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Abstract
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Analysis of child-centred daylong naturalist audio recordings has become a de-facto
research protocol in the scientific study of child language development. The re-
searchers are increasingly using these recordings to understand linguistic environ-
ment a child encounters in her routine interactions with the world. These audio
recordings are captured by a microphone that a child wears throughout a day. The
audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday
life which degrades the performance of speech analysis tasks. The purpose of this
thesis is to investigate the utility of speech enhancement (SE) algorithms in the au-
tomatic analysis of such recordings. To this effect, several classical signal processing
and modern machine learning-based SE methods were employed 1) as a denoiser for
speech corrupted with additive noise sampled from real-life child-centred daylong
recordings and 2) as front-end for downstream speech processing tasks of addressee
classification (infant vs. adult-directed speech) and automatic syllable count estima-
tion from the speech. The downstream tasks were conducted on data derived from
a set of geographically, culturally, and linguistically diverse child-centred daylong
audio recordings. The performance of denoising was evaluated through objective
quality metrics (spectral distortion and instrumental intelligibility) and through the
downstream task performance. Finally, the objective evaluation results were com-
pared with downstream task performance results to find whether objective metrics
can be used as a reasonable proxy to select SE front-end for a downstream task. The
results obtained show that a recently proposed Long Short-Term Memory (LSTM)-
based progressive learning architecture provides maximum performance gains in the
downstream tasks in comparison with the other SE methods and baseline results.
Classical signal processing-based SE methods also lead to competitive performance.
From the comparison of objective assessment and downstream task performance
results, no predictive relationship between task-independent objective metrics and
performance of downstream tasks was found.
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1 Introduction

Speech is the principal carrier of the human language [1]. Though humans also express
themselves through non-verbal ways (e.g. humming, nodding, dancing, winking, blushing,
hand gestures etc) but communication in this manner is not determined by the rules of
the language. There are cogent reasons, (e.g. speech communication can be carried out in
tandem with other activities such as food gathering or hunting) which have their roots in
evolution of our species, that makes us use speech naturally and frequently [2]. Speech is
not only fundamental to communication but also plays an important part in facilitating
interaction. It remains our principal way to communicate abstract thoughts [3].

Speech is the outcome of a complex psycho-acoustic process involving brain (organi-
zation of thought into spoken language; motor control), lungs (creating the airflow by
expulsion of air through throat, oral and nasal cavities), larynx (modulation of airflow
through vocal folds; altering length of vocal tract) and organs of vocal tract (such as nasal
and oral cavity, tongue, lips, teeth etc) [4], [5]. Even though both conceptualisation and
articulation of speech is highly complex and specialised task, it is a common observation
that young children (who are otherwise normal) are able to acquire their mother tongue (or
native language) rapidly and effortlessly [6]. Moreover, it is quite astonishing and interest-
ing that young children across different cultures follow a similar developmental path as far
acquisition of language and speech are concerned. The infants start babbling at 6 months
of age, by their first birthday they might name few things, by their second birthday they
might put few words together for a rudimentary sentence, by the age three they are able
to make a full sentence and, by the time they are four, they are able to speak fluently in
their mother tongue [2], [6].

The spontaneity, ease and speed with which young children are able to acquire spoken
language and speech has often made linguists, psychologists, neuro-scientists and now even
computer scientists (in context of designing intelligent machines which can acquire language
from their environment) wonder how the young children acquire language? Early language
acquisition in infants (and young children) is the research area that seeks to answer this
fundamental question. The researchers in this area are grappling with the questions like
how infants are able to acquire vocabulary and structure despite richness and complexity of
natural language [7], [8] (for e.g. segregating word boundaries from continuous speech), how
infants (and young children) are able to adapt to various speaking styles in varied acoustic
environments and generalise the different acoustic patterns to a same external concept (for
e.g. a word) [9], how caregiver-child interactions influence language development of infant
(or young child) [10], how language directed at child can be quantified [11] and many more.

One of the major area of interest among the early language acquisition researchers
is how the quantity and quality of language exposure to an infant (or young child) im-
pacts the child’s future language development (see for e.g. [12], [13]). The difference in
the linguistic exposure to the child is often characterised by the environment in which
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the child is being brought up in (cultural, socioeconomic and household background), the
content of speech child hears, and how often child is addressed directly as compared to
overhearing of adult conversations [14]–[16]. However, Tamis-LeMonda et al. [17] argues
that the variability in the language exposure to a young child is not adequately captured
by structured tasks in the lab (or at the home) and controlled studies (e.g. [18]) do not
sufficiently capture the fluctuation in language input that an infant faces in a naturalis-
tic environment. Moreover, the social context of most of the controlled studies is often
educated American/European households, so-called WEIRD communities [19] (Western,
Educated, Industrialized, Rich, Democratic), which accounts for limited diversity in terms
of language, culture and socioeconomic environment and thus, restricts the generalizability
of the results.

To better understand an infant’s real language learning environment (for e.g. at home
where infant encounters a large fluctuation in language input over a longer period of time)
researchers are collecting audio (or audio-visual) data of children going about their routine
activities (see for e.g. [20]). These naturalist long duration audio recordings require auto-
mated processing tools for doing useful analysis such as quantification of speech directed
to the child, which might be impractical to be done by a human on massive corpora of
recordings. Our ongoing collaborative project called Analyzing Child Language Expe-
riences Around the World (ACLEW; [21]) is an attempt in this direction. It brings
together naturalistic, geographically and culturally diverse set of child-centered daylong
audio recordings to aid scientific study of child language acquisition. It also endeavours to
build state-of-the-art speech processing tools which can help to bring out and measure the
diversity, variability in the language environments which an infant encounters in its daily
life. The goals of the present work are closely related to the tools development (for speech
analysis) efforts of the project ACLEW.

1.1 Problem description

In the scientific study of child language acquisition, it is often required to quantify the
amount of speech input that a child hears (e.g. [10]) and detect whether the speech
was directed towards the child or not (e.g. [13], [18]). Such tasks, even though can be
performed by a trained person, become impractical and cumbersome when a diverse set
of long duration recordings are involved. Thus, it is imperative to use automatic speech
processing tools for such analyses. Particularly challenging examples of such automatic
speech processing tasks that relate to child language analysis are automatic syllable count
estimation (syllable counts are useful in quantification of language input to the child) and
speech addressee classification (whether speech was directed to child or adult; also known
as Infant directed speech and Adult directed speech classification, IDS/ADS classification
in short).

The child-centered day long recordings provides a unique case for the application of
speech processing algorithms. These recordings are generally mono channel, unconstrained
in terms of possible environments, contain near and far field speech at varying and very
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low SNRs (signal-to-noise ratio), have signal artefacts (e.g. friction of child’s clothes with
microphone), and are corrupted with varied nature of acoustic events from ubiquitous
television running in the background to honking vehicles. In other words, these natural-
istic recordings as captured by child-worn microphones are extremely noisy. For instance,
Räsänen et al. [11] reports an average speech SNR of approximate 0 dB for a range of child-
centered audio recordings. The inherently low and varying SNR of these recordings sug-
gest that application of speech enhancement (SE) algorithms as a front-end (pre-processor)
might improve robustness of downstream speech processing tasks. A similar use case of
SE front-end for downstream task of word count estimation (WCE) from long-duration
naturalist personal log recordings from adult subjects was reported by Ziaei et al. [22] .
In their study, they compared a couple of classical signal processing based SE algorithms
and found that a SE front-end using spectral subtraction improved the robustness of their
WCE pipeline. Following this, spectral subtraction was also used by Räsänen et al. [11]
for WCE in child-centered recordings. Additionally, SE pre-processor has also been suc-
cessfully applied in the tasks of speaker diarization [23], automatic speech recognition [24]
etc. In contrast, submissions to the child-centered audio analysis challenges, held as a part
of Computational Paralinguistic Challenges (ComParE) [25], [26], have relied on robust
classifiers devoid of a SE front-end. This leaves it unclear whether SE comparisons as re-
ported in [22] generalize to child-centered day long recordings or to downstream tasks other
than WCE. In addition, the earlier studies [11], [22] have not explored modern machine
learning-based methods for SE, which might provide additional performance gains in the
downstream tasks beyond conventional DSP based approaches.

In this context, it might also be useful to have task-independent metrics which can
point to the right enhancement algorithm by comparing a number of SE algorithms on
standardised tests (e.g. objective quality evaluations). Such standardised tests would be
computationally cheaper to execute on an array of SE methods then constructing num-
ber of SE front-ends for each downstream task to evaluate which front-end maximises
performance of the downstream task. However, to our knowledge, such a study which
demonstrates the application of standardised test results (e.g. results of objective quality
evaluations) as predictive pointers to select a suitable SE front-end for a downstream task
has not been conducted. This makes it unclear that whether performance on metrics (for
e.g. spectral distortion, instrumental intelligibility) can be translated into a criterion for
selecting a suitable SE algorithm for pre-processing, when the involved downstream tasks
are essentially varied speech processing tasks.

1.2 Research goals of the thesis

The goal of this thesis is to compare a number of DSP-based classical SE algorithms and
modern machine learning-based SE algorithms in the analysis of child-centered daylong
audio recordings, with focus on downstream tasks of automatic syllable count estimation
and IDS/ADS classification. Additionally, we compare the downstream task performance
of SE methods with the objective metrics of spectral distortion and speech intelligibility
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Figure 1.1 Schematic diagram of the experiments conducted in this work. ASCE is
automatic syllable count estimation task and IDS/ADS is Infant-directed speech and adult-
directed speech classification task. In the enhancement block, DNNxxx denotes deep neural
network based SE methods, SpecSub is spectral subtraction, and Wiener is Wiener filter.
The subscripts with spectral subtraction and Wiener filter denotes the noise estimation
techniques. Please see chapter 3 for details.

calculated in noise conditions typical to what is encountered in child-centered audio data.
Through this effort, we want to analyse whether objective metrics could be used as a
reasonable proxy in selection of a SE front-end for these two downstream tasks that focus
on different signal characteristics. To summarise, following objectives can be delineated:

O1: Compare different SE methods by calculating objective metrics of spectral distortion
and instrumental intelligibility in noise conditions reflective of those typical in child-
centered long duration naturalistic recordings.

O2: Compare different SE front-ends by evaluating their performance with respect to
the two downstream tasks of IDS/ADS classification and automatic syllable count
estimation.

O3: Compare objective evaluation results with downstream task performance to assess
whether performance on objective measurement translate into performance on down-
stream tasks.

1.3 Experimental scheme of the thesis

Figure 1.1 illustrates the basic experimental scheme utilized in this work. Broadly, the
purpose of the present experimental scheme is to evaluate the performance of the SE
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methods in additive noise conditions similar to what is observed in child-centered long-
duration recordings through objective metrics and efficacy of SE methods as front-ends for
performance improvement in downstream tasks. Further, the performance of SE methods
through objective assessment is compared with performance in downstream tasks.

1.4 Organization of the thesis

The thesis is organised as follows. The chapter 2 following this introduction discusses the-
oretical preliminaries related to speech production and perception, noise, basic principles
behind speech enhancement techniques and evaluation measures for speech enhancement
algorithms. The chapter 3 discusses the speech enhancement methods (including noise
estimation procedures), downstream speech analysis tasks and evaluation measures used
in the experiments conducted as part of this work. The chapter 4 describes the data and
experimental setup and the chapter 5 presents the results obtained from the experiments
and a discussion of the results. The final chapter 6 reports the conclusions derived from
this study.
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2 Theoretical background

2.1 Speech production and perception

Speech at a physical level is variation in air pressure (an air pressure wave) produced as a
result of coordination between various complex mechanisms in the human body. The phys-
iology of the speech production involves air flow generation (by expulsion of air from the
lungs), vibration induced in the air flow by oscillation of vocal folds for the voiced sounds
or turbulence created in air flow due to constrictions for unvoiced sounds (e.g. modulat-
ing airflow by opening and closing of lips to produce /p/), movements and configuration
of articulatory organs (e.g. jaws, lip, tongue, velum, teeth) and muscle control exercised
through brain (e.g. regulating tension in vocal folds through larynx muscles).

Figure 2.1 illustrates the human vocal apparatus. In figure 2.2, the grey portion with
black outline is initial position of passage from epiglottis to lips (correlate with the same
section in the figure 2.1). When a sound is to be produced, the shape of passage and
position of articulators (e.g. lips, tongue, teeth) change as demonstrated in figure 2.2 by
the thick white outline (compare with initial position). The position of articulators as
depicted by the thick white line shows tongue is rolled against teeth in upper jaw and lips
are slightly open, like when producing sound /s/.

The opening between vocal folds is called glottis. Glottal opening takes place due to
the accumulating pressure at the vocal folds when they are closed and steady pressure
from the lungs is present. When the glottis opens, the vocal folds are soon sucked back
together due to the Bernoulli effect. This change in pressure at the level of glottis gives
rise to periodic opening and closing of vocal folds. When the vocal folds are closed no air
flow reaches the vocal tract, and this phase is referred to as glottal closed phase. When the
folds are open the period is known as glottal open phase. The temporal duration of glottal
cycle is known as pitch-period, its reciprocal is fundamental frequency or F0. Typically,
in males the fundamental frequency range is between 60 − 150 Hz and 200 − 400 Hz in
females and children. The fundamental frequency is closely related to pitch, which is our
perception of the fundamental frequency. Pitch is what our ears and brain interprets as
periodicity of the signal [3].

The shape of the vocal tract is determined by the size and shape of various cavities
(larynx, pharynx, oral). The structure of these cavities is plastic and is modified in re-
sponse to movement and position of articulators. Thus, the shape of vocal tract changes
during speech articulation. The shape of the vocal tract determines the spectral envelope
(demonstrated in figure 2.3 with thick curved line) and in this context, it can be con-
sidered as a filter that spectrally shapes the acoustic signal. The shape of vocal tract is
also responsible for timbre present in speech sound as it acts as a filter amplifying certain
frequencies and attenuating others.



7

Figure 2.1 Human vocal tract (reproduced from [27])
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Initial Position

Changed Position

Figure 2.2 Articulatory movement when speaking (adapted from the presentation video
of [28]).

