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ABSTRACT It is widely acknowledged that electricity price forecasting become an essential factor in 

operational activities, planning, and scheduling for the participant in the price-setting market, nowadays. 

Nevertheless, electricity price became a complex signal due to its non-stationary, non-linearity, and time-

variant behavior. Consequently, a variety of artificial intelligence techniques are proposed to provide an 

efficient method for short-term electricity price forecasting. BSA as the recent augmentation of 

optimization technique, yield the potential of searching a closed-form solution in mathematical modeling 

with a higher probability, obviating the necessity to comprehend the correlations between variables. 

Concurrently, this study also developed a feature selection technique, to select the input variables subsets 

that have a substantial implication on forecasting of electricity price, based on a combination of mutual 

information (MI) and SVM. For the verification of simulation results, actual data sets from the Ontario 

energy market in the year 2020 covering various weather seasons are acquired. Finally, the obtained results 

demonstrate the feasibility of the proposed strategy through improved preciseness in comparison with the 

distinctive methods. 

INDEX TERMS Backtracking search Algorithm, Electricity Market, Electricity Price Forecasting, Feature 

Selection, Support Vector Machine.  

 

 

 

 

 

NOMENCLATURE 

; m
gm x

y  Fitness of (xg
k) 

b 
regression function intercept 

( ,m m  
) 

Slack variables 
Z 

Un normalized data 

(αm,α*
m) Nonnegative Lagrange multipliers Z  Normalized data 

HOEP(t)Actual value Observed value of EP at time t hour mixrate Control parameter of BSA 

HOEP(t)Estimated value Forecasted value of EP at time t hour oldP Historical population 

rand/randi Distributed random numbers /Random selection function ( )kx  Kernel function 

J Soft margin parameter := Update operation 

yi Minimum value of the jth objective function Pg Productivity of ith individual 

upj Upper search space limits of jth variable lowj Lower search space limits of jth variable 

nPop Population size of host nests nVar Number of respective optimization variable 

Mutant Initial form of trial population U Uniform distribution function 

Pbest Previous best position N Standard normal distribution 
ʋ Fraction of error CE Conditional entropy 

, mW x
 

Vector inner product of the predictors AI Artificial intelligence 

U – statistic Thiel’s inequality coefficient HOEP Hourly Ontario electricity price 

k or k' Regression lines a and b in BSA Randomly generated numbers 

hi Real output yg Global minimum 
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I. INTRODUCTION 

Recently power grids are required to sustain the high-quality 

standards to meet increasing variation in demand and ensure 

a reliable and consistent supply. These complex issues seem 

to be the driving factor beyond the smart grid technologies 

that are continually evolving and developing. Smart grid 

technology implementation faces numerous challenges 

including optimizing the distributed generation (DG) sizing, 

distribution, and transmission (D&T) networks, and 

technology of energy storage efficiency. These 

complexities necessitate a rigorous analysis and significant 

financial expenditure. Hence, nowadays in modern 

electricity market similarly as smart grid activities, the 

forecasting on the price of electricity has become the major 

role. The forecasting allows each generator to decide the 

optimal bidding layout. In addition, mutual agreement 

decisions and long-term investment in the new-developed 

facility of generation are strongly affected by the price 

prediction [1]. Electricity price forecasting is essential for 

utility developer or Independent System Operator (ISO) 

similarly to the consumer and the investors. Essentially, 

various bidders in the competitive energy sector requires 

future electricity rates to maximize their revenue. The price 

prediction has become increasingly complicated in relation 

to previous years, as the latest electricity markets are 

particularly deregulated and non-linear. The price forecast 

accuracy has deteriorated because of the nonlinearity and 

volatility of this system. It also contributes to an explosive 

in the energy market by impacting the policies of bidding. 

Because of the incertitude of the market price of energy, 

various challenges are faced by supply-side and demand-side 

management on the day-to-day power market [2]. The 

suppliers of energy can obtain more rights by understanding 

the prior information on the price variations of the electricity 

market by the short-term prophesy of the sensible offers. 

