noise correlation matrix Rv(k,m) are defined as

Ry(k,m) = E{y(k,m)yH(k,m)},

Rx(k,m) = E{x(k,m)xH(k,m)},

Rv(k,m) = E{v(k,m)vH(k,m)},

(7.27)

where the 2L-dimensional signal vectors x(k,m) and v(k,m) are similarly defined

as y(k,m). Here, the speech and the noise components are assumed uncorrelated,

such that Ry(k,m) = Rx(k,m) + Rv(k,m).

For speech enhancement algorithms, the rleft-th signal of the left device and

the rright-th signal of the right device will be used as the so-called reference sig-

nals. Typically, the front microphones are used as reference microphones. For

conciseness, the reference microphone signals Yleft,rleft(k,m) and Yright,rright(k,m)

at the left and the right hearing aid are denoted as Yleft(k,m) and Yright(k,m),

which are equivalent to

Yleft(k,m) = eHlefty(k,m) = Xleft(k,m) + Vleft(k,m)

Yright(k,m) = eHrighty(k,m) = Xright(k,m) + Vright(k,m)
(7.28)

where eleft and eright are 2L-dimensional vectors with only one element equal to

1 and the other elements equal to 0, i.e., eleft(rleft) = 1 and eright(L+ rright) = 1.

The output signals at respective side are obtained by filtering and summing

all microphone signals, i.e.,

Zleft(k,m) = wH
left(k,m)y(k,m), Zright(k,m) = wH

right(k,m)y(k,m) (7.29)

where wleft(k,m) and wright(k,m) are 2L-dimensional complex weight vectors.

The output signals can be written as

Zleft(k,m) = wH
left(k,m)x(k,m) + wH

left(k,m)v(k,m)

= Zx,left(k,m) + Zv,left(k,m),

Zright(k,m) = wH
right(k,m)x(k,m) + wH

right(k,m)v(k,m)

= Zx,right(k,m) + Zv,right(k,m)

(7.30)

where Zx,left, Zx,right represent the speech component and Zv,left, Zv,right represent

the noise component of the output signals at respective side. Hereinafter, the
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4L-dimensional complex stacked weight vector w(k,m) is denoted as

w(k,m) =

 wleft(k,m)

wright(k,m)

 . (7.31)

7.3.2 General Formulation

The MWF produces a minimum mean square error (MMSE) estimate of the

speech component in the reference microphone at respective sides, simultaneously

reducing noise and limiting speech distortion [20]. The mean square error (MSE)

cost function for the filter wleft(k,m) and wright(k,m) is equal to

JMWF (w(k,m)) = E


∥∥∥∥∥∥
 Xleft(k,m)− Zleft(k,m)

Xright(k,m)− Zright(k,m)

∥∥∥∥∥∥
2

= E


∥∥∥∥∥∥
 Xleft(k,m)−wH

left(k,m)y(k,m)

Xright(k,m)−wH
right(k,m)y(k,m)

∥∥∥∥∥∥
2

(7.32)

where Xleft(k,m) and Xright(k,m) are speech components at the reference micro-

phones. To provide a more explicit trade-off between speech distortion and noise

reduction, the SDW-MWF minimises a weighted sum of the residual noise energy

and the speech distortion energy [14]. The binaural SDW-MWF1 cost function

is equal to

JMWFµ (w(k,m)) =E{

∥∥∥∥∥∥
 Xleft(k,m)−wH

left(k,m)x(k,m)

Xright(k,m)−wH
right(k,m)x(k,m)

∥∥∥∥∥∥
2

− µ

∥∥∥∥∥∥
 wH

left(k,m)v(k,m)

wH
right(k,m)v(k,m)

∥∥∥∥∥∥
2

}

(7.33)

where µ provides a trade-off between reduction and speech distortion. The op-

timal MWFµ filters for the respective sides are equal to

wMWFµ,left(k,m) = (Rx(k,m) + µRv(k,m))−1 Rx(k,m)eleft,

wMWFµ,right(k,m) = (Rx(k,m) + µRv(k,m))−1 Rx(k,m)eright.
(7.34)

1For conciseness, SDW-MWF is abbreviated to MWFµ in the equations.
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7.3.3 Special Case with Single Target Source

In the case of a single target speech source, the speech signal vector can be

modeled as

x(k,m) = a(k,m)S(k,m) (7.35)

where the L-dimensional stacked vector a(k,m) is given by

a(k,m) =

 aleft(k,m)

aright(k,m)

 , (7.36)

with

aleft(k,m) = [Aleft,1(k,m) Aleft,2(k,m) · · · Aleft,L(k,m)]T ,

aright(k,m) = [Aright,1(k,m) Aright,2(k,m) · · · Aright,L(k,m)]T .
(7.37)

The speech correlation matrix is then a rank-one matrix, i.e.,

Rx(k,m) = Φss(k,m)a(k,m)aH(k,m) (7.38)

with Φss(k,m) = E{|S(k,m)|2} representing the PSD of the speech signal. By

assuming a single speech source and by applying the matrix inversion lemma, it

has been shown in [167] that Eq. (7.34) can be reduced to the following optimal

filter at each side:

wMWFµ,left(k,m) = R−1
v (k,m)a(k,m) · Φss(k,m)A∗left(k,m)

µ+ %(k,m)

wMWFµ,right(k,m) = R−1
v (k,m)a(k,m) ·

Φss(k,m)A∗right(k,m)

µ+ %(k,m)

(7.39)

where A∗left(k,m) = aH(k,m)eleft, A
∗
right(k,m) = aH(k,m)eright, and

%(k,m) = Φss(k,m)aH(k,m)R−1
v (k,m)a(k,m). (7.40)

7.3.4 Rank-One Binaural MWF

It is shown in Eq. (7.39) that the solutions for special case with single target

source requires a priori knowledge, or explicit estimation of the steering vector

a(k,m) and the speech PSD Φss(k,m). Also, due to the finite discrete Fourier

transform (DFT) size in the short-time Fourier transform (STFT) analysis, the

non-stationarity characteristic of the noise and the finite observation window
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which leads to estimation errors, the rank of Rx(k,m) will be greater than one.