The resonances of the vocal tract are known as formants. They can be observed as
peaks in spectral envelope (see F1, F2 and F3 in the figure 2.3). In this context, it is to
be noted that location of higher formants might not always be prominent and thus, would
be difficult to resolve on the spectral envelope (e.g. F4 and F5 are difficult to locate in
the figure 2.3).

Figure 2.3 Spectral envelope of speech with formants (reproduced from [3]).



9

Speech perception is how we hear, understand and interpret a linguistic sound [29].
Phonemes are smallest unit of linguistic sound which may bring about change in mean-
ing. For example, the /s/ in ‘soar’ distinguishes it from /r/ in ‘roar’ [30]. There are 40
phonemes in English language and are broadly classified into eight groups: vowels, diph-
thongs, semivowels, nasals, fricatives, affricates, stops, and whispers (see chapter 3 of [31]
for details). The speech signal is processed by our auditory system to extract percep-
tual acoustic cues (e.g. harmonic structure of the signal, formant frequencies, duration).
The acoustic cues help in perception of various classes of speech sounds (e.g. formant
frequencies and duration are most important acoustic cues in perception of vowels [31]).

2.2 Speech Enhancement

Speech enhancement (SE) is concerned with improving speech signal quality, degraded
by additive noise, for human listening (in terms of comfort and intelligibility) and (or)
machine processing (e.g. pre-processor for other speech processing tasks). Some of the
common applications areas of speech enhancement are:

• Voice communication over cellular telephony, which typically suffers from back-
ground noise in surroundings (honking vehicles, varied sounds in market place,
multiple-talkers in restaurants etc.) at the transmitting end. Speech enhancement
algorithms are used as a pre-processor in speech coding systems employed in cellular
phones to improve speech quality at the receiving end [32].

• Improving recognition accuracy and robustness of automatic speech recognition
(ASR) systems by enhancing noisy speech signal before feeding them into the ASR
systems [24].

• Military communications, for instance, improving intelligibility of pilot’s speech
which is corrupted by high levels of cockpit noise [33].

• Cleaning noisy signal before amplification in hearing aids designed for hearing-
impaired listeners [34].

So, there are wide variety of contexts in which it is desired to enhance speech. De-
pending upon the specific application the enhancement system may be directed to improve
speech quality, intelligibility or both [35]. In the speech enhancement literature, process
of enhancement is often referred to as "denoising" or "noise-reduction". The terminology
captures the essence of speech enhancement systems i.e. suppression of noise.

2.2.1 Noise

Our environment is full of sound sources. We are usually interested in the sounds which
carry useful information to us such as speech, music, doorbells, calling tone etc. These
sounds are often labelled as "desired". Noises are unwanted signals which interfere with
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the communication, processing, and measurement of an information-bearing desired sig-
nal [36]. For example, consider a conversation going in a crowded restaurant. Too many
concurrent sound sources (different people speaking at the same time, background music,
footsteps etc.), severely impacts the intelligibility of the speech in the conversation. Such
environments are often referred to as noisy. In the presence of loud noise, it is not only dif-
ficult to hear (background noise heavily degrades speech) but it also becomes problematic
to speak clearly. The speaker has to put extra vocal effort by speaking louder, improv-
ing intonation, changing fundamental frequency etc. (see Lombard effect [37]). Another
example, in this context, is of machine processing of degraded speech. Speech processing
systems generally show deterioration in performance when input speech is noise corrupted.
For example, word error rate (WER), used in evaluating performance of ASR systems,
increases rapidly when input speech is degraded (see experiments section of [38] and [39]).

Degradation and distortion of speech (or audio in general) can be attributed to the
effects of additive noise (e.g. multi-talker babble), echo due to reflection of sound waves
(e.g. by walls in a room, by mountains in nature) or due to coupling between loudspeakers
and microphone (e.g. in a teleconference system), reverberations (distortion produced due
to acoustics of enclosed space), and different transmission channel effects (e.g interference
from nearby channels, faulty equipment etc). These different categories of degradation
impact the speech signal in different manners. For example, additive noise, as the name
suggests, is additive to the speech signal. Mathematically, if we represent noisy speech
signal as y(n), clean speech as x(n) and noise signal as d(n) then noisy speech signal can
be modelled as

y(n) = x(n) + d(n) (2.1)

Here, it is assumed that the additive noise source is statistically independent with the
speech and locally stationary. In figure 2.4, we show clean speech signal, its spectrogram
followed by additive WGN corrupted clean speech and its spectrogram. The noise is added
at SNR = 10 dB. It is interesting to see in spectrogram (bottom), how noise has swarmed
≥ 4 kHz frequencies.

In contrast to additive noise, echo, reverberations, and transmission channel effects
produce distortions in the speech through convolution with the original speech signal. In
the presence of convolutive noise, mathematical representation of the noisy speech in 2.1
can be modified as

y(n) = x(n) ∗ h(n) (2.2)

Here, h(n) is the impulse response of the convolutive noise source.
These different categories of degradation in speech are addressed by different signal

processing techniques and are active area of research. Speech enhancement primarily deals
with suppression of additive noise (e.g. [40], [41]). Echo suppression and cancellation
techniques (e.g. [42], [43]) are used to handle distortions produced by echo. Speech dere-
verberation techniques (e.g. [44], [45]) aims to minimise reverberations in speech signal.
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Figure 2.4 Clean speech in time domain (top) followed by its spectrogram. Then, clean
speech corrupted with additive white Gaussian noise in time domain followed by its spec-
trogram (bottom).

2.2.2 Noise in context of speech enhancement

In general, noise can be typically viewed as a stochastic process with respect to the target
signal of interest. It could be stationary (noise-characteristics constant with respect to
time) or non-stationary (noise-statistics are changing with respect to time). A good exam-
ple of stationary noise process is additive white Gaussian noise process commonly known
as white Gaussian noise (WGN). The WGN is a standard noise model used in modelling
of many random process in nature [46]. Theoretically, it has a constant power spectral
density i.e. all frequencies has equal power. It has zero mean and finite variance. The
samples of WGN are independent and identically distributed (samples belong to normal
distribution or Gaussian distribution) and are thus, uncorrelated. Figure 2.5 illustrates
the temporal waveform and spectral characteristics of WGN. The spectrogram and the
shape of spectrum are particularly interesting as they relate to distribution of energy in
the frequency domain. For example, in the spectrogram we can see that distribution of
energy is nearly uniform across frequencies. On the other hand, ambience of an airport
lobby where there are concurrent sound sources such as people talking, sound of footfalls,
flight announcements etc. is a good example of non-stationary noise source. Noise sampled
randomly from daylong recording is another example of non-stationary noise. Figures 2.6
and 2.8 illustrates the characteristics of noise from airport lobby and daylong recording
respectively in time and frequency domains.
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Figure 2.5 White Gaussian noise in time domain (top), its long-term average spectrum
(middle) and its spectrogram (bottom).

Figure 2.6 Non-stationary noise from airport lobby in time domain (top), its long-term
average spectrum (middle) and its spectrogram (bottom).
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Figure 2.7 Noise sampled randomly from daylong recordings in time domain (top), its
long-term average spectrum (middle) and its spectrogram (bottom).

Figure 2.8 Multi-talker babble noise in time domain (top), its long-term average spectrum
(middle) and its spectrogram (bottom).

In case of non-stationary noises, the statistical characteristics of noise signal varies with
time and this makes them hard to model. From perspective of speech enhancement, addi-
tive non-stationary noises presents a complex case for noise suppression as their estimation
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is hard due to difficulty in accurate modelling. In context of SE, it is also important
to mention that speech-shaped noise and babble noise are two standard noise examples
which are frequently encountered in speech processing. These two noises exhibit spectrum
characteristics which are similar to speech and thus, are very effective in masking desired
speech signal.

2.2.3 Human listening in noisy conditions

Humans with normal hearing functions are able to perceive speech even in adverse com-
munication conditions [4]. For example, we are able to selectively attend to conversation
happening at our table in a restaurant even though there are several people talking (on
other tables, waiters attending to guests etc.) and other sources of sound present in the
background (e.g. footfalls, people eating, music etc). This is possible due to special abilities
of human cognition which are able to recognise acoustic cues even in extremely degraded
acoustic environments. In such environments, human cognition system exploits the binau-
ral capabilities (in terms of inter-aural level difference (ILD) and time difference (ITD) to
localize and selectively attend to a sound source. It tries to reinforce the observed informa-
tion from acoustic cues by correlating it with observed visual cues (e.g. lip movement and
facial expressions) and context of the conversation. Further, in complex multi-speaker sce-
narios human cognition system utilizes auditory grouping mechanisms to segregate desired
speech from other concurrent sound sources by grouping sound components according to
their sources. It also uses fundamental frequency differences (for e.g. between male and
female speaker) in competing speech to recognise speech from target speaker (for more
details see Chapter 4 in [31] and references there in). In this context, it is also impor-
tant to note that there are some inherent acoustic features of speech which protects the
information from external degradation and distortion. For instance, Parikh & Loizou [47]
report that low-frequency spectral peaks (formant resonances) of speech are preserved in
noise to a greater degree. This is due to energy dominance of lower formants in speech, so
they are last to be masked by noise. This implies that listener has reliable access, even in
noisy conditions, to lower formants (F1, F2, F3) which provide critical cues for vowel and
stop-consonant perception.

2.2.4 Basic principles in SE methods

The problem of speech enhancement can be addressed by classical digital signal processing
(DSP) methods or modern machine learning techniques. Both categories of method ap-
proach the problem in fundamentally different manner. DSP based methods assume that
noise is additive, source of noise and speech are uncorrelated, and noise is stationary in
the analysis time window. Based on these assumptions the noisy speech signal y(n) can be
considered as superimposition of clean speech signal x(n) and noise signal d(n). The noisy
speech signal can be modelled as equation 2.1. Taking discrete-time Fourier transform
(DTFT) of both sides in equation 2.1 (Fourier transform is linear) we get
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Y (ω) = X(ω) +D(ω) (2.3)

In polar form,

|Y (ω)|ejϕy(ω) = |X(ω)|ejϕx(ω) + |D(ω)|ejϕd(ω) (2.4)

Here, ϕ is phase of the signal and |.| represents the magnitude of the signal.

It is preferred to execute enhancement related operations in spectral domain as spectral
analysis can be easily correlated with knowledge about speech production and perception.
For example, phase of noisy speech signal can be used in reconstruction of clean speech
signal, as long as the phase difference is not perceptible to human auditory cognition.
Design process of SE methods can benefit from such information. In real world situations,
the noise signal d(n) is not known. It has to be estimated from observed noisy speech
signal. DSP based SE methods utilise different noise-estimation methods (e.g. minimum
statistics algorithm [48]; discussed in chapter 3) to estimate noise magnitude spectrum (or
noise power-spectrum). Let us consider that with the help of a noise estimation method,
the noise magnitude is estimated as |D̂(ω)| (symbol with ∧ on top represents estimated
parameter) and phase-difference with noisy speech is imperceptible so the noisy speech
phase can be used instead of estimated phase. Now, clean speech |X̂(ω)| can be estimated
as

X̂(ω) = [|Y (ω)| − |D̂(ω)|]ejϕy(ω) (2.5)

Rearranging the equation 2.5,

X̂(ω) = [1− |D̂(ω)|
|Y (ω)|

]|Y (ω)|ejϕy(ω) (2.6)

Let H(ω) = 1− |D̂(ω)|
|Y (ω)| , then equation 2.6 can be written as

X̂(ω) = H(ω)|Y (ω)|ejϕy(ω) (2.7)

Here, H(ω) is referred to as a suppression function [31] as it attenuates the magnitude
of noisy speech. Different DSP-based SE methods, use different techniques to estimate the
suppression function. It is to be noted here that the suppression function is dependent on
observed noisy speech spectrum and estimated noise spectrum. Thus, using the same SE
method but changing the noise estimation procedure will modify the suppression function
and change the estimate of clean speech.

Machine learning-based SE methods, on the other hand, approach SE as a supervised
learning problem. Supervised learning techniques attempts to infer a model from labelled
training data. The inferred model then can be utilised for mapping unseen data sample to
known labels. In context of speech enhancement, a supervised learning task attempts to
learn clean speech representation from a training set of clean and noisy speech signal pairs
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[49]. Let us consider

Ztrain = {(xi(n), yi(n)) | (xi(n), yi(n)) is a pair of clean and noisy speech signal

and i is an integer ∈ [1, card(Ztrain)]}
(2.8)

Here, card(Ztrain)
1 represents cardinality of the set i.e. number of elements in the set.

Similarly, testing set Ztest can also be defined. Let us consider, a pair of clean speech
and noisy speech signals (x(n), y(n)) ∈ Ztrain. Now, the supervised learning problem in
context of speech enhancement can be formulated as (equation taken from [49])

ôx = F (v(y(n)), θ) (2.9)

Here, F (·, θ) is a parametrized model with parameters θ, v(·) is vector-valued function
that applies feature transformation to noisy speech signal y(n) and ôx is output from
model F (·, θ) which is representation of estimated clean speech (e.g. it could be magnitude
spectrum). The ôx is such that on applying a transformation function u(·) (e.g. if ôx is
magnitude spectrum then transformation function could be inverse Fourier transform) it
will give estimated clean speech,

x̂(n) = u(ôx) (2.10)

The transformation function and output from model is dependent upon specific appli-
cation [49]. For example, DNN based approach for SE proposed by Sun et al. [50] predicts
an IRM (Ideal Ratio Mask) which can be applied to the input noisy speech to get enhanced
speech. Now, the task of supervised algorithm is to estimate optimal parameters θ∗ by op-
timizing F (·, θ) with respect an objective function (e.g. a cost function like mean squared
error) on training data set. With the incorporation of optimal parameters in model F (·, θ),
the model can be used to estimate clean speech from an unknown sample of noisy speech.