Furthermore, it assists the power suppliers in developing 

their strategies of bidding in order to save the industry and 

energy economy from wasting a huge amount of dollars that 

maximize their benefit on a large scale [3]. On the other 

hand, demand side management needs to be aware of market 

price fluctuations and differences to improve the planning of 

the short-term operation. Consequently, research has become 

more relevant in recent years on the electricity market for 

price forecasts. 

Predicting techniques in conjunction with the forecasting 

context can be categorized under three groups –, Artificial 

Intelligence (AI) based method, statistical models, and time 

series techniques. In comparison with the statistical model of 

high level of independent and dependent variables, amongst 

various methods, AI-based electricity pricing approaches 

such as ANFIS, ANN (artificial neural network), CNN 

(conventional neural network) in recent years have gained 

considerable momentum in recent years because they have a 

great opportunity in ensuring a certain degree of precision in 

estimation the price [4-6]. The typical techniques to forecast 

electricity demand and price, amongst various AI-based 

approaches in [7] , ANN has been widely deployed. Another 

technique for the electricity price forecasting is SVR 

(Support Vector Regression), which is efficient in adaptation 

and encapsulation of intricate relationships with data entry, 

normally utilized is shown in [8, 9]. 

Advancement of hybrid technology was developed to 

improve accuracy and practicality in order to address the 

nonlinearity inherent in short-term forecasts. Furthermore, by 

deploying the power market prediction, a different technique 

was introduced, which combines a Wavelet Transformation 

and ARIMA process (WT) in [10].The approach depicted the 

wavelet transformation used to separate the first historical 

data, meanwhile to form the finishing prediction results, the 

ARIMA method has adopted the reverse wavelet 

transformation to implement the process. Another research 

contribution [11] has forecast prices using ANN technology 

ti 
Predicted output 

T 
Generated offspring at the end of crossover 

process 
Rm Confirmed indicator NLHOEP Number of lag order for electricity price 

Ro2 The squared correlation coefficient ED(t) Electricity demand at time t 

Ro'2 
The squared correlation coefficient between experimental 
and predicted values 

EP(t) 
Electricity price at time t 

my  Estimated output of the regression function HOED Hourly Ontario electricity demand 
*( , )m m 

 
Lagrangian multipliers EPF Electricity Price Forecasting 

b weight vector in SVR SVM Support vector machine 
X and Y Random variables NLHOED Number of lag order for electricity demand 

(.)  Gamma distribution function permuting Random shuffling function 

MAPE Mean absolute percentage error MW Megawatts 
∂ Adjustable parameter in Gaussian RBF RACF Residuals autocorrelation function 

F Wiener process RMSE Root mean square error 

g Transfer function SVR Support vector regression 

g+1 Next generation MI Mutual Information 

gbest Overall best value AI Artificial intelligence 

map Binary integer-valued matrix H(X) Individual entropy 
$/MW.h dollar per Megawatts hour H(X,Y) Joint entropy 

e(t) 
The whiteness of estimated residuals 

CE 
Conditional entropy 
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to identify prices and quantities by using past and estimation 

on future parameters. A three-layer back propagation (BP) 

neural network (NN) represents the contribution by taking 

the demand and the cost of fuel as entry data on the market. 

At the same time a combination of the orthogonal 

experimental design (OED) and probability neural network 

(PrNN) is utilized explained in [12]. For grouping and 

identifying the best variable, the PrNN and OED methods 

were used, which resulted in increased forecast accuracy. 