Therefore, eigenvalue decomposition is often used for rank-1 approximation to

extract the steering vector a(k,m). However, it is possible to derive an alternative

expression which only uses the speech and noise second order statistics [150],

similar to the general expression in Eq. (7.34). By rewriting %(k,m) as

%(k,m) = Φss(k,m)aH(k,m)R−1
v (k,m)a(k,m)

= Φss(k,m)Tr
{
R−1
v (k,m)a(k,m)aH(k,m)

}
= Tr

{
R−1
v (k,m)Rx(k,m)

} (7.41)

where Tr {·} is the trace operator, Eq. (7.39) is equivalent to the following rank-

one expression

wMWFµ-rank1,left =
R−1
v (k,m)Rx(k,m)eleft

µ+ Tr {R−1
v (k,m)Rx(k,m)}

,

wMWFµ-rank1,right =
R−1
v (k,m)Rx(k,m)eright

µ+ Tr {R−1
v (k,m)Rx(k,m)}

.

(7.42)

Although Eq. (7.42) is derived for the special case of a single target speech source,

it can be used when this assumption is not fulfilled. Otherwise, it is completely

equivalent to Eq. (7.39) for a single target speech source case.

7.3.5 Cue Preservation and SNR Improvement

As an examination to the ability of binaural MWFµ in maintaining binaural cues,

the single target source optimal filter from Eq. (7.39) is utilised. From there, the

binaural MWFµ vectors for the left and right side of the devices are found to be

parallel with respect to the ATF, such that

wMWFµ,left(k,m) = ITFin,∗
x (k,m)wMWFµ,right(k,m) (7.43)

where ITFin
x (k,m) is defined as

ITFin
x (k,m) =

Xleft(k,m)

Xright(k,m)
=

Aleft(k,m)

Aright(k,m)
. (7.44)

Hence, the ITFs of the output speech and noise components are both equal to

ITFin
x , implying that the binaural speech cues are perfectly preserved, but the

binaural noise cues are distorted. As all output components are perceived as
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coming from the speech direction, the auditory perception of the acoustic scene

is therefore not preserved by the binaural MWFµ.

Since the solutions of binaural MWFµ are parallel, the narrowband output

SNR for each side will be the same, such that

SNRout
left(k,m) = SNRout

right(k,m)

=
E|Zx,left(k,m)|2

E|Zv,left(k,m)|2

=
|wH

MWFµ,left(k,m)a(k,m)|2Φss

wH
MWFµ,left(k,m)RvwMWFµ,left(k,m)

= Φss(k,m)aH(k,m)R−1
v (k,m)a(k,m) = %(k,m).

(7.45)

Given the input SNRs

SNRin
left(k,m) =

E|Xleft(k,m)|2

E|Vleft(k,m)|2
=
|eHlefta(k,m)|2Φss

eHleftRv(k,m)eleft

SNRin
right(k,m) =

E|Xright(k,m)|2

E|Vright(k,m)|2
=
|eHrighta(k,m)|2Φss

eHrightRv(k,m)eright

,

(7.46)

it follows that the SNR improvement at each respective side can be obtained as

∆SNRleft(k,m) =
%(k,m)eHleftRv(k,m)eleft

Φss|Aleft|2

∆SNRright(k,m) =
%(k,m)eHrightRv(k,m)eright

Φss|Aright|2
.

(7.47)

This implies that the SNR improvements are directly related to the noise correl-

ation matrix Rv(k,m) and speech correlation matrix Rx(k,m). As a matter of

fact, they are related to their estimates and the accuracy of the model. Hence

it is important that the estimates render an accurate reflection of the true noise

correlation and speech power and the ATF of the target speech signal.

7.4 Proposed Methods

7.4.1 Improvement to DMA-BPF

As mentioned in previous sections, the binaural noise reduction techniques incor-

porating the DMA with a binaural gain function (DMA-BPF) have two major

limitations. Firstly, recall that the noise estimation algorithm for the DMAs that
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uses a target cancellation scheme for the noise PSD estimate, if the speech tar-

get estimation is not precise, speech will still be present in the noise estimate.

This will lead to an overestimation of noise and the SNR estimate used in DMA-

BPF will lower the volume of the speech. Secondly, the single-channel speech

enhancement algorithms required for computing the binaural gain function has a

trade-off among noise reduction, speech distortion and musical noise. This thesis

gives possible solutions to the problems. We will mainly investigate methods to

improve the noise reduction and distortion by using the single channel techniques

that has been developed in this research. For noise estimation, we will adapt the

SVAD method proposed in Chapter 5, while for the gain function we will employ

the techniques from Chapter 4, which is capable of providing a good trade-off for

a better speech quality performance. The SVAD noise estimation algorithm will

be utilised in the DMA-BPF framework such that the gain functions at each side

are computed with only the noise PSD estimate from the respective side. The

added feature in this work is that since we have two output signals one from each

DMA, investigation will be carried out to see if the binaural cues, i.e., the ITD

and the ILD will be distorted.

7.4.2 Proposed Binaural MWF

In order to avoid the explicit assumptions or estimation of the location of the

target speech source, a MWF can be used. Recently, an alternative SDW-MWF

formulation that does not require the clean speech correlation matrix estimate,

which has also been included in this thesis (see Chapter 6), has been proposed in

[10]. In that work, the conditional speech presence probability (SPP) has been

used in (i) estimating both speech plus noise correlation matrix Ry(k,m) and

noise correlation matrix Rv(k,m), (ii) estimating the noise PSD in the reference

channel for computing the cross-correlation vector ryx(k,m), and also (iii) ad-

apting the trade-off parameter λ(k,m). Here, that formulation will be extended

to binaural configuration, where a pair of contralateral microphones is added at

the other side of the head. Evaluation will also be performed to test if such

formulation can maintain binaural cues for both speech and noise.
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Let the two-state model for speech events be defined in this context as

H0(k,m) :Yl(k,m) = Vl(k,m)

H1(k,m) :Yl(k,m) = Xl(k,m) + Vl(k,m).
(7.48)

Assuming a complex Gaussian distribution of the STFT coefficients for both the

speech and the noise, and by applying Bayes rule, the conditional SPP for each

channel, pl(k,m) is given as in Eq. (5.14) for each frequency bin and each frame.

