95,391 research outputs found

    A new technique to reproduced high-dynamic-range images for low-dynamic-range display

    Get PDF
    Tone mapping is a process for reproduction of High-Dynamic-Range images (HDR) for Low-Dynamic-Range (LDR) output devices. In this report, author presents a new local tone-mapping operator, derived from the Contrast Limited Adaptive histogram Equalization (CLAHE) technique for displaying high dynamic range image. The CLAHE is a method which was originally developed for medical imaging. This method has effectively expanded the full dynamic range of display and it is fully automatic. Due to different luminance intervals could result in overlapped reaction on the limited response in limited response range of visual system, scene region splitting and merging were used to segment the scaled luminance and perform the image segmentation to segment image into smaller part. After the region splitting and merging, there will be some noise or variation of intensity that may result in holes or over segmentation. As the result, the morphological operation, opening and closing were used to perform the mask to applied different clip limit of the CLAHE operation

    Improving elevation resolution in phased-array inspections for NDT

    Get PDF
    The Phased Array Ultrasonic Technique (PAUT) offers great advantages over the conventional ultrasound technique (UT), particularly because of beam focusing, beam steering and electronic scanning capabilities. However, the 2D images obtained have usually low resolution in the direction perpendicular to the array elements, which limits the inspection quality of large components by mechanical scanning. This paper describes a novel approach to improve image quality in these situations, by combining three ultrasonic techniques: Phased Array with dynamic depth focusing in reception, Synthetic Aperture Focusing Technique (SAFT) and Phase Coherence Imaging (PCI). To be applied with conventional NDT arrays (1D and non-focused in elevation) a special mask to produce a wide beam in the movement direction was designed and analysed by simulation and experimentally. Then, the imaging algorithm is presented and validated by the inspection of test samples. The obtained images quality is comparable to that obtained with an equivalent matrix array, but using conventional NDT arrays and equipments, and implemented in real time.Fil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camacho, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica; ArgentinaFil: Cruza, Jorge F.. Consejo Superior de Investigaciones Científicas; Españ

    Development of an image converter of radical design

    Get PDF
    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product

    Evaluating methods for controlling depth perception in stereoscopic cinematography.

    Get PDF
    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games

    Contemplation of tone mapping operators in high dynamic range imaging

    Get PDF
    The technique of tone mapping has found widespread popularity in the modern era owing to its applications in the digital world. There are a considerable number of tone mapping techniques that have been developed so far. One method may be better than the other in some cases which is determined by the requirement of the user. In this paper, some of the techniques for tone mapping/tone reproduction of high dynamic range images have been contemplated. The classification of tone mapping operators has also been given. However, it has been found that these techniques lack in providing quality of service visualization of high dynamic range images. This paper has tried to highlight the drawbacks in the existing traditional methods so that the tone-mapped techniques can be enhanced
    corecore