In [13], the support vector machine (SVM) and estimated 

appraisement of the device adequacy (PASA) have been 

utilized to forecast price based on price and load history, as 

well as entry data. To carry out their assessments in this 

work, regional data from South Wales have also been 

deployed. To pick the SVM attribute, the fish swarm 

algorithm (FSA) was chosen and applied as a time series 

forecast method in [14]. The power price has been used as a 

data entry method in this work. By merging wavelet packet 

transform (WPT) and feature selection, the least square 

support vector machine (LSSVM) for forecasting been 

introduced in [15]. In [16] and [17], proposed a probabilistic 

power price prediction approach that is combined with SVR 

and ARIMA techniques. In [18], three combined methods 

recognize as WT, radial basis function neural network 

(RBFNN), and ARIMA have been utilized. A mixed model 

based on load-prediction interactions is presented in [19]. For 

price directed demand response, another method the Virtual 

Budget (VB) was introduced in [17], which provides price 

and load prediction and allows automatic morphing of 

electricity demand for a consumer. To forecast price and 

load, a hybrid model was proposed in [20]. To predict the 

price, the researchers used a hybrid time-series and adaptive 

wavelet neural network (AWNN). Besides, authors in [21] 

develops an optimal model based on LSTM-NN to predict 

electricity load and price. Distinct states of a multi-block 

based forecast engine are used in [22] for price prediction 

and both price load prediction. The forecasting mechanism in 

this study is a multi-block neural network (NN) that has been 

optimized by an intelligence algorithm to maximize the 

training time as well as improve the capabilities of 

forecasting. Other methods to model the price and forecast 

the demand have been suggested by [23, 24].  

Though ANN, SVR and hybrid approaches have made 

significant advances in the precise electricity price 

forecasting technique, a more perfect and precise method to 

improve the exactness of price forecasting is yet required. 

Furthermore, all of the aforesaid research on electricity price 

forecasting works admirably since the accuracy of those 

forecasting methods are still improvised. For example, a 

linearly organized time series are incompetent in expressing 

nonlinear patterns and frequent regularity in data variations 

over the time. Moreover, based on the engineer’s experience 

and trial and error procedure, the electricity price forecasting 

input parameters are determined. Because of having 

nonlinear model capability of AI techniques, few research 

applied AI techniques to forecast electricity price forecasting. 

Appropriate feature selection is another important prospect in 

price forecasting since it enhances the efficiency and 

accuracy of the model. However, by applying the existing 

feature selection methods, the appropriate feature selection of 

the electricity price forecasting with considering the non-

linearity of the price has been regarded as a difficult and 

complex task that essentially forced to investigate an 

improved enhanced feature selection technique.  

 Therefore, to solve the aforementioned issues in electricity 

price forecasting, a new hybrid approach is proposed in this 

research. The proposed method is combined with 

backtracking search algorithm (BSA) and support vector 

regression (SVR) to improve the precision of the forecasting. 

BSA is a metaheuristic technique consists of two population.  

Dissimilar to other metaheuristic techniques, BSA has just 

one parameter that has to be regulated and it does not have a 

high sensibility to the control parameter's starting value. 

Moreover, with the property of unique crossover and 

mutation process, BSA has high capability of problem 

exploration in the search space and exploitation of better 

result. Furthermore, the combination of mutual information 

and SVM methods form a new feature selection method 

which is robust and enhances the price forecasting technique. 

In addition, the feature selection based on the non-linear 

price signal, SVM has the ability to simulate data with 

nonlinear and complicated connections, making it a better fit 

for the present study. 

The Ontario electricity market is being used as a case study 

to test the feasibility of the suggested methods. Because of 

its single settlement existence, the Ontario electricity 

market is regarded as one of the most volatile in [25, 26]. 

The correlation between the Ontario hourly energy price 

(HOEP) and Ontario hourly power demand (HOED) for a 

week is exhibited in Fig. 1. As can be seen in the figure, the 

prices of electricity in the deregulated Ontario electricity 

market depend on the electricity demand. When the demand 

for electricity is so high and the supply is limited, there is 

intense competition for electricity prices. Therefore, the 

price forecast of the smart grid scenario such as the Ontario 

power market is more complicated than usual electricity 

systems with an intrinsic interrelation within price and 

demand, and a novel prediction approach in that market 

should be introduced to deliver high accurate prediction.   