2.3 Evaluation measures for speech enhancement

The purpose of evaluation methods for speech enhancement is to quantify the quality of
enhanced speech. The quantification helps in comparing the speech enhancement algo-
rithms performance. The performance of speech enhancement algorithms can be measured
through either subjective listening tests or objective evaluation measures [31]. Subjective
listening tests use human subjects to determine performance. Listening tests are often in
nature of exercising preference for one sample over other (e.g. Which one is better, A or
B ?) or rating the samples over a predefined scale (e.g. rank A, B and C from best to
worst). The setup of listening tests are carefully designed to extract information which
aids in performance measurement and is reliable and accurate [3]. The listening tests

1Equation 2.8 represents a training set through parametric notation for sets. The set members
are parmetrised by i.
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can be conducted in controlled settings in a laboratory for example following recommenda-
tion from ITU-T P.800-series (International Telecommunication Union-Telecommunication
Standardization Sector) or can be crowd-sourced following recommendations from ITU-T
P.808. The listening tests are followed by statistical analysis of results to determine whether
the obtained results are statistically significant or not.

Speech perception by humans is a highly complex process, involving not only spoken
language understanding but also the utterance context as well as the emotional, psycholog-
ical, gender and social attributes of the speaker [51]. After decades of research, still there
is no single evaluation measure which can replace human listener conclusively to assess the
speech quality [31]. The subjective listening tests, though still the most reliable instru-
ments for speech quality evaluation, are prohibitive in terms of cost and time consumption.
For these reasons, objective evaluation measures have been developed by the researchers
to complement and in some cases replace the subjective evaluations.

The objective assessment techniques involve use of algorithms to predict the output
of subjective listening tests. The objective evaluation of speech quality is usually clas-
sified into intrusive and non-intrusive methods, based on the type of input they require
[52]. The intrusive methods need the input (clean) and output (processed or in our case
enhanced) signal to assess speech quality whereas non-intrusive methods assess speech
quality using only the output (processed) signals. The intrusive methods tend to calculate
the distortion measure between the original and processed signal and then correlate the
distortion measure with the speech quality. The intrusive quality measures can be mathe-
matically oriented (see for e.g. segmental SNR [53], Linear Predictive Coding (LPC) based
spectral distance measures such as Itakura-Saito [54], Speech Intelligibility in Bits (SIIB)
[55], [56]) or psychoacoustically motivated (see for e.g weighted spectral slope distance
[57] or Bark distortion measure [58]). Essential difference between mathematical and psy-
choacoustic approaches is that, mathematical measurement techniques operate on simple
mathematical models where as psychoacoustic motivated approaches in their design involve
the characteristics of human auditory perception such as non-uniform frequency resolution
in the ear and subjective perception to loudness [52]. In this manner psychoacoustic-based
approaches tries to emulate the human auditory system.

Non-intrusive objective measures, on the other hand, compute quality metric through
analysis of processed signal only. In this context, consider the case of VoIP [59] applications
where it is of utmost importance to continously monitor the performance of telecommu-
nication networks in terms of speech quality [31]. In such a case, where the system has
access to only transmitted (or processed) signal to evaluate quality a non-intrusive system
is desired. A good example of non-intrusive objective measure is recommendation ITU-T
P.563.
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3 Methods

In this chapter, we describe the different methods and techniques which were used during
the experiments reported in this thesis. In sections 3.1 and 3.2, we provide technical, math-
ematical (wherever necessary), and implementation level details of SE methods utilised in
this work. The section 3.1 also includes a brief description of noise statistics estimation
techniques utilised in the DSP-based methods for SE. We also describe the used objective
evaluation metrics for quality and intelligibility assessment of SE methods in section 3.3
and, finally, the downstream tasks on which SE front-end was evaluated are described in
section 3.4.

3.1 Digital signal processing based methods for SE

In this section, we describe the core principles behind two algorithms, spectral subtraction
and Wiener filtering, which are traditionally used as DSP based methods in SE.

1. Spectral subtraction

Spectral Subtraction algorithm was first proposed by Boll in 1979 [40] for Fourier
domain. It is based on a simple principle that if noise is additive and relatively
stationary, clean speech spectrum can be obtained by subtracting noise spectrum
from noisy speech spectrum. While discussing basic principles behind DSP-based
SE methods in section 2.2.4, we have derived the basic equation utilized in spectral
subtraction. Rewriting the basic equation 2.5 here

X̂(ω) = [|Y (ω)| − |D̂(ω)|]ejϕy(ω) (3.1)

Here, it is to be noted that assumptions related to noise being additive and uncorre-
lated with speech stated in section 2.2.4 holds. The noise signal d(n) is not known,
so the noise spectrum is estimated through different noise estimation techniques dis-
cussed in section 3.1.1. After plugging in the estimated |D̂(ω)| in equation 3.1, the
Fourier representation of clean speech signal is obtained. As the magnitude spectra
(|X̂(ω)|) can not be negative, so care is taken while carrying on subtraction in equa-
tion 3.1. If the magnitude spectra, comes out as negative it is made non-negative
(or zero) by different methods such as half-wave rectification [31]. Now, the clean
speech waveform can be reconstructed by taking inverse Fourier transform of |X̂(ω)|
using the phase of noisy speech signal.
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Figure 3.1 Block diagram depicting process of spectral subtraction (adapted from [31]).
| · | represents magnitude operation.

Figure 3.2 The figure demonstrates long term average spectrum (LTAS) of clean and
noisy signal in the top plot and LTAS of clean and enhanced signals in subsequent plots.
Enhancement is done through spectral subtraction using different procedures for noise esti-
mation. MS, MMSE and VAD are noise estimation techniques described in section 3.1.1.
The clean speech signal is obtained from TIMIT [60] corpus and noisy speech signal is cor-
rupted version of clean speech obtained by adding white Gaussian noise at SNR = 10 dB.
In the plots, frequency (Hz) is plotted on X-axis and magnitude (dB) is plotted on Y-axis.
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2. Wiener filtering

The spectral subtraction algorithm discussed in the previous section was based on
what Loizou [31] calls "intuitive and heuristically based principles". The enhanced
signal was not derived in an optimal manner. In the Wiener filtering (named after
mathematician Norbert Wiener’s contribution to this problem in the continuous
domain [41]) approach, the enhanced signal is derived by optimizing a mathematical
error criterion, the minimum mean square error between the output signal x̂(n) and
desired signal x(n).

Let us assume input signal y(n) to the system and desired signal x(n) are wide-sense
stationary random processes. The estimation error can be computed as [31],

e(n) = x(n)− x̂(n) (3.2)

We know that the output signal x̂(n), can be obtained by convolution of filter’s
impulse response h(n) with input signal y(n),

x̂(n) = h(n) ∗ y(n) (3.3)

Taking discrete time Fourier transform of equation 3.3, we get,

X̂(ω) = H(ω)Y (ω) (3.4)

Now, we can define the estimation error at frequency ωk as [31],

E(ωk) = X(ωk)− X̂(ωk)

= X(ωk)−H(ωk)Y (ωk)
(3.5)

The mean square error is given by [31],

E[|E(ωk)|2] = E{[X(ωk)−H(ωk)Y (ωk)] ∗ [X(ωk)−H(ωk)Y (ωk)]}

= E[|X(ωk)|2]−H(ωk)E[X∗(ωk)Y (ωk)]−H∗(ωk)E[Y ∗(ωk)X(ωk)]

+ |H(ωk)|2 E[|Y (ωk)|2]
(3.6)

It can be noted from 3.6, that Pyy(ωk) = E|Y (ωk)|2 is the power spectrum of y(n),
and Pyx(ωk) = E[X∗(ωk)Y (ωk)] is the cross-power spectrum of y(n) and x(n), with
this information we can express 3.6 as [31],

J = E[|E(ωk)|2]

= E[|X(ωk)|2]−H(ωk)Pyx(ωk)−H∗(ωk)Pxy(ωk) + |H(ωk)|2Pyy(ωk)
(3.7)
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To obtain optimum filter H(ωk), we take derivative of 3.7 with respect to H(ωk) and
set it to zero (mmse error minimisation criterion),

∂J

∂H(ωk)
= H∗(ωk)Pyy(ωk)− Pyx(ωk)

= [H(ωk)Pyy(ωk)− Pxy(ωk)]
∗ = 0

(3.8)

Solving for H(ωk), we get general form of Wiener Filter in Frequency domain as [31]

H(ωk) =
Pxy(ωk)

Pyy(ωk)
(3.9)

For speech enhancement applications, equation 2.3 holds (see section 2.2.4). Rewrit-
ing the equation 2.3 at frequency ωk

Y (ωk) = X(ωk) +D(ωk) (3.10)

The desired signal x(n) is the clean speech signal, whose estimation is the objective
of the Wiener filter. The equation 3.9 gives the response of the Wiener filter in the
frequency domain. To calculate H(ωk) we need to compute Pxy(ωk) and Pyy(ωk)

which can be done as [31]

Pxy(ωk) = E[X(ωk)Y (ωk)
∗]

= E[X(ωk)(X(ωk) +D(ωk))
∗] (substituting Y (ωk) from equation 3.10)

= E[X(ωk)X
∗(ωk)] + E[X(ωk)D

∗(ωk)]

= Pxx(ωk)

(3.11)

Here, E is the expectation operator and E[X(ωk)D
∗(ωk)] = 0 as noise is assumed

to be zero mean and uncorrelated with clean speech [31], [35]. Similarly, terms
E[X(ωk)D

∗(ωk)] = 0 and E[D(ωk)X
∗(ωk)] = 0 in equation 3.12.

Pyy(ωk) = E[Y (ωk)Y (ωk)
∗]

= E(X(ωk) +D(ωk))(X(ωk) +D(ωk))
∗]

= E[X(ωk)X
∗(ωk)] + E[X(ωk)D

∗(ωk)]

+ E[D(ωk)D
∗(ωk)] + E[D(ωk)X

∗(ωk)]

= Pxx(ωk) + Pdd(ωk)

(3.12)

After substituting Pxy(ωk) and Pyy(ωk) from equations 3.11 and 3.12 in equation
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Figure 3.3 The figure demonstrates long term average spectrum (LTAS) of clean and
noisy signal in the top plot and LTAS of clean and enhanced signals in subsequent plots.
Enhancement is done through Wiener filtering using different procedures for noise estima-
tion. MS, MMSE and VAD are noise estimation techniques described in section 3.1.1. The
clean speech signal is obtained from TIMIT [60] corpus and noisy speech signal is corrupted
version of clean speech obtained by adding white Gaussian noise at SNR = 10 dB. In the
plots, frequency (Hz) is plotted on X-axis and magnitude (dB) is plotted on Y-axis.

3.9, we get,

H(ωk) =
Pxx(ωk)

Pxx(ωk) + Pdd(ωk)
(3.13)

If we define ξk, a priori SNR at frequency ωk as ξk = Pxx(ωk)
Pdd(ωk)

, we can express Wiener
filter in equation 3.13 as,

H(ωk) =
ξk

ξk + 1
(3.14)

From the equation 3.13, it can be concluded that to estimate the Wiener filter
the power spectrum of clean speech signal should be known which is a non-realistic
assumption in the real applications. To mitigate this problem different techniques
were utilised to estimate the suppression function of Wiener filter (equation 3.13).
For example, [61] estimates a priori SNR to obtain suppression function (see equation
3.14). Once suppression function is obtained, the equation 3.4 can be used to

estimate clean speech.
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3.1.1 Noise estimation methods

Noise statistics estimation is critical for DSP based speech enhancement methods. The
DSP based methods for spectral-subtractive algorithms (e.g. [40]), Wiener filtering (e.g.
[41], [61]) approaches use noise estimation techniques for estimating noise spectrum from
the noisy speech signal. Based on the SE technique utilized and estimated noise spectrum a
suppression function is calculated (see section 2.2.4 for details). This suppression function
is used in attenuating the spectral magnitude of noisy speech signal. The suppression
function is dependent on estimated noise spectrum, so, it is important to have accurate
noise estimates, otherwise overestimation of noise spectrum will result in speech distortion
and possible loss of intelligibility and an underestimate will result in unpleasant residual
noise in the enhanced signal [31]. Moreover, noise estimation becomes a very important
component of a SE system, if the system needs to handle non-stationary noise [48]. In
this section, we will describe three noise estimation techniques. They have been used with
the DSP based SE algorithms used in the present work. The below discussions are brief
and outlines the fundamentals of the procedures. For a thorough understanding of these
techniques the provided references can be consulted.

1. Noise Estimation using SAD Speech activity detection (SAD also known as
Voice activity detection (VAD)) is one of the fundamental techniques utilised in
many speech processing tasks for identifying presence or absence of speech. In the
context of speech enhancement methods, non-speech segments of signal identified by
SAD can be utilised for the noise spectrum estimation. In the present work, we have
used the SAD system (TO-Combo-SAD) developed by John Hansen’s group at UT
Dallas [62], [63].

TO-Combo-SAD (Threshold-Optimized Combo SAD) system extracts five features
(harmonicity, clarity, prediction gain and perceptual spectral flux; see [62], [63] for
details) at a frame level from audio recordings. From these features, a 5-dimensional
combo feature vector fλ (λ is the frame index) is formed . The combo feature vector
is then normalised to obtain normalised feature vector f̄λ as [62]

f̄λ =
(fλ − µ)

σ
(3.15)

Here, µ and σ are mean and standard deviation of features computed over the entire
waveform. The normalised feature vector f̄λ is further projected to X, the principle
eigenvector corresponding to the largest eigenvalue of feature covariance matrix, to
obtain projection pλ as [62]

pλ = XT f̄λ (3.16)

The features of the To-Combo-SAD system are designed in such a manner that pλ

values for speech is higher than non-speech. The speech/non-speech decision is made
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with the help of this information by fitting a two mixture Gaussian Mixture Model
(GMM) to the features and then estimating the detection threshold τ from weighted
average of mixture means [62]

τ = wµhs + (1− w)µhp (3.17)

Here, w is the weight factor such that 0 ≤ w ≤ 1 and µhs and µhp are hypothesized
speech and non-speech mixture means of the GMM. As the GMM model forces a
bi-modal distribution, therefore it increases false alarms and misses in speech sparse
and speech dense regions. To mitigate this problem of poor detection threshold, first
a large mixture GMM model is trained on annotated speech only corpora and then
the means of this GMM are projected into the single-dimension decision-making
space

m̂j = XTmj (3.18)

Here mj is the jth mixture mean of the M-mixture GMM and m̂j is the projected
value. Let, µts be the mean of projected values m̂j . The µts can be viewed as
a prior model of speech (obtained from annotated speech corpora) and µhs can be
considered as a posterior model of speech (constructed with current data) [62]. Now,
the threshold decision can be improved by using max(µts, µhs). If the value of µts is
greater, it means the system trusts posterior model more and vice versa.