The conditional SPP and the two-state model in Eq. (7.48) for speech events

can be incorporated directly into the optimisation criterion of the SDW-MWF,

leading to a weighted average where the first term is weighted by the probability

that speech is present, while the second term is weighted by the probability that

speech is absent. This can be defined as

JMWFλ−SPP (w(k,m)) =p(k,m)×

E{

∥∥∥∥∥∥
 Xleft(k,m)−wH

left(k,m)y(k,m)

Xright(k,m)−wH
right(k,m)y(k,m)

∥∥∥∥∥∥
2

|H1(k,m)}

+ (1− p(k,m))×

E{

∥∥∥∥∥∥
 wH

left(k,m)y(k,m)

wH
right(k,m)y(k,m)

∥∥∥∥∥∥
2

|H0(k,m)}

(7.49)

where

p(k,m) =
pleft,rleft(k,m) + pright,rright(k,m)

2
(7.50)

with pleft,rleft(k,m) and pright,rright(k,m) denote the conditional probability that

speech is present obtained from the reference channels respectively at the left

and the right, while 1 − p(k,m) is the conditional probability that speech is

absent. The solution is then given by

wMWFλ−SPP,left(k,m) = (p(k,m)Ry(k,m) + (1− p(k,m))Rv(k,m))−1

p(k,m)ryx,left(k,m)

wMWFλ−SPP,right(k,m) = (p(k,m)Ry(k,m) + (1− p(k,m))Rv(k,m))−1

p(k,m)ryx,right(k,m).

(7.51)

where Rv(k,m) and Ry(k,m) are updated respectively by Eq. (6.12) and Eq.

(6.13), both with the conditional SPP p(k,m).
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Compared to a fixed weighting factor λ, the conditional SPP p(k,m) varies

for each frequency bin k and for each frame m leading to faster dynamic changes

in the MWFλ-SPP approach. Although this results in less speech distortion, such

added variations also cause more musical noise and more residual noise remaining

in the enhanced signals [10]. The solution of MWFλ-SPP is very similar to the

formulation in [15], but we employ the cross-correlation vector ryx(k,m) instead

of using the speech correlation matrix, i.e., Rx(k,m)e.

The cross-correlation vector at both sides ryx,left(k,m) and ryx,right(k,m) are

updated by employing single -channel speech enhancement algorithm, as given

by

r̂yx,left(k,m) =(1− αx)r̂yx(k,m− 1) + αxy(k,m)G(k,m)Y ∗left(k,m)

r̂yx,right(k,m) =(1− αx)r̂yx(k,m− 1) + αxy(k,m)G(k,m)Y ∗right(k,m)
(7.52)

where αx is the smoothing factor. Here, G(k,m) is defined as

G(k,m) =
Gleft(k,m) +Gright(k,m)

2
(7.53)

where Gleft(k,m) and Gright(k,m) are single-channel weighting gain functions ob-

tained for the corresponding reference channels Yleft(k,m) and Yright(k,m). Their

arithmetic mean G(k,m) is employed to ensure that the binaural cues can be

preserved for the single-channel approach. For a fair comparison, the conditional

SPP is also applied to the trade-off parameter of the conventional SDW-MWF

function, such that µ(k,m) = 1/p(k,m).

7.5 Performance Measures

Performance evaluation in this chapter includes the comparison of the binaural

cues and the noise reduction performance. For the noise reduction performance,

the measures from Chapter 6 were adapted to compare the noise reduction, speech

distortion and the overall perceptual performance. Those include the speech in-

telligibility weighted segmental SNR in frequency domain (IFWSNRseg) measure,

the segmental noise attenuation (NATTseg) measure, the segmental speech pre-

servation (SPREseg) measure and the perceptual evaluation of speech quality

(PESQ) measure. For all measurements, results of the individual channel (the

left and right channels) were averaged to obtain a single value.
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The binaural cues were evaluated using the ILD and the ITD measures. The

ILD here are obtained by evaluating the logarithm of the power ratio between

the respective signals of the left and right side. The ILDs of input clean speech

and noise, and processed clean speech and noise are given as

ILDin
x = 10 log10

( ∑N
n=1 x

2
left(n)∑N

n=1 x
2
right(n)

)
, ILDin

v = 10 log10

( ∑N
n=1 v

2
left(n)∑N

n=1 v
2
right(n)

)
,

ILDout
x = 10 log10

( ∑N
n=1 x̃

2
left(n)∑N

n=1 x̃
2
right(n)

)
, ILDout

v = 10 log10

( ∑N
n=1 ṽ

2
left(n)∑N

n=1 ṽ
2
right(n)

)
(7.54)

where N is the signal length in samples. The clean speech signals and the unpro-

cessed reference signals at respective side were taken from the front microphones.

This is the same for all the performance measures that require the access of the

clean signals and/or the observed signals. The ITDs are computed using the

cross-correlation, which is commonly used to estimate time delays, as defined by

Rxleftxright(η) = E (xleft(n)xright(n− η)) , Rvleftvright(η) = E (vleft(n)vright(n− η)) ,

Rx̃leftx̃right(η) = E (x̃left(n)x̃right(n− η)) , Rṽleftṽright(η) = E (ṽleft(n)ṽright(n− η)) .

(7.55)

The delay is then given by the argument η = η0, which yields the maximum

absolute value of Eq. (7.55), as

ITDin
x = arg max

η

[
Rxleftxright(η)

]
, ITDin

v = arg max
η

[
Rvleftvright(η)

]
,

ITDout
x = arg max

η

[
Rx̃leftx̃right(η)

]
, ITDout

v = arg max
η

[
Rṽleftṽright(η)

]
.

(7.56)

However, since η0 has integer values only and the delay is usually fractional, the

cross-correlaiton function needs to be interpolated. After that, the delay τ0 in

seconds is obtained by dividing η0 by the sampling frequency fs.

7.6 Performance Evaluation

7.6.1 Test Setup

In this section, the overall performance for both binaural speech enhancement

algorithms is evaluated. The setup for the underlying measurements is depicted
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in Figure 7.4. A manikin with put-on earmuffs (with two-microphone array being

mounted on each side) was placed close to the center of a room with dimensions

3.05 m × 3.05 m, with a reverberation time T60 of approximately 0.2 s. The loud-

speakers were positioned at 1 m from the center of the head, with the speech and

noise rendered at different position around the head to create point source sounds.

Additional four loudspeakers were placed in each corner of the room facing the

walls to create diffuse-like background noise.