 

The contributions of this paper are summarized as follows: 

1) The most significant contribution of this study is the 

development of a hybrid electricity price forecasting 

technique relying on an effective BSA algorithm in 

conjunction with the SVR method, which enhances 

the efficiency of price forecasting as compared to 

existing forecasting techniques. BSA has been used 

to find the most appropriate weights with the least 

error, resulting in increased prediction accuracy. 

Despite of its simplicity of the structure, BSA has  
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been frequently employed in a variety of numerical 

problems due to its effectiveness in solving 

multidimensional functions. 

2) In this paper, a robust hybrid feature selection 

technique, which integrates SVM and mutual 

information (MI) techniques, has been devised to 

handle the feature selection problem. For this case, 

SVM has been used to retrieve the most influential 

features on electricity price forecasting after MI 

has removed input variables in the first stage with 

the least amount of redundancy and the greatest 

amount of relevancy. Moreover, by penalizing 

every feature in the dual formulation of SVM, the 

important features during classifier construction 

have been determined. This method is known as 

Kernel-penalized SVM (KP-SVM), and it 

optimizes the shape of an anisotropic RBF Kernel 

by removing features for the classifier 

performance that are less significant. 

3) The proposed procedure's relevance and precision 

are assessed by comparing achieved results to 

various machine learning approaches with proven 

results.  

Rest of the paper are arranged as follows: Section II and III 

explain the short description on evolution process and 

structure of SVR and BSA. In section IV, short term 

electricity price forecasting and formulating models are 

presented as well as the proposed feature selection method to 

ensure the most suitable features by filtering the input 

variables employing MI in first stage and applying SVM in 

second stage to forecast the EP on short term basis. Section 

VI provides extensive discussions with results and statistical 

analysis is presented which ensured that the proposed method 

is applicable and strongly suitable for electricity price 

forecasting in de-regulated electricity market. Lastly, 

conclusion is described in section VI.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
II. SUPPORT VECTOR REGRESSION (SVR) 

The data is mapped into higher dimensional feature spaces 

using kernel-based techniques with the expectation that 

perhaps the data are linearly segregated or have a better 

structure in the higher dimensional spaces. 

The best-known member of Kernel-based techniques is 

SVMs, which are an extended version to the nonlinear model 

of the generalized portrait algorithm has the capability to 

either categorized data input or identifying complicated 

interactions in data input. SVR refers SVMs that are used for 

function approximation and forecasting meanwhile SVM 

dealing with the problems of classification is just termed for 

vector classification (SVC) supporter. SVC is transformed to 

SVR with only a few slight alterations. As a result, SVM can 

be developed into SVR, using statistical learning theory-

based, as an effective function approximation technique [27].  

Using the data set provided, consider the following: 

     1 1, ,..... , ,...... , ,

1, 2,3,...,

k k m mx y x y x y
D

m N

  
  

  
 (1) 

Where, xmЄ Rn signifies the mth component in an n -

dimensional vector input, ymЄ R represent the recorded time 

step m response values with N-observation total number. The 

following expression is linear SVR estimation function: 

( ) , ( )m mf x W x b   (2) 

 

where b and W are the regression function intercept and 

weight vector respectively, 
my  denotes the output model 

approximation at time phase, m. meanwhile the vector inner 

product of the indicators is denoted by , mW x  . SVR 

approach uses Kernel trick by adding the Kernel function W 

in order to facilitate nonlinear modelling ( )mx  that is a 

non-linear projection from the space of input to a space of 

high-dimensional feature [28]. Hence, the SVR estimation 

function has been written in the following form:  

 
FIGURE 1.  Ontario electricity market from 11.02.2020 to 17.02.2020.     

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3129449, IEEE Access

 

VOLUME XX, 2017 1 

( ) , ( )m mm
y f x W x b    (3) 

The aim of the SVR approach is to find a function that 

diverges from ym by no more than ε for each data point (m 

=1, 2... N), meanwhile W is as flat as it can be. As a result, 

for improved generalization performance and to guarantee 

that W is as flat as it can be, it is necessary to minimize the 

norm of vector W, which calculates the flatness of the 

function as defined by Eq. (4): 

21
( )

2
SVRJ W w  (4) 

under the condition that all residuals have a less than epsilon 

value: 

: m mk y y     (5) 

The SVR is oblivious to minor errors, and it penalizes if 

exceed the ε value. In SVR, this role is accomplished by 

using ε-insensitive loss function as defined in Eq (6). 