τ = wmax(µts, µhs) + (1− w)µhp (3.19)

In the present work, we have used non-speech sections, identified by TO-Combo-
SAD, to estimate average noise spectrum which is then employed in the estimation
of suppression function.

2. Minimum Statistics

Minimum Statistics (MS) approach with optimal signal power spectral density smooth-
ing for noise estimation was proposed by Rainer Martin [48]. This method assumes
that speech and the degrading noise are statistically independent and power of the
noisy speech signal frequently decays to the power level of the degrading noise [48].
In other words, during speech pauses or intervals between words and syllables speech
energy is close to zero. So, if minimum power is tracked during this period it will
provide an estimation of noise floor. To capture, the very brief periods of zero speech
energy the analysis window should be wide enough to bridge successive high power
speech segments [48].

As speech and noise are assumed to be independent, so it can be derived [31] that
periodogram of noisy speech is approximately equal to the sum of the periodograms
of clean speech and noise
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|Y (λ, k)|2 ≈ |X(λ, k)|2 + |D(λ, k)|2 (3.20)

Here, |Y (λ, k)|2, |X(λ, k)|2 and |D(λ, k)|2 are periodograms of noisy speech, clean
speech and, noise respectively. | · | is magnitude operation carried over short-time
Fourier transform (STFT) of the signal, λ indicates the frame index, and k indicates
the frequency bin index. The noise power spectrum is estimated by tracking the
minimum of the periodogram |Y (λ, k)|2. In practice, a recursively smoothed version
of noisy speech periodogram is used with α as smoothing parameter [31], [48]

P (λ, k) = αP (λ− 1, k) + (1− α)|Y (λ, k)|2 (3.21)

Here, P (λ, k) represents smoothed periodogram. The original paper [48] further im-
proves the equation 3.21 by employing a time varying smoothing parameter. For
further details on optimal calculation of smoothing parameter and bias compen-
sation strategy, the original paper [48] can be consulted. In the present study, the
implementation of minimum statistics algorithm from VOICEBOX [64] is used which
follows the approach from original paper [48].

3. Unbiased minimum mean-squared error (MMSE)

A low complexity algorithm based on minimum mean-squared error (MMSE) esti-
mator of the noise magnitude-squared DFT coefficients was proposed by Hendriks et
al. [65]. The technique uses a limited maximum-likelihood (ML) estimate of a priori
SNR to calculate MMSE estimate of the noise periodogram. However, estimation of
a priori SNR introduces a bias in the MMSE-based estimator [66]. In order to com-
pensate for the bias, the authors use a second estimate of a priori SNR calculated
through a decision-directed [67] approach.

The method assumes noise is additive and uncorrelated with speech source. So,
equation 2.3 holds. Rewriting the equation 2.3 with frame index (λ) and frequency
index (k)

Y (λ, k) = X(λ, k) +D(λ, k) (3.22)

Further, the discrete Fourier Transform (DFT) coefficients of noise and speech are
assumed to have complex Gaussian distribution [66]. The spectral speech and noise
power are defined by E(|X|2) = σ2

X and E(|D|2) = σ2
D respectively. The a posteriori

SNR is defined by γ = |Y |2
σ2
D

and the a priori SNR by ξ =
σ2
X

σ2
D

[65], [66].

The noise periodogram is given by equation 3.23 [66]

|D̂|2 = (
1

1 + ξ̂
)2|Y |2 + (

ξ̂

1 + ξ̂
)σ̂2

D (3.23)
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After estimating the noise periodogram from equation 3.23, the noise power spectral
density can be updated via recursive smoothing using equation 3.24.

σ̂2
D(λ) = ασ̂2

D(λ− 1) + (1− α)(|D̂(λ)|2) (3.24)

Here, α is smoothing parameter and is used as α = 0.8 in [66].

Gerkmann et al. [66] demonstrated that MMSE based noise power estimator (see
equations 3.23, 3.24) is only updated when a posteriori SNR is less than 1. This
threshold on a posteriori SNR can be interpreted as a hard decision by a speech
activity detector (SAD) (SAD gives a binary response, speech is either present or
absent). As an improvement on the approach proposed by [65], Gerkmann et al.
[66] proposed to replace the hard decision of the SAD by a soft decision of Speech
Presence Probability (SPP) with fixed priors, making bias compensation redundant
and resulting in an unbiased MMSE estimator. In the present study, the implemen-
tation of unbiased MMSE algorithm from VOICEBOX [64] is used which follows the
approach from original papers [65], [66].

3.2 Machine learning-based methods for SE

This section describes two recent approaches to SE proposed by Keren et al. [39] and Sun
et al. [50] using deep neural networks. In contrast to the DSP based methods, they do not
require any explicit noise estimation procedure.

1. DNN based approach proposed by Keren et al.

In their recent work, Keren et al. [39] (DNNKeren) described a deep neural network
based speech enhancement system which has been designed to generalize to unseen
noisy environments. This has been achieved by training the model with noises from
a large number of different environments (16, 784), mixed with clean speech at dif-
ferent SNR’s (signal-to-noise ratio). The authors expect that this large set of noises
from different environments should share some properties with unseen noisy signal
and thus, exposing the model to such a large set during training should assist in
generalisation of enhancement process to unseen noisy environments. Moreover, the
model can accept additional non-speech recordings (providing non-speech recording
to model is optional) from the noisy speech signal environment to generate a noise
embedding which conditions the residual layers of enhancement subnetwork (see fig-
ure 3.4). The authors have hypothesized that such an approach (injecting noise
embeddings to residual layers) might assist the model in identifying which frequency
components are to be discarded and which are to be enhanced [39]. The authors
state that their best model has demonstrated considerable reduction in word error
rate (WER) when used as a front-end for a pretrained speech recognition system,
reducing WER from 34.04% on noisy speech to 15.46% on enhanced speech.
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Figure 3.4 The enhancement model architecture proposed by Keren et al. [39] (reproduced
from [39]).

The model consist of two distinct but linked processing blocks (see figure 3.4): the
embedding and the enhancement subnetwork. Both the processing blocks take log
absolute value of the STFT as input [39]. The embedding subnetwork generates
noise embeddings from an additional recording by processing the non-speech input
signal with a sequence of 4 residual blocks (see [68] for details on residual blocks).
Each residual block comprises of two 2D-convolutional layers, each layer having same
number of feature maps. The number of feature maps in each residual block is twice
the previous block. It begins as 64 for the first residual block and ends at 512

for the fourth residual block. After the processing of the additional recording is
finished through the 4 residual blocks (for details see original paper [39]), a single
512-dimensional embedding vector is obtained by averaging the feature maps from
all the 4 blocks through the fully connected layer (denoted as FC in the figure 3.4).
The enhancement subnetwork has 8 residual blocks. The structure of each of these
residual blocks in enhancement subnetwork is identical to those in the embedding
subnetwork in terms of convolutional layers and number of feature maps in convolu-
tional layers. Each residual block is repeated twice in enhancement subnetwork (e.g.
residual block 1 in embedding subnetwork is identical to residual blocks 1 and 2 in
enhancement subnetwork). In case an additional noise recording is supplied with
noisy speech signal then each residual layer of enhancement subnetwork is condi-
tioned with noise embedding generated by the embedding subnetwork. Additionally,
the time steps and frequency components indices are added at appropriate locations
in the output map of convolutional layers to enable them to process different time
steps and frequency components differently [39]. The output of the final residual
block of enhancement subnetwork is flattened and fed into a fully connected (de-
noted by FC in the figure 3.4) layer to obtain an enhancement mask which is then
applied to the noisy speech segment to obtain an enhanced frame.

In the present work, we have used the pretrained model and python code files pro-
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vided by the original authors for conducting speech enhancement.

Figure 3.5 The figure demonstrates long term average spectrum (LTAS) of clean and
noisy signal in the top plot and LTAS of clean and enhanced signals in subsequent plots.
Middle plot has enhancement done by method DNNKeren [39] and bottom plot has enhance-
ment done by method DNNSun [50]. The clean speech signal is obtained from TIMIT [60]
corpus and noisy speech signal is corrupted version of clean speech obtained by adding
white Gaussian noise at SNR = 10 dB. In the plots, frequency (Hz) is plotted on X-axis
and magnitude (dB) is plotted on Y-axis.

2. DNN based approach proposed by Sun et al.

The speech enhancement system proposed by Sun et al. [23], [50], [69] (DNNSun)
consists of a stack of LSTM layers where each layer is designed to progressively
learn intermediate speech at a higher SNR then the previous layer. The concept
of progressive learning is illustrated in figure 3.6 and details can be obtained from
the original paper [70]. Each LSTM layer contributes to multistage processing of
the noisy signal by accepting the original log-power spectrum features and target
from previous layer as input and producing output speech target at a higher SNR.
This process is demonstrated in figure 3.7, where target 1, 2 are intermediate speech
targets and target 3 is the final output from the network. At each stage the estimated
target speech (except the final stage) is spliced together with the original input and
fed to the successive LSTM layer to learn the next target. This SE system acted as
a front-end to the challenging problem of Speaker Diarization for the first DIHARD
challenge [50]. The authors have reported that a SE front-end constructed with this
model has conclusively boosted the performance of the diarizaion system, including
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the increased performance of intervening task of speech activity detection can be
directly attributed to the enhanced speech [23], [50].

Direct 
mapping

+ 10 dB

+ 10 dB

Target: clean speech

SNR-based 
progressive learning

Input: noisy speech (e.g., 0 dB)

Figure 3.6 Progressive learning for speech enhancement (adapted from [70]). The direct
mapping from noisy speech to clean speech is decomposed into multiple intermediate stages
with each stage learning the speech at a higher SNR than the previous stage.

Figure 3.7 Architecture of the model proposed by Sun et al. [50][23] (reproduced from
[50]).

The network is trained on 400 hours of simulated clean/noisy pairs of speech sig-
nals. The clean speech was obtained from WSJ0 corpus [71] (read English) and 863
Program corpus [72] (spoken Mandarin). The clean speech was corrupted with 115
noise types at different SNR’s [23], [50]. The output of the network is the clean
log-power spectral features and IRM (see figure 3.7). The predicted ratio mask is
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used to construct an enhanced waveform. For further details on architecture and
training of this model [23], [69], [73] can be consulted.

In the present work, we have used the pretrained model and python code files pro-
vided by the original authors for conducting speech enhancement.

3.3 Objective measures for quality and intelligibility of the
enhanced speech

In this section, we describe the two objective measures utilised in the present work for the
assessment of the quality and intelligibility of the speech enhanced by the aforementioned
SE methods. Both of these, methods are intrusive in nature as they both require pair of
input clean signal and processed output signal for calculation of objective metrics.

3.3.1 Spectral distortion for the quality assessment

The measurement of the distortion between a pair of input and output signal to a speech
processing system involves the assignment of a non-negative number to such a pair [74].
A meaningful distortion measure will subjectively correlate well with speech quality i.e.
small distortion translates to good speech quality and large distortion indicates bad speech
quality [51]. In the context of speech enhancement, distortion measure calculated between
clean speech and corrupted speech when compared with distortion between clean speech
and enhanced speech should give us an idea about efficacy of the SE method. In other
words, if distortion between clean speech and corrupted speech is d then after application
of SE method the distortion between clean speech and enhanced speech should be < d.

In order to calculate spectral distortion between a pair of signals we first obtain the
log-Mel representation of the signals. Incorporation of the Mel-scale in the transformation
of signal in the spectral domain ensures that we inject auditory perception sensitivities in
the spectral representation of the signal. The process of calculating log-Mel representation
of the signal begins with the calculation of the absolute value of FFT of the windowed
signal. The absolute value of FFT is then multiplied with the Mel-filter bank to get the
signal representation in the Mel-spectrum and finally, the logarithm of the output is taken
to get log-Mel representation of the signal. After log-Mel representation of the signal pair
is obtained the distortion is calculated as root mean square (RMS) distance between the
two log-Mel representations.

3.3.2 SIIB for the intelligibility assessment

SIIB, which stands for Speech intelligibility in bits [55], is an intrusive measure for estimat-
ing the instrumental intelligibility of speech. The SIIB metric is based on the information
theoretic principles. It tries to capture mutual information between clean and degraded
speech and hypothesises intelligibility as a function of the mutual information. Below
derivation is taken from the original papers [55], [56].
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Let us consider, a message {Mt}, speech signal {Xt} and noisy (or corrupted) speech
{Yt} represented by stationary ergodic discrete-time real-valued random processes (t is the
time index). The message {Mt} is encoded into the speech signal {Xt} by the transmitter.
While transmitting the speech signal, the signal can be distorted by noise, reverberation, or
even speech processing algorithms such as coding, enhancement etc. This results in receiver
getting the degraded speech {Yt}. The authors represents the clean and degraded speech
as auditory log-spectra, obtained by the application of auditory filter bank to the squared
magnitude of Short-time Fourier transform (STFT) of the speech signal and followed by a
logarithm operation.

The communication process from message to speech and to transmission and receiving
of speech can be represented as a Markov chain,

{Mt} → {Xt} → {Yt} (3.25)

When three random variables form a markov chain, we know that, joint probability
mass function can be denoted as (see [75]),

p(mt, xt, yt) = p(mt)p(xt|mt)p(yt|xt) (3.26)

If we incorporate the concept of data processing inequality, we can represent the equa-
tion 3.26 in terms of mutual information (represented by I) as,

I({Mt}; {Yt}) ≤ I({Mt}; {Xt}) (3.27)

and

I({Mt}; {Yt}) ≤ I({Xt}; {Yt}) (3.28)

Combining equations 3.27 and 3.28 , we get

I({Mt}; {Yt}) ≤ min(I({Mt}; {Xt}), I({Xt}; {Yt})) (3.29)

The goal of SIIB is to capture the mutual information between the message and the
degraded speech and relate the estimated mutual information to the intelligibility. The
message to be transmitted can be thought of as sequence of latent variables that represent,
for example, a sequence of sentences.