Unless stated otherwise, we assume the a priori knowledge about the angular

position of the desired source for all experiments. The speech signals consists

of 5 (2 male and 3 female) sentences with length ranging from 11 s to 22 s, and

the noise sources are industrial noises. For evaluation purpose, the speech and

noise signals were recorded separately. The processing was done with a sampling

frequency of 16 kHz using an STFT with the square root of a Hann window, both

for analysis and synthesis, frame length K = 512, and 50% overlap, i.e., R = 256.

The parameters of both frameworks are given in Table 7.1. For a fair comparison,

MWFµ-SPP was chosen as a reference method for the MWF framework, whereas

for the DMA-BPF framework, both two-channel noise PSD estimation algorithm,

namely the Blocking Matrix (BM) approach and the CrossPSD (XPSD) approach

were employed as references. The parameters of the algorithms were not adjusted

to obtain the largest amount of noise suppression, but rather to achieve a good

trade-off among the amount of noise suppression, speech distortion, and musical

noise generated from the processing.

For evaluation of the ITD and ILD, two scenarios were considered. One is that

speech source was from the front of the head with several noise configurations

delivered at 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦ with respect to the left of

the head. The latter scenario had the noise source originated from behind the

head with several speech configurations at 10◦, 20◦, 30◦, 330◦, 340◦, and 350◦.

The reason of the choice of these speech directions is that the DMA processing

cannot preserve the spatial impression from directions outside −40◦ to 40◦ [38].

This has been evaluated and again proven in the following results section.

For the noise reduction performance, only one scenario was concerned, with

the speech source positioned at the head anterior and several point sources noise
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MWF DMA-BPF

MWFµ-SPP MWFλ-SPP SVAD BM XPSD

Smoothing constant for λ̂v(k,m): αv = 0.8

Smoothing constant for λ̂y(k,m): αy = 0 αy = 0.17
Smoothing constant for ξMDD(k,m): β = 0.9 β = 0.98

MSIG parameter: a1 = 3, a2 = 1, c = 0.7
Spectral noise floor: ε = −15 dB

SVAD parameter: P (H0(k,m)) = 0.3
SVAD parameter: P (H1(k,m)) = 0.7

SVAD parameter: ξa = ξb = 12 dB
SVAD parameter: t1 = 0.05
SVAD parameter: t2 = 0.08
SVAD parameter: t3 = 240

Smoothing constant for R̂y(k,m): αyy = 0.17
Smoothing constant for r̂yx(k,m): αx = 0.17

Smoothing constant for R̂v(k,m): αvv = 0.98

Table 7.1: Parameter settings for DMA-BPF and MWF.

configurations rendered at 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦ with respect

to the left of the head. The results for different input SNRs will be plotted to

show the robustness of the proposed methods from extremely noisy to more quiet

environments. Note that for all the performance evaluations, only the average

scores obtained from the evaluated five sentences will be shown rather than the

measurement results from every speech sequence.

7.6.2 Results and Analysis for DMA-BPF

The improved DMA-BPF contains a different gain function algorithm and a differ-

ent noise estimation method. In this section, only the noise estimation algorithms

are evaluated since the gain function has already been evaluated in Chapters 3

and 4. Figures 7.5 and 7.6 depict the ILD and ILD results for DMA-BPF when

different noise estimates were employed. Here, the results for both DMA and

the observation from the reference channels (Ref.) were plotted for reference.

More precisely, DMA takes the observed signals as reference, while the processed

signals take DMA as reference for the evaluation of the binaural cues. It can

be observed from Figure 7.5 that when noise came from behind the head, and

the speech source was located at −30◦ to 30◦, the ITDs for both speech and

noise were well maintained. For ILD results, the speech ILDs for DMA outputs
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Figure 7.4: Measurement setup for the evaluation of the binaural noise reduction
techniques.

and all the processed signals seem to be a scaled down version of the reference

signals. The Blocking Matrix approach distorts the speech ILDs from the DMA

outputs. It has also slightly altered the noise ILDs while the DMA outputs have

the same noise ILDs recorded over different speech configurations. Meanwhile,

the CrossPSD and SVAD manage to maintain both speech and noise ILDs with

respect to the DMA’s ILDs.

As for the results with speech fixed at 0◦ and different noise configurations in

Figure 7.6, all algorithms have preserved the speech ILDs and ITDs. However,

they fail to maintain the spatial impression of noise mainly because the DMAs

cannot preserve the cues coming from −45◦ to 320◦, as observed in the figure.

In spite of that, it can be seen that the noise ILDs and ITDs of DMA outputs

still follow the patterns of the reference signals, which can be merely treated as

a scaled version of the cues. This means that the users might still be able to

localise the noise unless it is coming from the head posterior. For the processed

signals, only the SVAD approach follows both the noise ILDs and ITDs of the

DMA outputs. The Blocking Matrix and CrossPSD methods maintain the noise
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ILDs with respect to the DMA outputs, but with a small degradation of the noise

ITDs, which can be seen at configurations S0N225 and S0N270.

Figures 7.7 to 7.10 describe the noise reduction performance of DMA-BPF

methods. It is obvious that DMA-BPF with SVAD noise estimator has the best

performance among all evaluated algorithms in terms of IFWSNRseg, NATTseg

and PESQ measures, at all input SNR levels. This implies that the two channels

noise PSD estimation algorithm is capable of providing better SNR gains and

better speech quality when compared to both the Blocking Matrix and CrossPSD

algorithms, but with a slightly larger speech distortion as depicted in the lower

SPREseg results. An advantage of this method is that the a priori information

about speech location is not required in the noise estimate to obtain better overall

performance in the enhanced speech quality. In addition, the two-channel SVAD

method can also preserve the binaural cues, which makes it suitable for use in

the DMA-BPF framework.

7.6.3 Results and Analysis for MWF

Figures 7.11 and 7.12 portray the ILD and ITD for two binaural MWF formu-

lations with SPP, namely MWFµ-SPP and MWFλ-SPP. The results of binaural

MSIG are also included in the figure for comparison. As predicted, all the eval-

uated methods have successfully preserved speech cues at all configurations. As

for noise cues, an interesting finding is that ITDs of noise can be preserved with

all algorithms, including binaural MWFµ-SPP when noise source was fixed at

180◦ with speech source rendered from −30◦ to 30◦. However, when speech was

fixed in front of the head with noise coming from the side (45◦ to 135◦), the ITDs

of noise were not preserved by binaural MWFµ-SPP, with the ILDs also been

distorted by approximately 2− 4 decibels (dBs). Under the same configurations,

the binaural MWFλ-SPP approach can however preserve both ILDs and ITDs of

both speech and noise, which makes it a more preferable formulation compared

to MWFµ-SPP for a binaural assistive listening device.