0,

,

m m

m m

m m

if y y
y y

y y otherwise





   
   

   

 (6) 

If the forecasted value is inside the ε– insensitive tube, the 

measured loss is equal to zero, according to the ε-insensitive 

loss function. When the ε-insensitive loss function is 

considered, the objective function recognized as the 

regularized risk function is obtained. Hence, in SVR, the task 

is to minimize the next regular risk function by 

approximating the value threshold (b) and vector weight (W): 

2

1

1
minimize ( ) ( , )

2

N

m m

m

J
R J y y w

N 


   (7) 

where the trade-off between model flatness and the penalty 

levied on forecasted values that fall beyond the ε– insensitive 

tube is established by J as a positive constant regularization 

parameter. Since the parameter dictates the degree of 

tolerable errors (accuracy) in SVR, the regularization 

parameter (J) defines the balance between efficiency and 

generalization capability[29]. At this point, it is likely that no 

SVR approximation function can find a way to fulfill the 

constraints for any data point (m =1, 2... N), so the constraint 

that has feasible values are not assured. In order to contend 

with other infeasible restrictions, the two slack variables 

( ,m m  
) as seen in graphical illustration of Figure 2 

that reflect the distance from real values to the corresponding 

boundary values of ε– insensitive for each data point.  

Even though this solution resembles the SVC definition of 

soft margin, the key distinction lies in the slack variables 

used. For each data point, SVR requires assigning two slack 

variables ( ,m m  
), while in SVC one slack variable 

( m ) is allocated for every data point. Incorporating two 

slack variables yields the primal formula that must be 

optimized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2

* *

1

minimize ( , , )
2

N

m m m m

m

wJ
R W

N
   



  

S.t. 

(8) 

: m mmk y y       (9) 

     
*: m mmk y y       (10) 

      
*: , 0m mk     (11) 

 

The parameter (ⱴ) is substituted parameter ε is deployed to 

control the amount of support vectors and training errors 

inside the spectrum of [0, 1] to enhance SVR output 

 

 

 

(Ym , Ȳm )

Loss ε (Ym , Ȳm )

(Ym - Ȳm )
 

FIGURE 2. The ε-insensitive loss function in SVR    
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precision. The primal formula is converted into the following 

formulation after swapping (ε) with (ⱴ): 

 
2

* *

1

1
minimize ( , , , ) (( . ) ( ))

2

N

m m m m

k

w
R W R

N
      



     

S.t. 

(12) 

: m mmk y y       (13) 

*: m mmk y y       (14) 

     
*: , 0m mk     (15) 

The primal Lagrangian form as developed by Eq. (16) is 

utilized to address this constrained optimization problem 

(minimizing the primal formula). 
 

 

 

 

 

 

 

 

Where Lagrangian multipliers is referred to 
* *, , , ( )m m m mand     . 

The primal Lagrongian type saddle point is fined which 

minimizes the primal variables ( ,m m  
), (b) and (W) and, 

maximize over the Lagrangian multipliers  
* *( , ), ( , ) ( )m m m m and     . Therefore, the Lagrangian 

form derivations are set to zero for the primary variables, 

which provides the complementarity criteria for the 

following Karush-Kuhn-Tucker (KKT) [30]. Thus, the 

derivatives of Lagrangian form with respect to the primal 

variables are set to zero, which yields the following Karush-

Kuhn-Tucker (KKT) complementarity conditions: 
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1
0 ( ) ( )

NSVM
k k kK

L
W x

W
  




   


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1
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NSVM
k kK

L
J
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


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
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1
0 ( ) 0SVM

N

m mm

L

W
 




   


  (19) 

* *0 0,

1,2,...,

SVM
m m

L J

W N

m N

 

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


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As the problem formulation meets a constraint and convex, 

dual Lagrangian solution is determined for the cost of 

optimal solution to the primary problem, regardless of the 

fact that primal and dual Lagrangian optimal values must be 

the same, and their disparity is regarded as gap of duality. 

