7,146 research outputs found

    Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study

    Get PDF
    Forecasting the power production from renewable energy sources (RESs) has become fundamental in microgrid applications to optimize scheduling and dispatching of the available assets. In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV power production in a microgrid, addressing the specific criticalities of this environment. The proposed approach has to validate measured data properly, through an effective algorithm and further refine the power forecast when newer data are available. The procedure is fully implemented in a facility of the Multi-Good Microgrid Laboratory (MG(Lab)(2)) of the Politecnico di Milano, Milan, Italy, where new Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach as a robust and accurate procedure for microgrid applications

    Smart load scheduling strategy utilising optimal charging of electric vehicles in power grids based on an optimisation algorithm

    Get PDF
    One of the main goals of any power grid is sustainability. The given study proposes a new method, which aims to reduce users’ anxiety especially at slow charging stations and improve the smart charging model to increase the benefits for the electric vehicles’ owners, which in turn will increase the grid stability. The issue under consideration is modelled as an optimisation problem to minimise the cost of charging. This approach levels the load effectively throughout the day by providing power to charge EVs’ batteries during the off‐peak hours and drawing it from the EVs’ batteries during peak‐demand hours of the day. In order to minimise the costs associated with EVs’ charging in the given optimisation problem, an improved version of an intelligent algorithm is developed. In order to evaluate the effectiveness of the proposed technique, it is implemented on several standard models with various loads, as well as compared with other optimisation methods. The superiority and efficiency of the proposed method are demonstrated, by analysing the obtained results and comparing them with the ones produced by the competitor techniques.© 2020. This is an open access article published by the IET under the Creative Commons Attribution LIcense (http://creativecommons.org/licenses/by/3.0/)fi=vertaisarvioitu|en=peerReviewed

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    An efficient framework for short-term electricity price forecasting in deregulated power market

    Get PDF
    It is widely acknowledged that electricity price forecasting become an essential factor in operational activities, planning, and scheduling for the participant in the price-setting market, nowadays. Nevertheless, electricity price became a complex signal due to its non-stationary, non-linearity, and time-variant behavior. Consequently, a variety of artificial intelligence techniques are proposed to provide an efficient method for short-term electricity price forecasting. BSA as the recent augmentation of optimization technique, yield the potential of searching a closed-form solution in mathematical modeling with a higher probability, obviating the necessity to comprehend the correlations between variables. Concurrently, this study also developed a feature selection technique, to select the input variables subsets that have a substantial implication on forecasting of electricity price, based on a combination of mutual information (MI) and SVM. For the verification of simulation results, actual data sets from the Ontario energy market in the year 2020 covering various weather seasons are acquired. Finally, the obtained results demonstrate the feasibility of the proposed strategy through improved preciseness in comparison with the distinctive methods.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This research has been supported by University of Vaasa under Profi4/WP2 project with the financial support provided by the Academy of Finland.fi=vertaisarvioitu|en=peerReviewed

    A Trusted and Privacy-preserving Internet of Mobile Energy

    Full text link
    The rapid growth in distributed energy sources on power grids leads to increasingly decentralised energy management systems for the prediction of power supply and demand and the dynamic setting of an energy price signal. Within this emerging smart grid paradigm, electric vehicles can serve as consumers, transporters, and providers of energy through two-way charging stations, which highlights a critical feedback loop between the movement patterns of these vehicles and the state of the energy grid. This paper proposes a vision for an Internet of Mobile Energy (IoME), where energy and information flow seamlessly across the power and transport sectors to enhance the grid stability and end user welfare. We identify the key challenges of trust, scalability, and privacy, particularly location and energy linking privacy for EV owners, for realising the IoME vision. We propose an information architecture for IoME that uses scalable blockchain to provide energy data integrity and authenticity, and introduces one-time keys for public EV transactions and a verifiable anonymous trip extraction method for EV users to share their trip data while protecting their location privacy. We present an example scenario that details the seamless and closed loop information flow across the energy and transport sectors, along with a blockchain design and transaction vocabulary for trusted decentralised transactions. We finally discuss the open challenges presented by IoME that can unlock significant benefits to grid stability, innovation, and end user welfare.Comment: 7 pages, 5 figure
    corecore