As for the noise reduction performance, Figures 7.13 to 7.16 show that the res-

ults are consistent with the results obtained from monaural MWF formulations.

The binaural MWFλ-SPP approach has the best performance recorded among
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all evaluated algorithms under all different input SNRs, which means having the

largest IFWSNRseg, NATTseg and PESQ scores. However, it has consistently

lower SPREseg compared to the binaural MSIG function. For 15 dB input SNR,

the difference of SPREseg results between the binaural MSIG function and the

binaural MWFλ-SPP approach is the largest, whereby the latter produced slightly

lower IFWSNRseg results. The binaural MWFµ-SPP approach was totally out-

performed by the proposed method in terms of both the SNR gains and the overall

perceptual speech quality. It is worth mentioning that when target speech is dir-

ected from the front, all algorithms show better performance when noise is coming

from the left or the right side of the head, and contrary a poorer performance

when noise is coming from behind due to the front-back ambiguity.

7.6.4 Comparison between DMA-BPF and MWF

In this part, the comparison between the MWFλ-SPP method and the DMA-BPF

with SVAD method is carried out. We started with the configuration with speech

stays at 0◦ and noise comes from 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦. As

depicted in Figures 7.17 to 7.20, the DMA-BPF method outperforms the MWFλ-

SPP in terms of the amount of noise reduction, particularly when noise source

is further from the target speech. This is the advantage of employing DMAs at

each side of the head to subtract more noise from behind the head. However,

it can be seen from SPREseg results that the MWFλ-SPP method can preserve

more speech components, in other words less speech distortion compared to the

DMA-BPF approach. This is shown in Figure 7.20 that the the MWFλ-SPP

method has comparable performance relative to the DMA-BPF approach at high

input SNR.

The performance of both frameworks were again examined in realistic scen-

arios with diffuse background noise. Evaluation were done using two types of

noise, namely the diffuse-like factory noise and diffuse-like jack-hammer noise.

The results for the diffuse factory noise are depicted in Figures 7.21 to 7.24,

while the results for the diffuse jack-hammer are shown in Figures 7.25 to 7.28.

The results for both noise are consistent, which can be categorised into four main
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points. First point is that the DMA-BPF approach always has higher noise re-

duction (NATTseg) in comparison to the MWFλ-SPP method, while the latter

can always preserve more speech components (SPREseg) when compared to the

former. Secondly, in extremely noise scenarios, i.e., with low input SNRs, the

DMA-BPF approach always performs better with higher SNR gains IFWSNRseg

and better speech quality (PESQ). The third point is that at less noisy envir-

onments, the MWFλ-SPP method always has better speech quality performance

when compared to the DMA-BPF approach. Another interesting point, which

influence the choice of the better framework, is that MWFλ-SPP performs more

consistently by having more consistent IFWSNRseg results over different config-

urations of target speech location when compared to the DMA-BPF approach.

This is an important consideration given that the speaker will not always be loc-

ated in a fixed position but move. However, as DMA-BPF is a fixed filtering

structure for the left and right side of the head, it does not involve estimation

of the second order statistics of speech and noise. This means that it has lower

computational complexity when compared to the MWFλ-SPP algorithm.
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Figure 7.5: ITD and ILD results for DMA-BPF when direction of noise was fixed
with speech source coming from different directions.
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Figure 7.6: ITD and ILD results for DMA-BPF when direction of the target
speech was fixed with noise source coming from different directions.
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Figure 7.7: Noise reduction performance for difference noise PSD estimation al-
gorithms employed in DMA-BPF at 0 dB SNR.
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Figure 7.8: Noise reduction performance for difference noise PSD estimation al-
gorithms employed in DMA-BPF at 5 dB SNR.
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Figure 7.9: Noise reduction performance for difference noise PSD estimation al-
gorithms employed in DMA-BPF at 10 dB SNR.

7

8

9

10

11

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

IF
W

S
N

R
s
e
g

0

5

10

15

20

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

N
A

T
T

−12

−11

−10

−9

−8

−7

−6

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

S
P

R
E

2

2.5

3

3.5

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

P
E

S
Q

 

 

Blocking Matrix CrossPSD SVAD DMA

Figure 7.10: Noise reduction performance for difference noise PSD estimation
algorithms employed in DMA-BPF at 15 dB SNR.
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Figure 7.11: ITD and ILD results for MWF when direction of noise was fixed
with speech source coming from different directions.
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Figure 7.12: ITD and ILD results for MWF when direction of the target speech
was fixed with noise source coming from different directions.
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Figure 7.13: Noise reduction performance comparison among MWFµ-SPP, MSIG,
and MWFλ-SPP at 0 dB SNR.
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Figure 7.14: Noise reduction performance among MWFµ-SPP, MSIG, and
MWFλ-SPP at 5 dB SNR.
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Figure 7.15: Noise reduction performance among MWFµ-SPP, MSIG, and
MWFλ-SPP at 10 dB SNR.
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Figure 7.16: Noise reduction performance among MWFµ-SPP, MSIG, and
MWFλ-SPP at 15 dB SNR.
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Figure 7.17: Noise reduction performance comparison between DMA-BPF and
MWF at 0 dB SNR.
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Figure 7.18: Noise reduction performance comparison between DMA-BPF and
MWF at 5 dB SNR.
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Figure 7.19: Noise reduction performance comparison between DMA-BPF and
MWF at 10 dB SNR.
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Figure 7.20: Noise reduction performance comparison between DMA-BPF and
MWF at 15 dB SNR.
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Figure 7.21: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like factory noise at 0 dB SNR.
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Figure 7.22: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like factory noise at 5 dB SNR.
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Figure 7.23: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like factory noise at 10 dB SNR.
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Figure 7.24: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like factory noise at 15 dB SNR.
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Figure 7.25: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like jack-hammer noise at 0 dB SNR.
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Figure 7.26: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like jack-hammer noise at 5 dB SNR.
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Figure 7.27: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like jack-hammer noise at 10 dB SNR.