The development of Lagrangian function from the primal 

function using two non-negative Lagrange multipliers (αm, 

α*
m) for each observation (xm). in order to obtain the dual 

formula. After that, by plugging Eqs. (17) – (20) into Eq (16) 

dual Lagrangian is calculated. As a result, the dual formula, 

as formulated as follows, should be maximized: 
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1

( ) 0
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m m
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Where the two vectors xk and xj of the inner product ( )mx  

and ( )jx  in the feature space respectively is represent by 

( , ) ( ) ( )T

kj m j m jK k x x x x    , defined as the Kernel 

function that has to fulfill the condition of Mercer. Kernel 

matrix has only non-negative Eigen values which defines by 

positive semi-definite known as the Mercer’s theorem. The 

problem of optimization is transformed to the convex 

optimization problem by adding positive definite kernel such 

that the single solution is guaranteed. There are generally 

several kernels in SVM models which can be used. The 

linear function, polynomial function, Gaussian RBF (radial 

basis function), exponential RBF, and sigmoid function of 

the Kernel functions are most often used. 

 Linear Kernel function 

A linear kernel described by an inner product < ,m jx x  > as 

shown below is the simplistic kernel function: 

0( , ) T

mj m j m jK k x x ax x c    (25) 

where, optional constant value represents by c0.  

 Polynomial Kernel function 

A kernel function that is non-stationary well-known as 

polynomial kernel. The polynomial kernel function, as 

defined in Eq. (26), is well adapted for problems involving 

normalized input data.  
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where, the adjustable parameters for the function Kernel are 

represented as c0, the constant term expression, a is the slope, 

and d is the degree of the polynomial. 

 Gaussian RBF (radial basis function) 

Gaussian RBF is given in following equation: 
2

2
( , ) exp( )

2

m j

mj m j

x x
K k x x




    (27) 

Where constant parameter is defined by γ, instead the 

implementation of Gaussian RBF is as follows: 
2

( , ) exp( )mj m j m jK k x x x x     (28) 

where, the parameter that can be adjusted is expressed as ∂, 

does a substantial contribution in the Gaussian RBF 

efficiency. The Gaussian RBF is linear and the projection of 

higher-dimensional begins to lose its power of the non-linear 

form for the overlook of this adjustable parameter. 

Furthermore, if the parameter is underestimated, the 

Gaussian RBF regularization efficiency begins to be lost, and 

the determination boundary for the training data set will be 

extremely vulnerable to noise. 

 Exponential RBF 

As formulated by Eq. (29), the exponential kernel function is 

very close to the Gaussian RBF, with the square of the norm 

omitted.  

 

( , ) exp( )mj m j m jK k x x x x     (29) 

 Hyperbolic Tangent Kernel function 

The function of Hyperbolic Tangent Kernel is an ANNs-

derived sigmoid function. The Hyperbolic Tangent Kernel 

function can be written as the MLP kernel function since the 

bipolar sigmoid function is utilized as an activation function 

for artificial neurons. In general, SVM models are usually 

closely linked to ANNs, and an SVM model that uses a 

function of the MLP Kernel is analogous to a perceptron 

ANN with two-layer. The use of an MLP kernel function in 

SVM is a type of training for ANNs that allows unknown 

parameters to be acquired by resolving a quadratic 

programming problem with linear constraints instead of by 

solving a non-convex, uncompromising optimization 

problem, such as in ANNs. Furthermore, MLP Kernel 

function as formulated by Eq. (30) indicates satisfactory 

efficiency in operation even though it is only conditionally 

optimistic. 