Let MK = [(M1)
T , (M2)

T , ..., (MK)T ] (here T denotes transpose) represent a stack of
K consecutive message vectors, similarly we can define degraded speech Y K . Now, the
mutual information between two random variables (see Markov chain illustration 3.25), is
given as,

I(MK ;Y K) =

∫
MK ,Y K

p(MK , Y K)log(
p(MK , Y K)

p(MK)p(Y K)
)dMKdY K (3.30)

We can now define, mutual information rate between {Mt} and {Yt} as,
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I({Mt}; {Yt}) = lim
K→∞

1

K
I(MK ;Y K) (3.31)

To estimate I({Mt}; {Yt}), realizations of {Mt} and {Yt} will be needed which might
not be possible in realistic applications. So, we consider equation 3.29, to estimate the
mutual information between {Mt} and {Yt}.

In the equation 3.29, we need the mutual information rate between {Mt} and {Xt}
as well as between {Xt} and {Yt}. It is beyond the scope of present work to delve into
the details of estimation of these mutual information rates, so we will only provide the
equations, explanation of notations and implementation specific details here. The readers
can consult original papers [55] and [56] for further details.

The mutual information rate between {Xt} and {Yt} is given by,

I({Xt}; {Yt}) = lim
K→∞

1

K

KJ∑
j=1

I(X̃K
j ; Ỹ K

j ) (3.32)

Here, j denotes elements index in the vector, X̃K and Ỹ K are KLT (Karhunen-Loeve
Transform) transforms for XK and Y K .

The mutual information rate between {Mt} and {Xt} is given by,

I({Mt}; {Xt}) = lim
K→∞

1

K

KJ∑
j=1

I(M̃K
j ; X̃K

j )

= lim
K→∞

− 1

K

KJ∑
j=1

1

2
log2(1− r2j )

(3.33)

Here, j denotes elements index in the vector, M̃K and X̃K are KLT (Karhunen-Loeve
Transform) transforms for MK and XK , rj is production noise correlation coefficient which
describes the efficiency of encoding a message to speech signal and is measured to be 0.75
for all j.

Now, if we combine equations 3.32 and 3.33, as per equation 3.29, we get,

SIIB =
F

K

KJ∑
j=1

min(−1

2
log2(1− r2j ), I(X̃

K
j ; Ỹ K

j )) (3.34)

Here F is the frame rate in Hz.
At the level of implementation, the information rate I(X̃K

j ; Ỹ K
j ) is estimated by apply-

ing a k-nearest neighbour mutual information estimator [76] to the sample sequence X̃K
j,t

and Ỹ K
j,t .

To further simplify formulation in 3.34, the authors in the following paper [56] have
quantified the mutual information between clean ({Xt}) and degraded ({Yt}) speech by
assuming clean and degraded signals are jointly Gaussian and the mutual information can
be estimated using information capacity of a Gaussian channel.
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SIIBGauss = − F

2K

∑
j

log2(1− r2ρ2j ) (3.35)

Here, ρj is the correlation coefficient between jth clean eigenchannel and jth degraded
eigenchannel. The parameters in equation 3.35 are defined as F = 80 Hz, K = 15 and
r = 0.75 (see [55], [56] for further explananation).

In the present work, we have used SIIBGauss as the metric for the intelligibility mea-
surement.

3.4 Downstream tasks

In this section we will describe the two downstream speech analysis tasks used in the
experiments of this work: 1) IDS/ADS classification, i.e., speech produced by an adult has
to be classified whether it is directed towards an infant (or child) or adult (infant-directed
speech (IDS) or adult-directed speech (ADS)), and 2) automatic syllable count estimation,
whose goal is to provide an estimate of the number of syllables in a speech signal.

3.4.1 IDS/ADS classification

The task of automatic classification of speech either directed towards an infant or an adult
is useful in the scientific study of language exposure to the child [13], [18], [77]. The
infant directed speech is a speaking style often used when addressing to an infant and
is understood to engage an infant’s attention more productively [77]. IDS has also been
found to possess distinct phonetic and linguistic characteristics (e.g. raised pitch, wider
pitch range, exaggerated prosody, hyper-articulation of vowels, slower speech rate, reduced
linguistic complexity [78]) that makes it distinguishable from ADS.

In the present work, we have used a Support Vector Machine (SVM) [79] with a linear
kernel function to perform the binary classification between IDS/ADS. This approach is
similar to the baseline systems used in Computational Paralinguistics challenges (Com-
ParE) held at INTERSPEECH conferences (e.g., [25] where addressee sub-challenge was
identification of infant-directed or adult-directed speech). The feature set supplied to the
SVM was INTERSPEECH-2013 ComParE challenge feature set [80] extracted using openS-
MILE toolkit [81]. The set includes a total of 6373 features corresponding to utterance-level
statistical descriptors (mean, variance etc.) of low-level signal features such as MFCCs,
PLPs (similiar to MFCCs, cube root suppression instead of log suppression), F0, and zero-
crossing rate. The SVM was always trained and tested on features from signals enhanced
with the same SE method.

3.4.2 Automatic syllable count estimation

The task of automatic syllable count estimation from speech signal has usage in variety of
applications, for example speaking rate estimation [82], daily activity analysis from long
duration personal audio recordings [22], [83], quantification of linguistic input a child hears
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from its natural environment [11], [21] etc. For a child language development researchers,
data on quantity of language child hears helps them to correlate language development in
children with the amount of language input children get from their daily environment (e.g.
[18]).

In the present work, we evaluate a recently proposed deep neural network based algo-
rithm SylNet [84] which performs automatic syllable count estimation from input speech
signal. Architecture of the SylNet is motivated from the WaveNet [85] model. WaveNet is
a deep neural network based model that can generate realistic sounding audio from text.
The authors have used WaveNet inspired architecture in combination with an additional
LSTM layer to estimate syllable count from an utterance.
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Figure 3.8 Architecture of the SylNet model (reproduced from [84]).

Figure 3.8 illustrates the architecture of SylNet. The model takes an input of log-Mel
spectrum of input speech. The input is fed to a stack of convolutional layers, each layer
having gated non-linearities and skip connections to the PostNet layer. The PostNet layer
acts as an integrator for all the information coming from the residual connections from the
N -layers (see figure 3.8). The LSTM layer combines syllable count information coming
over time from PostNet layer and feeds it to the dense layer. The dense layer outputs the
estimate of syllable count in the utterance.

The SylNet model is quite promising for speech analysis tasks as the results presented by
authors indicate that it generalises well for different languages and performs better if given
additional data to adapt to the novel language. It also performed better when compared to
other tested supervised and unsupervised syllabification algorithms on a range of held-out
languages as presented in the original paper [84].

Here, we use a pretrained SylNet model from the original study [84] and adapt it to the
section of enhanced data. The rest of the data is used as test data for getting syllable count
estimate from the SylNet model and in this manner, we also maintain the consistency of
SE method between the adaptation and the test set.
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4 Experiments

This chapter describes the data and experimental setup used in the present work.

4.1 Data

4.1.1 Data for objective evaluation of SE methods

For the objective assessment, the clean speech files provided by the TIMIT Acoustic-
Phonetic Continuous Speech Corpus [60] were used. The TIMIT corpus has broadband
recordings of phonetically rich read speech from 630 speakers of eight major dialects of
American English. The corpus has been delivered in two neatly divided test and train
sets for easier application to tasks such as ASR etc. which require model training. For
the objective evaluation, separate training and test sets were not required. The two sets
(train and test) were combined to get a consolidated set containing 6300 speech waveforms
from 630 speakers. From this set, 29 speech waveforms were combined together at a time
to get approximately 90 seconds long speech waveform. This process reduced the size of
consolidated set to total 217 waveforms. The concatenation of shorter waveforms was done
as SIIB [55], [56] metric requires long signals to operate. This set of speech waveforms
hereafter is referred as TIMITAll.

4.1.2 Data for downstream evaluation of SE methods

The downstream speech data utilised for the experiments has been collected as part of
ACLEW project corpus [21]. This data has been collected in the form of six different
corpora of child centered day long recordings. These include the Bergelson corpus ("BER")
from US English speaking families from Rochester(US) [86], the LuCiD Language 0-5
corpus ("L05") consisting of English-speaking families from NorthWest England [87], the
Casillas corpus ("CAS") of Tseltal-speaking families form a rural Mayan community in
Southern Mexico [88], the McDivitt and Winnipeg corpora ("MCD") of Canadian English
families [89], [90], the Warlaumont corpus ("WAR") of US English speaking families from
Merced, California [91] and the Rosemberg corpus ("ROS") of Argentinian Spanish families
from Buenos Aires metropolitan area [92]. The recordings were collected with a device
young child wore in a breastpocket throughout a normal day. BER, MCD, L05, and WAR
recordings were collected with the LENA1 recorder, while CAS was recorded with Olympus
WS-382 or WS-852, and ROS was recorded with a mix of Olympus, Panasonic, Sony,
and LENA recorders. Each corpus consists of daylong (4–16 hour) at-home recordings,
with spoken language varying across corpora. Due to the unconstrained nature of the
recordings, they contain both near and far-field speech in acoustically varied environments
and at highly varying SNRs. The approximate average speech SNRs for different corpora

1https://www.lena.org/

https://www.lena.org/
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are BER 2.1 dB, CAS -0.5 dB, L05 3.6 dB, ROS -2.6 dB, MCD 0.8 dB, and WAR 2.4 dB
as reported by Räsänen et al. [11].

Table 4.1 Details of corpora and speech recordings used in downstream experiments. Au-
dio total = total amount of audio annotated for verbal activity; Speech total = duration
of all utterances in the annotated audio; Adult speech total = total duration of utterances
from male or female adults that contain at least one unambiguously transcribed word. Table
is adapted from [11].

ID Corpus name Region Language
Subjects 

(N)
Audio total 

(hours)
Speech 

total(mins)
Adult Speech 
total(mins)

Audio per 
subject(mins)

BER Bergelson Northeast US US English 10 5.0 116.7 50.7 30.0

CAS Casillas Northern Bolovia Tseltal 10 7.5 212.0 100.8 45.0

L05 Language 0-5 Northwest England UK English 10 5.0 95.9 39.1 30.0

ROS Rosemberg
Buenos Aires Metropolitian area 
Argentina

Argentinian 
Spanish

10 5.0 149.3 70.3 30.0

MCD McDivitt+ Western Canada
Canadian 

English
8 4.5 80.9 44.0 33.8

WAR Warlaumont Western US Us English 10 5.0 100.3 39.6 30.0

Total 58 32.0 755.1 344.5

From each these corpora, 8–10 children were sampled for manual annotation, selected
children were carefully chosen to represent diversity of infant ages (0-36 months) and
socio-economic contexts (also see Table 4.1). For each child, 15 x 2-minute randomly
sampled audio segments (9 x 5 min for Tseltal, see [88]) were manually annotated for
hearable utterance boundaries, who is the addressee (child vs. adult), who is the speaker,
vocal maturity of child vocalizations, and all adult speech was transcribed. The manual
annotation procedure followed a comprehensive protocol documented in [93], [94].

Reference syllable counts of the daylong audio were obtained by automatic syllab-
ification of the hand-annotated transcripts. First, the transcripts were cleaned up of
all non-lexical entries such as incomprehensible speech, non-linguistic communicatives
(e.g., <hmm>) and other non-speech sounds (e.g., <yawn>), and paralinguistic mark-
ers (e.g., <singing> to denote singing speaking style). The resulting word strings were
then converted into sequences of phonemes using Phonemizer tool (https://github.com/
bootphon/phonemizer), and finally syllabified using the maximum onset principle (see,
e.g., [95]). In short, maximum onset principle creates syllabic boundaries such that the
algorithm operates backwards along the string of words word-by-word, and for each vocalic
nucleus within a word, assigns the maximum number of preceding consonants to the syllable
so that the resulting consonant cluster is still a valid syllable onset in the given language.
Note that while the procedure does provide relatively systematic syllable counts for the
given transcripts, the resulting phonology-based syllable counts should not be taken as an
error-free gold standard of the syllabic structure of what was actually said (phonetic sylla-
bles). This is since some of the information regarding the detailed style of speech (rhythm
& timing, pronunciation) is lost in the speech-to-transcript and transcript-to-phonemes
conversions of the present pipeline.

For our experiments, we extracted all the annotated utterances by adult speakers. We
also included a "collared"-version of the dataset where 500-ms of non-speech signal leading

https://github.com/bootphon/phonemizer
https://github.com/bootphon/phonemizer
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and trailing each utterance was concatenated to the utterance (e.g. if utterance boundary
in a speech segment, begins at t0 second and ends at t1 second, the non-collared set has
the utterance exactly (t1 − t0) seconds long whereas the collared set had the utterance
(t1 − t0) + 1 seconds long beginning at (t0 − 0.5) second and ending at (t1 + 0.5) second.
This was done to provide additional temporal signal context to the SE algorithms, with
the intention that the additional context would improve enhancement performance due to
more opportunities for estimating the noise statistics. The collars were removed after SE
was completed and before the downstream tasks were evaluated.

4.2 Setup for SE methods

The SE methods consist of classical signal processing-based methods and modern machine
learning-based methods described in chapter 3 and listed in Table 4.2. The process of
SE was conducted in MATLAB environment except for machine learning-based methods.
The machine learning-based methods used python scripts and pre-trained models shared
by the original authors. MS and MMSE -based spectral subtraction and Wiener filtering
were performed with VOICEBOX toolbox [64], whereas VAD -based variants used TO-
Combo-SAD implementation from original authors [62], [63]. Speech enhancement setup
was same for both objectve assessment and downstream evaluation.

Table 4.2 SE methods compared in the present study. Sun et al. [23] and Keren et
al. [39] are the recently proposed machine learning-based methods (represented as Deep
Neural Network (DNN)) for speech enhancement. The subscript notations with method
name indicates noise estimation technique except in case of machine learning-based methods
where they indicate name of the author. The third column of table expands the acronym of
noise estimation technique.