9.5

10

10.5

11

11.5

S0
S10 S20 S30

S33
0

S34
0

S35
0

IF
W

S
N

R
s
e

g

10

11

12

13

14

S0
S10 S20 S30

S33
0

S34
0

S35
0

N
A

T
T

−15

−10

−5

0

5

10

S0
S10 S20 S30

S33
0

S34
0

S35
0

S
P

R
E

3

3.05

3.1

3.15

S0
S10 S20 S30

S33
0

S34
0

S35
0

P
E

S
Q

 

 

DMA−BPF MWF
λ

Figure 7.28: Noise reduction performance comparison between DMA-BPF and
MWF for diffuse-like jack-hammer noise at 15 dB SNR.
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7.7 Summary

This chapter presents two possible solutions for binaural speech enhancement

for a hearing protection device, containing two microphones at each side of the

earmuffs. The first one utilises a DMA at each side of the ear to suppress un-

wanted signals from the back, which leads to one single-channel DMA output

at each side of the ear. After that, the remaining noise is estimated from the

respective sides and then identical single-channel gain functions are applied to

both channels to attenuate the noise signals. New gain function and new noise

estimation method were employed in this framework to build a system with low

computational complexity and without a priori information about noise required.

The second approach involves a true beamforming technique, termed binaural

MWF. The drawback of this processing technique is that it does not preserve the

spatial cues of noise, which is critical for industrial workers. Another issue with

regards to the implementation of MWF is the flaw in the estimation of the second

order statistics, which often requires the aid of a voice activity detection (VAD) to

detect speech presence and absence. Therefore, the prospective solution presen-

ted in this thesis incorporates the binaural MWF with the single-channel noise

reduction approach. As such, the speech and noise components in the frame-

work were proposed to be continuously estimated by utilising a single-channel

conditional SPP approach and a single-channel spectral weighing gain function.

Some conclusions of this chapter include:

(i) What is the influence of the binaural noise reduction algorithm with DMAs in

a dual monaural configuration and a binaural postfilter that combines two identical

single-channel gain functions on the ability to localise sources?

The DMAs has marginally distorted the ITDs and ILDs at different configura-

tions, particularly when the sources are originated from behind the head. The

degree of distortion is less with the sources are located from −40◦ to 40◦.

(ii) Does the single-channel noise estimation algorithm affect the localisation

and noise reduction performance compared to the Blocking Matrix algorithm and

CrossPSD algorithm?

The SVAD does not affect the ITDs and ILDs at all different configurations

of speech and noise sources. In contrast, the results showed that the Blocking
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Matrix and CrossPSD algorithms can distort the binaural cues as they are also

built based on the assumptions of the target speech source.

(iii) How do the proposed MWF perform in terms of combining localisation and

noise reduction performance in comparison to the conventional SDW-MWF ap-

proach?

When compared to the SDW-MWF method, which cannot preserve the binaural

cues of noise source, the proposed MWF formulation can preserve the ITDs and

ILDs of both speech and noise. The proposed algorithm has also outperformed

the traditional method in terms of the SNR improvement without introducing

much speech distortion. The PESQ scores has indicated that the SDW-MWF is

less preferred than the new approach.

(iv) How does the performance of the new MWF in comparison with the binaural

technique with DMAs and single-channel gain functions?

The DMA-BPF algorithm has better SNR improvement and perceptual speech

quality for most cases when compared to the MWFλ-SPP approach, particularly

when there is enough spatial distinctiveness between speech and noise. In con-

trast, MWFλ-SPP has a higher consistency in performance for different speech

and noise configurations. At diffused noise environment, the MWFλ-SPP ap-

proach performs better than the DMA-BPF at high input SNR due to the con-

sistently less speech distortion results for MWFλ-SPP.



Chapter 8

Conclusions

Life is like riding a bicycle.

To keep your balance you must keep moving.

– Albert Einstein

8.1 Summary

This thesis dealt with speech enhancement in binaural hearing protection devices

in a noisy environment, particularly with industrial noise. Four main criteria

has been emphasised in the design (i) low computational complexity for long

hour of usage at work, (ii) good noise reduction performance, (iii) continuous

background noise tracking to cope with a changing environment, i.e., from noisy

to quiet environment and vice versa, and (iv) spatial awareness preservation by

having algorithms with short delays while being capable of maintaining binaural

cues of speech and noise. New algorithms and approaches are proposed to achieve

these criteria.

Chapter 2 studied the capability of speech enhancement algorithms in provid-

ing solutions to the problems in conventional hearing protection device (HPD),

particularly in reducing the ambient noise while preserving the target speech sig-

nal and maintaining the spatial awareness. To build a binaural speech enhance-

ment framework both the single-channel and multi-channel speech enhancement

algorithms are applicable. The single-channel methods are suffice to decrease

large amount of background noise as they are signal-to-noise ratio (SNR) based

162
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algorithm. However, they often come with speech distortion and also musical

noise. Multi-channel algorithms, on the other hand, exploit the spatial diversity

of speech and noise and are able to decrease the background noise without intro-

ducing excessive artifacts.

Chapter 3 aimed at developing a spectral gain function for single-channel

method with more flexibility and lower computational complexity.

• The SNR estimate and the gain function has been shown to impact the

objective measures and provide varying subjective quality.

• A sigmoid function has been presented with a methodology to optimise the

mean and the slope of the sigmoid function based on a proposed objective

function.

• The sigmoid parameters were designed such that during the noise only

periods, constant suppression is enforced thus avoiding annoying musical

noise. This was achieved by mapping the function to the distribution of the

SNR estimate.

• Optimisation of sigmoid function has been done based on two widely used

objective measures: perceptual evaluation of speech quality (PESQ) and

log-likelihood ratio (LLR).

• Experimental results have concluded that with a proper choice of para-

meters, the sigmoid function can be optimised to enhance the quality of

the noisy speech while maintaining more energy of the speech components

when compared to the spectral subtraction function.

Chapter 4 extended the idea in Chapter 3 in developing better gain function

with the a priori SNR estimate.

• A new modified sigmoid (MSIG) function has been proposed to provide

more flexibility to the gain function that can be optimised to match various

criteria to achieve a compromised trade-off among speech distortion, noise

reduction and musical noise.



Chapter 8: Conclusions 164

• A new approach, namely the modified decision-directed (MDD) approach

to estimate the a priori SNR has been proposed. This method is superior in

that by reducing the one-frame delay, it reduces or to an extent, eliminates

the speech transient distortion.