0( , ) tanh( )T

mj m j m jK k x x ax x c    (30) 

Where, Kernel function adjustable parameters is in form of c0 

and a expression. Generally, (data dimension)-1 is standard 

value for adjusting a. 

The regression parameter W can no longer specifically be 

determined according to the non-linear mapping of Kernel 

functions in feature space. Eq. (21) considers as the 

maximization problem formulation that is in a form quadratic 

programming (QP) problem. The universal solution of two 

non-negative Lagrange multipliers (αk, α*
k) is guaranteed by 

means of a quadratic problem of programming for each data 

set (k=1, 2, …N). The spares model is derived from the data 

point where the pair of non-negative Lagrange multipliers 

(αkα*
k = 0) is vanished while the support vector is a data point 

that does not disappear the pair of non-negative Lagrange 

multipliers (
* 0k k   ). The QP problem only desires to be 

determined for the support vectors in the sparse model (αkα*
k 

= 0). As a result, the regression hyperplane optimum ideal 

weight vector is determined in the following equation:  

*

1
( ) ( )

N

m m mm
W x  


   (31) 

And the regression hyperplane bias b is determined so that 

each of the support vectors fulfill the following requirement.  

0m my y     (32) 

Finally, it is possible to express the regression function in the 

following way: 

*

1
( ) ( ) ( , )

N

m m mm m
y x k x x b 


    (33) 

III. BACKTRACKING SEARCH ALGORITHM 

BSA is a newly proposed evolutionary algorithm with a 

straightforward structure. However, because of its large 

potential in solving multimodal functions, that allows easy 

adjustments to various numerical optimization problems. 

With the usage of one control parameter and two advanced 

crossover and mutation operators, the problem search space 

is explored by harmonizing exploitation of improved 

findings. For the purpose of establishing a trial population, it 

employs two advanced crossover and mutation operators. 

These operators are unique and very distinct from the 

crossover and mutation processes that have been outlined by 

other evolutionary approaches (e.g. GA and DE). The 

strategies of the BSA to build trial populations and control 

the space boundaries and to adjust the search-direction matrix 

amplitude offer effective capabilities for exploration and 

exploitation. 

In order to avoid the shortcomings of metaheuristic 

approaches, BSA is designed (for example, over-sensitivity 

and control parameters to initial values such as premature 

convergence and time-consuming computation) as it only has 

a single control parameter which is not too sensorial to the 

primary value of the parameters. When creating a trial 

population, it can also use the memory it possesses to draw 

on the experiences of previous generations. For the usage in 

producing the search-direction matrix, it specifically stores a 

population which is selected randomly from the earlier 

generations in its memory. In comparison to other well-

known evolutionary approaches, statistical analysis in [31] 

shows that BSA is a viable optimization strategy for 

addressing high multimodal optimization benchmarks. 

Various stages for BSA algorithm are presented in Fig. 3. 
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FIGURE 3. BSA optimization procedure.  
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IV. DESIGN OF INPUT VECTOR FOR EFP 

The relationship between energy price and demand in 

previous hours exemplifies in time series characteristics and 

spreads over hourly intervals in the competitive energy 

market. In addition, electricity price is a function of the 

demanded electrical energy. The prediction of the prices of 

electrical energy in time t relies, not only on the demand of 

electricity in time t, but also the values of electricity demand 

in past and even past values which are set forth as follows: 

 

 

 

 

 

Where HOEP (t) and HOED (t) express the hourly Ontario 

electricity price and hourly Ontario electricity demand at 

time t whilst they are estimated to be a time series with t 

interval, NLHOEP displays the number of lag orders for the 

electricity price and equivalently NLHOED indicates the 

demand of electricity in lagging order.   

The goal of this study is the employment of SVR-BSA 

technique to forecast hourly Ontario electricity price (HOEP) 

of the Ontario market. The required input data HOED and 

HOEP for the year of 2020 are obtained from [25]. Equation 

(35) is applied for the normalization of dependent and 

independent variable since the past data has a variable range. 

Normalizing a particular data requires converting the 

collected data from different scales to a single estimated 

scale, which is generally done before data processing. 