SE Method Representation Noise Estimation

LSTM layers with progressive learning (Sun et al.) DNNSun NA

CNNs with ResNet like Architecture (Keren et al.) DNNKeren NA

Spectral Subtraction SpecSubMMSE Minimum mean square estimation

Wiener Filtering WienerMMSE Minimum mean square estimation

Spectral Subtraction SpecSubMS Minimum statistics

Wiener Filtering WienerMS Minimum statistics

Spectral Subtraction SpecSubVAD Voice activity detection

Wiener Filtering WienerVAD Voice activity detection

4.3 Setup for objective assessment

The purpose of this setup is to evaluate the performance of SE methods (described in
chapter 3 and listed in Table 4.2) with respect to objective measures of speech quality
in controlled and constrained conditions. The data utilised for this experiment has been
described in section 4.1.1. The objective measures of speech quality calculated in this
experiment are instrumental intelligibility (estimated using SIIB [55], [56]) and spectral
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Figure 4.1 Diagram depicts the process of objective evaluation of enhancement methods
on noise corrupted utterance. I indicates intelligibility calculated through SIIB and D is
spectral distortion.

distortion. Both measures are described in chapter 3. The figure 4.1 illustrates the whole
process through block schematic diagram.

For the objective assessment, all waveforms in TIMITAll dataset were degraded with
3 different additive noises with different statistical characteristics to get a set of corrupted
speech signals. The noises added were white Gaussian noise (WGN), babble noise and
noise sampled randomly from child-centered daylong recordings. These noises were added
at varying SNRs beginning from −20 dB to +40 dB in steps of 5 dB. This process yielded
39 different degraded waveforms for a single clean speech waveform (3 different noises, and
each noise added at 13 different SNRs, so 3 × 13 = 39). The SE methods illustrated in
the enhancement block (see figure 4.1) act parallelly on a single noisy speech signal to
produce a set of enhanced speech signals. In other words, when a single noisy utterance
is processed by the enhancement block eight distinct enhanced waveforms are obtained
each corresponding to the SE method used for denoising. The baseline results for objective
assessment are obtained by comparing clean speech and degraded speech. Similarly, for
the enhanced waveforms, the objective metrics are calculated by comparing clean speech
with enhanced speech. This process is repeated for the entire dataset. The experiment
was conducted in the MATLAB environment. MATLAB scripts for SIIB calculation was
provided by the original authors.

4.4 Setup for downstream tasks evaluation

The purpose of this setup is to evaluate the performance of SE front-ends constructed
with SE methods (listed in Table 4.2) with respect to downstream speech processing task
performance (described in chapter 3). The data utilized in this setup is described in section
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4.1.2. For this experiment, the enhanced signals corresponding to each SE method on both
datasets (non-collared and collared) were obtained. Thus, from all SE methods 16 enhanced
sets of signals were obtained (8× 2 = 16). Including the signal from original non-collared
dataset, in total 17 sets of signals were used for evaluating performance of the downstream
tasks. In the subsections below, individual downstream task setup is presented.

4.4.1 Automatic syllabification

For the task of automatic syllable count estimation, each of the datasets were divided
into adaptation and testing sets randomly in ratio 1:10. The automatic syllabification was
performed using a deep learning-based model called SylNet[84] (described in chapter 3 ).
The adaption set was used for SylNet adaptation and testing set was used for performance
evaluation. SylNet model and associated Python scripts were kindly provided by the
original authors. Performance of the task was measured in terms of mean absolute relative
error at the utterance level, i.e., relative % that estimated syllable count and ground-truth
syllable count differ for each individual utterance independent of the sign.

4.4.2 IDS/ADS classification

For the IDS/ADS classification task, the datasets were subjected to feature extraction
procedure (described in chapter 3). Features with associated labels (addressee information)
was bundled up for the classification task. The bundle of features and labels was cleared
of any other cases of addressee (meta data associated with utterances had other addressee
information as well, e.g. speech directed to a composite group) except infant directed
and adult directed and then features were normalised. The bundle was randomly split in
training and testing sets with 2:1 (7922 for training, 3961 for testing). Since there were
more ADS (N = 4515) than IDS (N = 3407) utterances in the training set, the training class
distribution was balanced using sampling with replacement for IDS utterances so that every
IDS utterance was used at least once in the training. The performance of classification
task was measured using unweighted average recall (UAR), as it is the preferred metric in
paralinguistic tasks with biased class distributions (e.g., [25], [26]). The experiment was
performed in the MATLAB environment.
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5 Results

In this chapter, the results of experiments conducted as part of this work are presented.
The description of results is followed by a discussion of the obtained results.

5.1 Results for objective evaluation of SE methods

The results for objective assessment are presented in the figures 5.1, 5.2 and 5.3. Each
figure presents result for a different additive noise added at varying SNRs. The objective
metrics were calculated for SNR range −20 to 40 dB, but in this reporting a subset of SNR
range from −15 to 20 dB is presented to maintain legibility in the figures.

Figure 5.1 Results from objective evaluation of the SE methods. The additive noise is
white Gaussian. In the figure, the plot at the top illustrates spectral distortion and the
bottom plot presents instrumental intelligibility.
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Figure 5.2 Results from objective evaluation of the SE methods. The additive noise is
multi-talker babble. In the figure, the plot at the top illustrates spectral distortion and the
bottom plot presents instrumental intelligibility.

Figure 5.3 Results from objective evaluation of the SE methods. The additive noise is
sampled randomly from child-centered daylong recordings. In the figure, the plot at the top
illustrates spectral distortion and the bottom plot presents instrumental intelligibility.
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5.2 Results for downstream task evaluation of SE methods

The results obtained from the performance of the downstream task with the application
of SE front-ends are presented in the Table 5.1.

Table 5.1 The table presents downstream task performance with the application of SE
front-end. For IDS/ADS classification, higher value of unweighted average recall in com-
parison to baseline results predicts better performance and for automatic syllabification,
lower value of means absolute relative error with respect to baseline result translates into
better performance. The results which have better performance than baseline are indicated
with green colour.

IDS/ADS Classification
(Unweighted Average Recall %)

Automatic Syllabification
(Mean Abs. Relative Error %)

SE Methods Non-collared Collared Non-collared Collared

BaselineUnenhanced 66.79 47.94

DNNSun 67.98 67.76 45.79 46.41

DNNKeren 65.75 65.03 48.92 47.96

SpecSubMMSE 67.88 67.68 53.06 46.13

WienerMMSE 66.41 67.18 47.79 46.79

SpecSubMS 66.94 67.26 46.69 46.24

WienerMS 66.36 66.16 53.22 46.61

SpecSubVAD 66.16 66.63 48.06 48.12

WienerVAD 66.39 66.56 48.48 49.09

5.3 Comparison of objective evaluation metrics and down-
stream task performance

In this section, results from objective analyses and downstream task performance are com-
pared statistically. The purpose of this comparison is to evaluate whether a relationship
exists between the two sets of results. Statatistical comparison is performed using linear
correlation.

To visualize the data to be compared, the downstream task performance values and
the objective metrics values are illustrated through scatter plots. In the scatter plots, a
best fit line is also plotted using least-squares fitting. In all the scatter plots, left column
has downstream task performance over collared data set and in the right column over
the non-collared dataset. On x-axis, downstream task performance value is depicted and
on the y-axis objective metric value. Each row in a scatter plot depicts objective metrics
calculated with respect to clean speech and enhanced speech obtained by denoising additive
noise degraded speech. In the top row degrading noise is additive noise sampled randomly
from child-centered recordings, in the middle row the additive noise is white Gaussian
noise, and in the bottom row the additive noise is babble noise. The reporting of objective
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metrics in plots is done for additive noises added at SNR = 0 dB as [11] has reported the
average speech SNR of comparable child-centered daylong recordings to be approximately
0 dB. Each plot also depicts the linear correlation (denoted as r) between the plotted
variables and p-value.
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Figure 5.4 The figure illustrates the objective metric values and downstream task perfor-
mance values through a scatter plot. A best-fit line is also plotted using least-squares fitting.
X-axis is automatic syllable count estimation (ASCE) performance measured through mean
absolute relative error and Y-axis is instrumental intelligibility estimated through SIIB (bit-
s/s).
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Automatic syllable count estimation performance Automatic syllable count estimation performance 

Figure 5.5 The figure illustrates the objective metric values and downstream task perfor-
mance values through a scatter plot. A best-fit line is also plotted using least-squares fitting.
X-axis is automatic syllable count estimation (ASCE) performance measured through mean
absolute relative error and Y-axis is spectral distortion (calculated as RMS).
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Figure 5.6 The figure illustrates the objective metric values and downstream task perfor-
mance values through a scatter plot. A best-fit line is also plotted using least-squares fitting.
X-axis is IDS/ADS classification performance measured through unweighted average recall
and Y-axis is instrumental intelligibility estimated through SIIB (bits/s).
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Figure 5.7 The figure illustrates the objective metric values and downstream task perfor-
mance values through a scatter plot. A best-fit line is also plotted using least-squares fitting.
X-axis is IDS/ADS classification performance measured through unweighted average recall
and Y-axis is spectral distortion (calculated as RMS).

5.4 Discussion of the results

The results of objective assessment indicate that all SE methods reduce spectral distortion
at SNR levels ≤ 5 dB in comparison to baseline unenhanced case in all 3 additive noise con-
ditions. The exception to this observation is SE method DNNSun which produces additional
distortion (in comparison to baseline) for ≥ 0 dB SNRs. Interestingly, the other DNN-
based method DNNKeren also produces additional distortion in comparison to baseline at
SNR levels ≥ 10 dB in case of additive noise sampled from daylong recordings and babble
noise and at SNR = 20 dB in case of additive white Gaussian noise. In comparison with
DNN-based approaches, classical signal processing SE methods except VAD based vari-
ants reduce spectral distortion at all SNR levels. VAD based variants produce additional
distortion in comparison to baseline for SNR ≥ 15 dB in case of additive noise sampled
from daylong recordings and babble noise and at SNR = 20 dB in case of white Gaussian
noise. The results from instrumental intelligibility assessment show that only DNN-based
SE methods DNNSun and DNNKeren improve the instrumental intelligibility at all SNR
levels and in all the additive noise conditions in comparison to unenhanced baseline results
as well as results obtained from enhancement through DSP-based methods. The superior
performance of DNN-based methods on instrumental intelligibility assessment indicates
that these methods generalize well to signal conditions that were not exposed to them
during model training phase in the original studies [39], [50]. In contrast to DNN-based
methods, the DSP-based SE methods reduce instrumental intelligibility of the enhanced
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signals with respect to baseline at all SNRs. The degradation of intelligibility is known
characteristic of classical DSP-based methods and is confirmed in literature ([96], chapter
13 of the textbook [31]). From the objective results, it emerges that SAD based variants of
DSP-based SE methods demonstrate poor performance in comparison to baseline results
as well as other SE methods at all SNR levels and noise conditions. Their performance
is particularly degraded at low speech SNRs and this phenomenon is more pronounced in
the naturalistic noise conditions. A possible explanation could be that underlying speech
activity detector’s (TO-Combo-SAD) performance degrades at low speech SNRs, resulting
in faulty noise estimation (see [11] for SAD performance analysis on comparable dataset).

The results obtained on the downstream performance analysis (see Table 5.1) are much
varied for both the downstream tasks. The SAD based variants of spectral subtraction
and Wiener filtering methods gave all the results below baseline performance. But, a
closer inspection reveals that in comparison with some DSP (e.g. compare WienerVAD

and WienerMS for IDS/ADS classification) and DNN –based (e.g. compare WienerVAD

and DNNKeren for IDS/ADS classification) they gave nearly matching downstream task
performance or even out-perform some of the other SE methods. This observation is in
divergence with the objective assessment results for SAD based variants (SpecSubVAD

and WienerVAD), where their performance, was particularly poor in comparison to all the
other SE methods. Out of the two DNN-based SE methods, only DNNSun was able to
beat baseline performance. From the DSP- based methods, SpecSubMMSE, WienerMMSE,
SpecSubMS performed the best including better performance than baseline results. With
regard to the impact of collars, the best results for both the downstream tasks were obtained
by DNNSun with non-collared data. But, the best performing SE methods among DSP-
based approaches had better results with the collared data.

Both the downstream tasks, on application of DNNSun SE front-end, improved per-
formance irrespective of collared or non-collared dataset. For the task of IDS/ADS clas-
sification, the UAR was improved 1.2 percentage points over the baseline result and for
automatic syllable count estimation, mean absolute relative error was reduced by 2.15
percentage points with respect to baseline results.

The comparisons of objective metrics and downstream task performance do not reveal
any correlation between the two measurements (p-value > 0.05 in all comparisons, Pear-
son’s method for calculating linear correlation). As an illustration, consider DNNKeren’s
performance on the objective assessment and downstream task evaluations. Its applica-
tion leads to the largest instrumental intelligibility gains in the objective analysis but it
under-performs in the downstream task evaluations in our setup. The observations from
the results of statistical comparisons indicate that task independent objective metrics (ob-
tained from clean speech corrupted with additive noise) do not predict downstream task
performance (on child-centered naturalistic audio).



47

6 Conclusions

The main aim of the present work was evaluation of a SE front-end for downstream speech
processing analysis in real-world noisy child-centered daylong recordings. This overall aim
was divided into three distinct objectives 1) Objective evaluation of SE methods in addi-
tive noise sampled from daylong recordings, 2) Application of SE front-end to downstream
speech processing tasks to investigate efficacy of SE front-end on performance, and 3) Com-
pare results of objective evaluation and downstream task performance, in order to assess
can objective measurement predict downstream task performance. The downstream tasks
evaluated in this work were Infant-directed speech and adult-directed speech (IDS/ADS)
classification and automatic syllable count estimation. Both of these tasks are important
in child language development analysis.