• The musical noise is further reduced by means of a recursive averaging

algorithm which smoothens the a posteriori SNR. This level of smoothing

is controlled by factors β and αy.

In Chapter 5, two noise estimators have been presented - the step-size con-

trolled (SSC) algorithm and the soft VAD (SVAD) algorithm.

• The first approach, namely the SSC algorithm has the advantage of low

computational complexity and low immediate sensitivity to speech onsets.

By using a fixed step-size, the developed estimator can efficiently track the

variations in the noise spectrum. It is established that the optimal step-size

for a specific noise scenario results in a noise estimation with higher pre-

cision. Alternatively, the step-size can be optimised such that one defined

step-size works over a wide range of noisy situations. In this work, only pink

noise and factory noise were chosen for that purpose. The performance of

the proposed method is comparable to the conventional methods for a noisy

environment. Under low background noise conditions, the performance of

the SSC algorithm drops to its tendency to overestimate noise power. How-

ever, it is suitable for implementation in the HPD because of the lower

computational complexity compared to the conventional methods.

• The SVAD algorithm, introduced as the second approach, is illustrated with

a sigmoid function to represent the conditional speech presence probability

(SPP). A distinctive feature of this function is that the slope and mean of

the curve can be manipulated independently. As a result, the SPP can be

more flexibly characterised for a compromised trade-off between noise over-

estimation and underestimation. Also, the soft decisions are made harder

by employing different exponential smoothing at different regions of the sig-

moid function. The SVAD produces the overall better noise tracking and

speech quality performance when compared to the evaluated algorithms.
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Chapter 6 presented an alternative speech distortion weighted MWF (SDW-

MWF) formulation that deals with the nonstationarity of speech and noise.

• It utilises single-channel noise reduction technique to estimate a reference

channel, and thus eliminating the requirement of the clean speech correla-

tion matrix estimate.

• The single-channel algorithm employs a noise estimation method based on

a modified conditional SPP, which also enables the regulating of the trade-

off parameter. It is further used as the precursor for the estimation of the

noise correlation matrix and the speech plus noise correlation matrix.

• The rank-one solution for the proposed formulation has also been developed

and included for performance evaluation.

• Experimental results confirm that the proposed method performs better

than the traditional method for all performance measures. A key finding

from the experiment reveals that by incorporating SPP in the trade-off

parameter λ, speech distortion is reduced, but more residual noise and

musical noise are generated in the enhanced signals. The application of the

proposed method in binaural configurations is showed in Chapter 7.

Chapter 7 presented two frameworks of binaural speech enhancement that

simultaneously utilise both single-channel and multi-channel algorithms.

• Investigation has been done to identify Several problems in the frameworks,

i.e., (i) there is room for improvement in the design of single-channel gain

functions, (ii) noise tracking algorithms to replace voice activity detection

(VAD) algorithms, and (iii) SDW-MWF preserves only binaural cues of

target speech but not the noise cues.

• The proposed algorithms in Chapters 3 to 6 are integrated into the binaural

speech enhancement frameworks, with performance outcomes analysed in

terms of the SNR improvement and overall speech quality.

• The new formulation of SDW-MWF with conditional SPP preserves the

binaural cues of both speech and noise.
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• The SVAD provides higher noise reduction capability compared to the

blocking matrix and coherence-based algorithm.

• Comparison of the proposed MWFλ-SPP and the DMA-BPF indicated that

the former has less speech distortion but lower SNR improvement.

• PESQ measurement showed that the DMA-BPF performed better at lower

input SNR while MWFλ-SPP generates better sound quality at higher input

SNR conditions.

• The performance of MWFλ-SPP is more consistent over different configur-

ations of target speech location.

8.2 Future Research Directions

8.2.1 Parameters Selection for Modified Sigmoid Function

In this dissertation, a sigmoid function is employed as the single-channel gain

function due to its flexibility in mapping with the SNR estimates. The para-

meters in the sigmoid functions are selected by using optimisation based on an

objective-measures-constrained cost function (Chapter 3) and based on curve fit-

ting with state-of-the-art gain functions (Chapter 4). To offer more flexibility in

the gain functions to cope with different real-time scenarios, varying parameters

can be considered under different motivation. One example is that recent research

has demonstrated that speech quality in noise environment can be improved if

the acoustic cues at low frequencies are well preserved [168, 169]. The reason

behind this is that speech components are mainly located at low frequencies. A

perceptually motivated frequency-specific Wiener filter (WF) has been proposed

in [168], where a less aggressive gain function to used in place of the original WF

gain function at low frequencies. Similarly, a recently proposed auditory-based

minimum mean square error (MMSE) estimator also suggests a gain function with

a decrease in the gain value at high frequencies compared to low frequencies [169].

This helps to increase the noise reduction, but also leads to more speech distor-

tions at high frequencies. Although the distortions of the high frequency speech

components, such as fricative consonants, are almost inaudible in low SNRs, they
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could be more perceptible when there is less background noise [169]. Thus, it is

desirable to have a larger gain at high instantaneous SNRs, while maintaining a

rigid gain function at low instantaneous SNRs.

8.2.2 Incorporating Perceptual Criteria in Multi-channel

Wiener Filter

In this dissertation, the conditional SPP has been utilised to adapt the trade-

off parameters in the alternative formulation of SDW-MWF, which has been

extended to binaural speech enhancement configurations. It was shown that

this comes with higher amount of noise artefacts when compared to using an

aggressive fixed value for more noise suppression. Future research can combine

the conditional SPP with a perceptually motivated weighting factor. Inspiration

can be taken from the characteristics of the human auditory system among which

are the compressive non-linearities of the cochlea, the perceived loudness and the

ears masking properties [169]. In this way the distortion could be kept low without

compromising the amount of noise reduction.