The results from conducted experiments indicate that a recently proposed LSTM-
based architecture by Sun et al. [50] provided the best SE front-end among the compared
methods with respect to improvement on baseline (unenhanced) results on downstream
task performance. However, the results from the experiments do not show a substantial
gain in downstream task performance on application of a SE front-end in the present setup.
The classical signal processing based methods spectral subtraction and Wiener filtering,
when using noise-estimation through MS or MMSE with additional temporal noise-context,
also provided competitive downstream task performance. The comparison of downstream
task results with the objective metrics of spectral distortion and instrumental intelligibility
obtained through evaluation of SE methods in additive noise conditions do not indicate
any predictive relationship between objective measurement and potential downstream task
performance. However, the present setup compared the results for only two downstream
tasks, whether the pattern holds for other downstream tasks is unknown.

The results from this study indicate that SE front-ends have not improved performance
of downstream tasks significantly. So, the basic issue of improving downstream task per-
formance persists. As part of this study we have compared the classical signal processing
based SE methods and modern machine learning based SE methods. For classical DSP-
based methods, it is a known characteristic that their performance depends on accuracy of
noise-estimation techniques. It is probable that compared noise-estimation techniques were
not able to capture the statistics of the underlying noise. In such a case, future efforts could
be directed towards developing (or evaluating) advanced techniques for noise-estimation.
The chosen machine learning based SE methods have demonstrated considerable gains in
downstream tasks which were tested as part of their original studies. In this study, they
did not deliver high performance gains. Another avenue of future effort could be evaluating
the two machine learning based methods after optimising them with the domain data i.e.
child-centered daylong audio data.



48

References

[1] M. A. Redford and M. E. Beckman, The Handbook of Speech Production,
1st ed. Wiley Blackwell, 2015.

[2] L. Raphael, G. Borden, and K. Harris, Speech Science Primer: Physiology,
Acoustics, and Perception of Speech, 6th ed. Lippincott Williams & Wilkins,
2012.

[3] T. Bäckström and O. Räsänen, Introduction to speech processing, https://
wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing,
Accessed: 2019-09-15.

[4] D. O’Shaughnessy, Speech Communications: Human and Machine, 2nd ed.
IEEE Press, 1999.

[5] W. J. M. Levelt, Speaking: From Intention to Articulation. MIT Press, 1989.

[6] P. K. Kuhl, “Early language acquisition: cracking the speech code”, Nature
Reviews.Neuroscience, vol. 5, no. 11, pp. 831–43, 2004.

[7] L. Krogh, H. A. Vlach, and S. P. Johnson, “Statistical learning across devel-
opment: Flexible yet constrained”, Frontiers in Psychology, vol. 3, 2013. doi:
10.3389/fpsyg.2012.00598.

[8] E. Bergelson and R. N. Aslin, “Nature and origins of the lexicon in 6-mo-
olds”, Proceedings of the National Academy of Sciences of the United States
of America, vol. 114, no. 49, pp. 12 916–12 921, 2017. doi: 10.1073/pnas.
1712966114.

[9] O. Räsänen, “Context induced merging of synonymous word models in com-
putational modeling of early language acquisition”, in 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012,
pp. 5037–5040. doi: 10.1109/ICASSP.2012.6289052.

[10] E. Bergelson, M. Casillas, M. Soderstrom, A. Seidl, A. S. Warlaumont, and A.
Amatuni, “What Do North American Babies Hear? A large-scale cross-corpus
analysis”, Developmental Science, vol. 22, no. 1, 2019. doi: 10.1111/desc.
12724.

[11] O. Räsänen et al., “Automatic word count estimation from daylong child-
centered recordings in various language environments using language-independent
syllabification of speech”, Speech Communication, vol. 113, pp. 63–80, 2019.
doi: 10.1016/j.specom.2019.08.005.

[12] B. Hart and T. Risley, Meaningful differences in the everyday experience of
young American children. Brookes Publishing Company, Inc, 1995.

https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://doi.org/10.3389/fpsyg.2012.00598
https://doi.org/10.1073/pnas.1712966114
https://doi.org/10.1073/pnas.1712966114
https://doi.org/10.1109/ICASSP.2012.6289052
https://doi.org/10.1111/desc.12724
https://doi.org/10.1111/desc.12724
https://doi.org/10.1016/j.specom.2019.08.005


49

[13] M. L. Rowe, “A longitudinal investigation of the role of quantity and quality of
child-directed speech in vocabulary development”, Child Development, vol. 83,
no. 5, pp. 1762–1774, 2012. doi: 10.1111/j.1467-8624.2012.01805.x.

[14] E. V. M. Lieven, “Crosslinguistic and crosscultural aspects of language ad-
dressed to children”, in Input and Interaction in Language Acquisition. Cam-
bridge University Press, 1994, pp. 56–73. doi: 10.1017/CBO9780511620690.
005.

[15] L. A. Shneidman and S. Goldin-Meadow, “Language input and acquisition in
a mayan village: How important is directed speech?”, Developmental Science,
vol. 15, no. 5, pp. 659–673, 2012. doi: 10.1111/j.1467-7687.2012.01168.x.

[16] A. Cristia, E. Dupoux, M. Gurven, and J. Stieglitz, “Child-directed speech
is infrequent in a forager-farmer population: A time allocation study.”, Child
Development, vol. 90, no. 3, pp. 759–773, 2017. doi: 10.1111/cdev.12974.

[17] C. S. Tamis-LeMonda, Y. Kuchirko, R. Luo, K. Escobar, and M. H. Bornstein,
“Power in methods: Language to infants in structured and naturalistic con-
texts”, Developmental Science, vol. 20, no. 6, 2017. doi: 10.1111/desc.12456.

[18] A. Weisleder and A. Fernald, “Talking to children matters: Early language ex-
perience strengthens processing and builds vocabulary”, Psychological Science,
vol. 24, no. 11, pp. 2143–2152, 2013. doi: 10.1177/0956797613488145.

[19] J. Henrich, S. J. Heine, and A. Norenzayan, “The weirdest people in the
world?”, Behavioral and Brain Sciences, vol. 33, no. 2–3, pp. 61–83, 2010.
doi: 10.1017/S0140525X0999152X.

[20] E. Bergelson, A. Amatuni, S. Dailey, S. Koorathota, and S. Tor, “Day by day,
hour by hour: Naturalistic language input to infants”, Developmental Science,
vol. 22, no. 1, 2019. doi: 10.1111/desc.12715.

[21] M. Soderstrom et al., Analyzing the child language experiences around the
world project, https://sites.google.com/view/aclewdid/home, Accessed:
2019-08-28.

[22] A. Ziaei, A. Sangwan, and J. H. L. Hansen, “Effective word count estimation
for long duration daily naturalistic audio recordings”, Speech Communication,
vol. 84, pp. 15–23, 2016. doi: 10.1016/j.specom.2016.07.007.

[23] L. Sun et al., “Speaker diarization with enhancing speech for the first DIHARD
challenge”, in Proc. Interspeech-2018, 2018, pp. 2793–2797. doi: 10.21437/
Interspeech.2018-1742.

https://doi.org/10.1111/j.1467-8624.2012.01805.x
https://doi.org/10.1017/CBO9780511620690.005
https://doi.org/10.1017/CBO9780511620690.005
https://doi.org/10.1111/j.1467-7687.2012.01168.x
https://doi.org/10.1111/cdev.12974
https://doi.org/10.1111/desc.12456
https://doi.org/10.1177/0956797613488145
https://doi.org/10.1017/S0140525X0999152X
https://doi.org/10.1111/desc.12715
https://sites.google.com/view/aclewdid/home
https://doi.org/10.1016/j.specom.2016.07.007
https://doi.org/10.21437/Interspeech.2018-1742
https://doi.org/10.21437/Interspeech.2018-1742


50

[24] F. Xiong et al., “Front-end technologies for robust ASR in reverberant environments–
spectral enhancement-based dereverberation and auditory modulation filter-
bank features”, EURASIP Journal on Advances in Signal Processing, 2015.
doi: 10.1186/s13634-015-0256-4.

[25] B. W. Schuller et al., “The INTERSPEECH 2017 Computational Paralinguis-
tics Challenge: Addressee, Cold & Snoring”, in Proc. Interspeech-2017, 2017,
pp. 3442–3446. doi: 10.21437/Interspeech.2017-43.

[26] B. W. Schuller et al., “The INTERSPEECH 2019 Computational Paralinguis-
tics Challenge: Styrian Dialects, Continuous Sleepiness, Baby Sounds & Orca
Activity”, in Proc. Interspeech 2019, 2019, pp. 2378–2382. doi: 10.21437/
Interspeech.2019-1122.

[27] In, Neuroscience, D. Purves, Ed., 3rd ed. Sinauer Associates, 2004, ch. Lan-
guage and Speech.

[28] J. Chartier, G. K. Anumanchipalli, K. Johnson, and E. F. Chang, “Encoding
of articulatory kinematic trajectories in human speech sensorimotor cortex”,
Neuron, vol. 98, no. 5, pp. 1042–1054, 2018. doi: 10.1016/j.neuron.2018.
04.031.

[29] Wikipedia contributors, Speech perception — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=Speech_perception&
oldid=918237958, Accessed: 2019-11-15, 2019.

[30] LiteraryDevices Editors, Phoneme, https://literarydevices.net/phoneme/,
[Online; accessed 01-December-2019].

[31] P. C. Loizou, Speech Enhancement: Theory and Practice, 2nd ed. CRC Press,
2013. doi: 10.1201/b14529.

[32] T. V. Ramabadran, J. P. Ashley, and M. J. McLaughlin, “Background noise
suppression for speech enhancement and coding”, in 1997 IEEE Workshop on
Speech Coding for Telecommunications Proceedings. Back to Basics: Attacking
Fundamental Problems in Speech Coding, 1997, pp. 43–44. doi: 10.1109/
SCFT.1997.623887.

[33] R. Niederjohn and R. A. Curtis, “The development of a computer speech pro-
cessing system and its use for the study and development of processing meth-
ods for enhancing the intelligibility of speech in noise”, Rome Air Development
Center, 1977.

[34] M. S. Kavalekalam, J. K. Nielsen, J. B. Boldt, and M. G. Christensen, “Model-
based speech enhancement for intelligibility improvement in binaural hearing
aids”, IEEE/ACM Trans. Audio, Speech and Language Processing, vol. 27,
no. 1, pp. 99–113, 2019. doi: 10.1109/TASLP.2018.2872128.

https://doi.org/10.1186/s13634-015-0256-4
https://doi.org/10.21437/Interspeech.2017-43
https://doi.org/10.21437/Interspeech.2019-1122
https://doi.org/10.21437/Interspeech.2019-1122
https://doi.org/10.1016/j.neuron.2018.04.031
https://doi.org/10.1016/j.neuron.2018.04.031
https://en.wikipedia.org/w/index.php?title=Speech_perception&oldid=918237958
https://en.wikipedia.org/w/index.php?title=Speech_perception&oldid=918237958
https://literarydevices.net/phoneme/
https://doi.org/10.1201/b14529
https://doi.org/10.1109/SCFT.1997.623887
https://doi.org/10.1109/SCFT.1997.623887
https://doi.org/10.1109/TASLP.2018.2872128


51

[35] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compression
of noisy speech”, Proceedings of the IEEE, vol. 67, no. 12, pp. 1586–1604, 1979.
doi: 10.1109/PROC.1979.11540.

[36] J. Benesty, Noise Reduction in Speech Processing: Springer topics in signal
procesing 2. Springer Verlag, 2009.

[37] Wikipedia contributors, Lombard effect — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=Lombard_effect&oldid=
917701738, Accessed: 2019-11-20, 2019.

[38] A. H. Moore, P. Peso Parada, and P. A. Naylor, “Speech enhancement for
robust automatic speech recognition: Evaluation using a baseline system and
instrumental measures”, Computer Speech & Language, vol. 46, pp. 574–584,
2017. doi: 10.1016/j.csl.2016.11.003.

[39] G. Keren, J. Han, and B. Schuller, “Scaling speech enhancement in unseen
environments with noise embeddings”, in Proc. CHiME 2018 Workshop on
Speech Processing in Everyday Environments, 2018, pp. 25–29. doi: 10.21437/
CHiME.2018-6.

[40] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction”,
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 27, no. 2,
pp. 113–120, 1979. doi: 10.1109/TASSP.1979.1163209.

[41] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time
Series: With Engineering Applications. MIT Press, 1950.

[42] S. M. Kuo and H. Zhao, “Adaptive acoustic echo cancellation algorithms in
teleconferencing systems”, The Journal of the Acoustical Society of America,
1989. doi: https://doi.org/10.1121/1.2027564.

[43] J. Franzen and T. Fingscheidt, “An efficient residual echo suppression for
multi-channel acoustic echo cancellation based on the frequency-domain adap-
tive kalman filter”, in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2018, pp. 226–230. doi: 10.1109/ICASSP.
2018.8462488.

[44] D. Giacobello and T. L. Jensen, “Speech Dereverberation Based on Convex Op-
timization Algorithms for Group Sparse Linear Prediction”, in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 446–450. doi: 10.1109/ICASSP.2018.8462560.

[45] T. Nakatani and K. Kinoshita, “A unified convolutional beamformer for si-
multaneous denoising and dereverberation”, IEEE Signal Processing Letters,
vol. 26, no. 6, pp. 903–907, 2019. doi: 10.1109/LSP.2019.2911179.

https://doi.org/10.1109/PROC.1979.11540
https://en.wikipedia.org/w/index.php?title=Lombard_effect&oldid=917701738
https://en.wikipedia.org/w/index.php?title=Lombard_effect&oldid=917701738
https://doi.org/10.1016/j.csl.2016.11.003
https://doi.org/10.21437/CHiME.2018-6
https://doi.org/10.21437/CHiME.2018-6
https://doi.org/10.1109/TASSP.1979.1163209
https://doi.org/https://doi.org/10.1121/1.2027564
https://doi.org/10.1109/ICASSP.2018.8462488
https://doi.org/10.1109/ICASSP.2018.8462488
https://doi.org/10.1109/ICASSP.2018.8462560
https://doi.org/10.1109/LSP.2019.2911179


52

[46] Wikipedia contributors, Additive white gaussian noise — Wikipedia, the free
encyclopedia, https://en.wikipedia.org/w/index.php?title=Additive_
white_Gaussian_noise&oldid=923685673, [Online; accessed 23-November-
2019], 2019.