8.2.3 Noise Estimation based on Structure of Noise

In this dissertation, a SVAD based noise power spectral density (PSD) estima-

tion algorithm has been proposed, which employs soft decisions on top of a soft

SPP with fixed priors. The derivation of the conditional SPP requires the as-

sumptions of the distributions of noisy speech and noise signals, where complex

Gaussian models are often used. However, the discrete Fourier transform (DFT)

components of real noise hardly follow Gaussian distribution due to nonstation-

arity. The beauty of sigmoid function proposed in this thesis is that it offers

flexibility to adjust the noise overestimation and underestimation. The paramet-

ers of the sigmoid function in this context were selected based on the bounds of

fixed priors. Future improvement might include selecting the parameters based on

the relationship of different assumptions of noise distribution, i.e., a generalised

gamma model. However, this might indicate that the proposed sigmoid function
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is no longer suitable to represent the conditional SPP equation, and thus differ-

ent cumulative function, such as the Weibull function can be considered. Also,

the SVAD algorithm can also be combined with the SSC algorithm which might

provide improvement in the noise tracking performance.

8.2.4 Reduced Information Exchange for Binaural Speech

Enhancement

In this thesis, the SDW-MWF frameworks utilises all channels at both sides of

the ears to process the noisy speech signals and to obtain the enhanced speech

signals. However, due to power and bandwidth limitations of the binaural link,

it is typically not possible to transmit all microphone signals between each side.

To limit the amount of transmitted information, either only the signals from

the reference channels, or the filtered version of the contralateral signals are

transmitted. The constraints of the signal transmission such as the bit rate has

also to be considered. Such reduced bandwidth and rate constrained algorithms

have recently received many attention and has opened up a pathway in developing

more efficient binaural speech enhancement algorithms.

8.2.5 Evaluation of Speech Quality and Intelligibility

In this thesis, different objective evaluation measures have been used to predict

the quality of the speech enhanced by noise reduction algorithms. However,

most of them are not really consistent in performance over a wide range of non-

stationary speech and noise scenarios. Thus, another pathway for future research

directions is to design an objective evaluation metric that can better predict

the performance in both speech quality and intelligibility. It is also desirable

to conduct future evaluation on more speech and noise databases. In addition,

one of the future works for the binaural speech enhancement algorithms are to

conduct formal subjective listening tests to justify the results obtained from the

objective evaluation measures.



Appendix A

Additional Results for

Multi-Channel Wiener Filter

The greatest obstacle to discovery is not ignorance

-it is the illusion of knowledge.

– Daniel Boorstin

In Chapter 6, the proposed multi-channel Wiener filter (MWF) was compared

with the traditional formulation under factory noise. In this appendix, some ad-

ditional experimental results are included for completeness to examine the efficacy

of the proposed algorithm across different types of noise. As such, two distinctive

noise were included: a white Gaussian noise (WGN) to represent a stationary

noise scenario, and a hammering noise indicating a nonstationary noisy envir-

onment. Parameters used in the algorithms are consistent with those used in

Chapter 6.

Similar to Chapter 6, two sets of figures with input SNRs −5 dB, 0 dB, 5 dB,

and 10 dB were plotted for each type of noise environment. The first set compares

the performance of wMWFλ1 and wMWFλ2 with wMWFµ and MSIG. The second set

of results compares the performance of the rank-formulation wMWFλ-rank1 with

wMWFµ-rank1 and wMWFλ1 . The figures are arranged such that the results for the

same input SNR are plotted in the same page for a direct comparison between

two types of noise environment.

Figures A.1, A.3, A.5, and A.7 depict the average first set’s results for WGN,

while Figures A.2, A.4, A.6, and A.8 show the results for hamming noise. It can

169



Chapter A: Additional Results for Multi-Channel Wiener Filter 170

be seen that the results are more or less consistence across two types of noise.

Observation shows that similar patterns have been obtained when compared to

the results for factory noise in Chapter 6. wMWFλ1 and wMWFλ2 perform bet-

ter than wMWFµ in terms of SNR improvement and overall speech quality for

both types of noise and across different input SNRs. This merely means that the

new MWF formulation is consistently better that the conventional approach, as

it takes spectral tracking of nonstationary speech and noise into account. This

motivates the extension of the algorithm to binaural speech enhancement con-

figuration to examine its capability to preserve binaural cues, which has been

discussed in Chapter 7.

Figures A.9 to A.16 show the results for the second set for both types of noise.

Similar to the first set, they show consistency across different types of noise and

different input SNRs. wMWFλ-rank1 still performs better than wMWFµ-rank1 and

wMWFλ1 at low input SNRs, while wMWFλ1 has better performance at high input

SNR.
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Figure A.1: Average results for WGN for input SNR −5 dB.
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Figure A.2: Average results for hammering noise for input SNR −5 dB.
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Figure A.3: Average results for WGN for input SNR 0 dB.

5

6

7

8

9

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

IF
W

S
N

R
s
e
g

5

10

15

20

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

N
A

T
T

s
e
g

−4

−2

0

2

4

6

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

S
P

R
E

s
e
g

1.6

1.8

2

2.2

2.4

2.6

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

P
E

S
Q

 

 

MWF
µ MSIG MWF

λ1
MWF

λ2

Figure A.4: Average results for hammering noise for input SNR 0 dB.
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Figure A.5: Average results for WGN for input SNR 5 dB.
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Figure A.6: Average results for hammering noise for input SNR 5 dB.
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Figure A.7: Average results for WGN for input SNR 10 dB.
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Figure A.8: Average results for hammering noise for input SNR 10 dB.
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Figure A.9: Comparison between rank-one and general formulations for WGN
for input SNR −5 dB.
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Figure A.10: Comparison between rank-one and general formulations for ham-
mering noise for input SNR −5 dB.
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Figure A.11: Comparison between rank-one and general formulations for WGN
for input SNR 0 dB.
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Figure A.12: Comparison between rank-one and general formulations for ham-
mering noise for input SNR 0 dB.



Chapter A: Additional Results for Multi-Channel Wiener Filter 177

6.5

7

7.5

8

8.5

9

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

IF
W

S
N

R
s
e
g

10

15

20

25

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

N
A

T
T

s
e
g

−1

0

1

2

3

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

S
P

R
E

s
e
g

2.6

2.8

3

3.2

3.4

S0N
45

S0N
90

S0N
13

5

S0N
18

0

S0N
22

5

S0N
27

0

S0N
31

5

P
E

S
Q

 

 

MWF
µ
−rank1 MWF

λ1
MWF

λ
−rank1

Figure A.13: Comparison between rank-one and general formulations for WGN
for input SNR 5 dB.
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Figure A.14: Comparison between rank-one and general formulations for ham-
mering noise for input SNR 5 dB.
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Figure A.15: Comparison between rank-one and general formulations for WGN
for input SNR 10 dB.
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