[47] G. Parikh and P. C. Loizou, “The influence of noise on vowel and consonant
cues”, Journal of the Acoustical Society of America, vol. 118, no. 6, pp. 3874–
3888, 2005.

[48] R. Martin, “Noise power spectral density estimation based on optimal smooth-
ing and minimum statistics”, IEEE Transactions on Speech and Audio Process-
ing, vol. 9, no. 5, pp. 504–512, 2001. doi: 10.1109/89.928915.

[49] M. Kolbæk, “Single-Microphone Speech Enhancement and Separation Using
Deep Learning”, PhD thesis, Aalborg University, Denmark, 2018.

[50] L. Sun et al., “A Novel LSTM-Based Speech Preprocessor for Speaker Diariza-
tion in Realistic Mismatch Conditions”, in 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2018. doi: 10.
1109/ICASSP.2018.8462311.

[51] S. Dimolitsas, “Objective speech distortion measures and their relevance to
speech quality assessments”, IEE Proceedings I - Communications, Speech and
Vision, vol. 136, no. 5, pp. 317–324, 1989. doi: 10.1049/ip-i-2.1989.0045.

[52] V. Grancharov and W. B. Kleijn, in Springer Handbook of Speech Processing.
Springer,Berlin,Heidelberg, 2008, ch. Speech Quality Assessment, pp. 83–100.
doi: 10.1007/978-3-540-49127-9_5.

[53] P. Mermelstein, “Evaluation of a Segmental SNR Measure as an Indicator of
the Quality of ADPCM Coded Speech”, Journal of the Acoustical Society of
America, vol. 66, no. 6, pp. 1664–1667, 1979. doi: 10.1121/1.383638.

[54] F. Itakura and S. Saito, “Analysis synthesis telephony based upon the maxi-
mum likelihood method”, in 6th International Congress on Acoustics, Tokyo,
Japan, 1968.

[55] S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An Instrumental Intelligi-
bility Metric Based on Information Theory”, IEEE Signal Processing Letters,
vol. 25, no. 1, pp. 115–119, 2018. doi: 10.1109/LSP.2017.2774250.

[56] S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An Evaluation of Intru-
sive Instrumental Intelligibility Metrics”, IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 26, no. 11, pp. 2153–2166,
2018. doi: 10.1109/TASLP.2018.2856374.

https://en.wikipedia.org/w/index.php?title=Additive_white_Gaussian_noise&oldid=923685673
https://en.wikipedia.org/w/index.php?title=Additive_white_Gaussian_noise&oldid=923685673
https://doi.org/10.1109/89.928915
https://doi.org/10.1109/ICASSP.2018.8462311
https://doi.org/10.1109/ICASSP.2018.8462311
https://doi.org/10.1049/ip-i-2.1989.0045
https://doi.org/10.1007/978-3-540-49127-9_5
https://doi.org/10.1121/1.383638
https://doi.org/10.1109/LSP.2017.2774250
https://doi.org/10.1109/TASLP.2018.2856374


53

[57] D. Klatt, “Prediction of perceived phonetic distance from critical-band spectra:
A first step”, in 1982 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 1982. doi: 10.1109/ICASSP.1982.1171512.

[58] S. Wang, A. Sekey, and A. Gersho, “An objective measure for predicting sub-
jective quality of speech coders”, IEEE Journal on Selected Areas in Commu-
nications, vol. 10, no. 5, pp. 819–829, 1992. doi: 10.1109/49.138987.

[59] J. H. James, Bing Chen, and L. Garrison, “Implementing VoIP: a voice trans-
mission performance progress report”, IEEE Communications Magazine, vol. 42,
no. 7, pp. 36–41, 2004. doi: 10.1109/MCOM.2004.1316528.

[60] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and
N. L. Dahlgren, TIMIT Acoustic-Phonetic Continuous Speech Corpus, https:
//catalog.ldc.upenn.edu/LDC93S1, Accessed: 2019-03-01, 1993.

[61] P. Scalart and J. V. Filho, “Speech enhancement based on a priori signal
to noise estimation”, in 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings (ICASSP), 1996. doi:
10.1109/ICASSP.1996.543199.

[62] A. Ziaei, L. Kaushik, A. Sangwan, J. H. L. Hansen, and D. W. Oard, “Speech
Activity Detection for NASA Apollo Space Missions: Challenges and Solu-
tions”, in Proc. Interspeech-2014, 2014, pp. 1544–1548.

[63] S. O. Sadjadi and J. H. L. Hansen, “Unsupervised Speech Activity Detection
Using Voicing Measures and Perceptual Spectral Flux”, IEEE Signal Process-
ing Letters, vol. 20, no. 3, pp. 197–200, 2013. doi: 10.1109/LSP.2013.
2237903.

[64] M. Brookes, Voicebox: Speech processing toolbox for matlab, http://www.ee.
ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html, Accessed: 2019-08-29.

[65] R. C. Hendriks, R. Heusdens, and J. Jensen, “MMSE based noise PSD tracking
with low complexity”, in 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2010, pp. 4266–4269. doi: 10.1109/
ICASSP.2010.5495680.

[66] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-Based Noise Power Es-
timation With Low Complexity and Low Tracking Delay”, IEEE Transactions
on Audio, Speech, and Language Processing, vol. 20, no. 4, pp. 1383–1393,
2012. doi: 10.1109/TASL.2011.2180896.

[67] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean
square error short-time spectral amplitude estimator”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 32, no. 6, pp. 1109–1121, 1984.

https://doi.org/10.1109/ICASSP.1982.1171512
https://doi.org/10.1109/49.138987
https://doi.org/10.1109/MCOM.2004.1316528
https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
https://doi.org/10.1109/ICASSP.1996.543199
https://doi.org/10.1109/LSP.2013.2237903
https://doi.org/10.1109/LSP.2013.2237903
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
https://doi.org/10.1109/ICASSP.2010.5495680
https://doi.org/10.1109/ICASSP.2010.5495680
https://doi.org/10.1109/TASL.2011.2180896


54

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition”, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[69] L. Sun, J. Du, L. Dai, and C. Lee, “Multiple-target deep learning for lstm-
rnn based speech enhancement”, in 2017 Hands-free Speech Communications
and Microphone Arrays (HSCMA), 2017, pp. 136–140. doi: 10.1109/HSCMA.
2017.7895577.

[70] T. Gao, J. Du, L. Dai, and C. Lee, “SNR-Based Progressive Learning of Deep
Neural Network for Speech Enhancement”, in Proc. Interspeech-2016, 2016,
pp. 3713–3717. doi: 10.21437/Interspeech.2016-224.

[71] D. B. Paul and J. M. Baker, “The design for the wall street journal-based
csr corpus”, in Proceedings of the Workshop on Speech and Natural Language,
ser. HLT ’91, 1992, pp. 357–362. doi: 10.3115/1075527.1075614.

[72] S. Lin, Y. Zhang, Y. Liu, H. Liu, and Q. Liu, “An introduction to corpora
resources of 863 program for chinese language processing and human-machine
interaction”, in In Proceedings of ALR-04 affiliated to IJCNLP 2004, 2004.

[73] T. Gao, J. Du, L. Dai, and C. Lee, “Densely Connected Progressive Learning
for LSTM-Based Speech Enhancement”, in 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5054–
5058. doi: 10.1109/ICASSP.2018.8461861.

[74] R. Gray, A. Buzo, A. Gray, and Y. Matsuyama, “Distortion measures for
speech processing”, IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 28, no. 4, pp. 367–376, 1980. doi: 10.1109/TASSP.1980.1163421.

[75] Wikipedia, Data processing inequality–Wikipedia, the free encyclopedia, http:
//en.wikipedia.org/w/index.php?title=Data%20processing%20inequality&
oldid=919002407, Accessed: 2019-09-10.

[76] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual informa-
tion”, Physical Review E, vol. 69, no. 6, 2004. doi: 10.1103/PhysRevE.69.
066138.

[77] M. Soderstrom, “Beyond babytalk: Re-evaluating the nature and content of
speech input to preverbal infants”, Developmental Review, vol. 27, no. 4, pp. 501–
532, 2007. doi: 10.1016/j.dr.2007.06.002.

[78] A. Batliner, B. Schuller, S. Schaeffler, and S. Steidl, “Mothers, adults, children,
pets –towards the acoustics of intimacy”, in 2008 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 4497–
4500. doi: 10.1109/ICASSP.2008.4518655.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/HSCMA.2017.7895577
https://doi.org/10.1109/HSCMA.2017.7895577
https://doi.org/10.21437/Interspeech.2016-224
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.1109/ICASSP.2018.8461861
https://doi.org/10.1109/TASSP.1980.1163421
http://en.wikipedia.org/w/index.php?title=Data%20processing%20inequality&oldid=919002407
http://en.wikipedia.org/w/index.php?title=Data%20processing%20inequality&oldid=919002407
http://en.wikipedia.org/w/index.php?title=Data%20processing%20inequality&oldid=919002407
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1016/j.dr.2007.06.002
https://doi.org/10.1109/ICASSP.2008.4518655


55

[79] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Opti-
mal Margin Classifiers”, in Proceedings of the Fifth Annual Workshop on Com-
putational Learning Theory, 1992, pp. 144–152. doi: 10.1145/130385.130401.

[80] B. Schuller et al., “The INTERSPEECH 2013 computational paralinguistics
challenge: Social signals, conflict, emotion, autism”, in Proc. Interspeech-2013,
2013, pp. 148–152.

[81] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent Developments
in openSMILE, the Munich Open-source Multimedia Feature Extractor”, in
Proceedings of the 21st ACM International Conference on Multimedia, 2013,
pp. 835–838. doi: 10.1145/2502081.2502224.

[82] D. Wang and S. S. Narayanan, “Robust Speech Rate Estimation for Sponta-
neous Speech”, IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 8, pp. 2190–2201, 2007. doi: 10.1109/TASL.2007.905178.

[83] A. Ziaei, A. Sangwan, L. Kaushik, and J. H. L. Hansen, “Prof-Life-Log: Anal-
ysis and classification of activities in daily audio streams”, in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
2015, pp. 4719–4723. doi: 10.1109/ICASSP.2015.7178866.

[84] S. Seshadri and O. Räsänen, “SylNet: An adaptable end-to-end syllable count
estimator for speech”, IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1359–
1363, 2019.

[85] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model
for raw audio”, in Proc. 9th ISCA Speech Synthesis Workshop, 2016, pp. 125–
125.

[86] E. Bergelson, Bergelson Seedlings HomeBank Corpus, Accessed: 2019-08-28,
2017. doi: 10.21415/T5PK6D.

[87] C. F. Rowland, S. Durrant, M. Peter, A. Bidgood, J. Pine, and L. S. Jago,
The Language 0-5 Project, Accessed: 2019-08-28, 2019. doi: 10.17605/OSF.
IO/KAU5F.

[88] M. Casillas, P. Brown, and S. C. Levinson, Casillas HomeBank Corpus, Ac-
cessed: 2019-08-28, 2017. doi: 10.21415/T51X12.

[89] K. McDivitt and M. Soderstrom, McDivitt HomeBank Corpus, Accessed: 2019-
08-28, 2016. doi: 10.21415/T5KK6G.

[90] M. Soderstrom, Soderstrom HomeBank Corpus, Accessed: 2019-08-28, 2017.
doi: 10.21415/T5KK6G.

https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/2502081.2502224
https://doi.org/10.1109/TASL.2007.905178
https://doi.org/10.1109/ICASSP.2015.7178866
https://doi.org/10.21415/T5PK6D
https://doi.org/10.17605/OSF.IO/KAU5F
https://doi.org/10.17605/OSF.IO/KAU5F
https://doi.org/10.21415/T51X12
https://doi.org/10.21415/T5KK6G
https://doi.org/10.21415/T5KK6G


56

[91] A. S. Warlaumont, G. M. Pretzer, S. Mendoza, and E. Walle, Warlaumont
HomeBank Corpus, Accessed: 2019-08-28, 2016. doi: 10.21415/T54S3C.

[92] C. Rosemberg, F. Alam, A. Stein, M. Migdalek, A. Menti, and G. Ojea,
Language Environments of Young Argentinean children, Accessed: 2019-08-28,
2015.

[93] M. Casillas et al., Introduction: The ACLEW DAS template, https://osf.
io/aknjv, 2019.

[94] M. Casillas et al., DARCLE Annotation Scheme, https://osf.io/4532e,
2018.

[95] D. Kahn, “Syllable-based generalizations in english phonology.”, PhD thesis,
Massachusetts Institute of Technology. Dept. of Foreign Literatures and Lin-
guistics, 1976.

[96] P. C. Loizou and G. Kim, “Reasons why Current Speech-Enhancement Algo-
rithms do not Improve Speech Intelligibility and Suggested Solutions”, IEEE
Transactions on Audio, Speech, and Language Processing, vol. 19, no. 1, pp. 47–
56, 2011. doi: 10.1109/TASL.2010.2045180.

https://doi.org/10.21415/T54S3C
https://osf.io/aknjv
https://osf.io/aknjv
https://osf.io/4532e
https://doi.org/10.1109/TASL.2010.2045180

	Introduction
	Problem description
	Research goals of the thesis
	Experimental scheme of the thesis
	Organization of the thesis

	Theoretical background
	Speech production and perception
	Speech Enhancement
	Noise
	Noise in context of speech enhancement
	Human listening in noisy conditions
	Basic principles in SE methods

	Evaluation measures for speech enhancement

	Methods
	Digital signal processing based methods for SE
	Noise estimation methods

	Machine learning-based methods for SE
	Objective measures for quality and intelligibility of the enhanced speech
	Spectral distortion for the quality assessment
	SIIB for the intelligibility assessment

	Downstream tasks
	IDS/ADS classification
	Automatic syllable count estimation


	Experiments
	Data
	Data for objective evaluation of SE methods
	Data for downstream evaluation of SE methods

	Setup for SE methods
	Setup for objective assessment
	Setup for downstream tasks evaluation
	Automatic syllabification
	IDS/ADS classification


	Results
	Results for objective evaluation of SE methods
	Results for downstream task evaluation of SE methods
	Comparison of objective evaluation metrics and downstream task performance
	Discussion of the results

	Conclusions
	References