1
ZZ

ZtZ
tZ 






)min()max(

)min()(
)(

__

 
(35) 

Where Z  is expressed the normalized data, Z represents the 

data that to be normalized and t represented the hourly 

interval.  

To propose the electricity price forecasting model, in this 

research exogenous variables (NLHOEP = NLHOED = 168) of 

one week with one hour lagged values are taken where the 

total number of available exogenous variables are 336. The 

machine learning algorithms with too many features slow 

down the learning process that resulting in poor performance 

and over fitting the training data. Consequently, only the 

features that have significant effect on the output, (in 

electricity price forecasting procedure) should be provided to 

the algorithm.  

For the process of machine learning and statistics algorithm, 

feature (predictors or variable) selection can be termed as 

attribute selection where variable subset or variable selection 

is a procedure of selection of a subset of related features in 

model development. The aim of applying feature selection 

approaches is three-fold [32].  

1. To improve the predictors prediction performance 

by decreasing over fitting that is formally reduction 

of variance.  

2. To provide a fast and more cost-effective method to 

build the model.  

3.  Presenting a simplified model which is easier to 

interpret. 

The mutual information (MI) approach has been widely used 

in [33] for forecasting electricity market prices. The lagged 

values of the candidate input, which includes load demand, 

price, and other factors given by the electrical market, arise a 

difficulty for this approach. Hence, it is difficult to achieve 

the probability distribution for both individual and joint 

candidate. 

 

 

 

 

 

It should also be remembered that the electricity price is a 

signal that changes over time. As a result, the candidate 

input's long history is irrelevant to utilize since market 

circumstances change all the time. Thus, it can provide 

inaccurate or mislead price forecasting due to insufficiency 

of the information [34]. 

The basic objective of mutual information is to find out 

interrelation within two random variable X and Y where, one 

variable is random in nature and the other variable 

information is gathered by using the previous variable 

information [35]. The mutual information will be zero if 

there is no information of one variable X with respect to Y 

and vice versa. As a result, both random variables are 

independent in nature. Mutual information with a high value 

can be attained if variable Y is a deterministic function of 

variable X as same as variable X is a deterministic function 

of variable Y. the relationship within CE and MI is showed 

in Figure 4. In case of large MI, it is found that the variable X 

and Y are tightly dependent and linked to each other.  
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CE(Y|X)

H(X) H(Y)

CE(X|Y)

H(X,Y) = H(X) + CE(Y|X) = H(Y) + CE(X|Y)

 
FIGURE 4. Graphical representation between mutual information and 
conditional entropy. 
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Conditional entropy is also observed in addition to entropy. 

Conditional entropy is the measurement of the first random 

variable’s average uncertainty after the second random 

variable. To attain the mutual information among X, Y and 

MI(X,Y)  a joint probability distribution function PXY(X,Y) 

is used since the entropy of the random variable is complexly 

linked to the theme of mutual information.    

Let X={HOEP(t-1), HOEP(t-2), HOEP(t-3),…, HOEP(t-

NLHOEP),HOED(t), HOED(t-1), HOED(t-2), HOED(t-3),…, 

HOED(t-NLHOED)} as a vector of all input features and 

Y=HOEP(t) as the target or output feature. In this study the 

demand of electricity and price are expressed by HOED(t) 

and HOEP(t) respectively. The computational equation of the 

mutual information (MI) between each individual input and 

output feature is shown in Fig. 3. For instance, the mutual 

information between the first lagged value of electricity 

demand and electricity price is calculated by MI {HOEP (t-

1); HOED (t)}. After that, depending on the calculated value 

of MI, the input with all features is stored in descending 

order. A high MI value indicates that each input and output 

variable is highly dependent on one another. On the other 

hand, the value of MI lower than the threshold TH is deleted 

since it shows less significant on the output where a subset 

SX⊂X is formed by the residual input features.  

In the first stage of filtering out irrelevant inputs is by 

computing the mutual information between every individual 

variable of input and feature of output using proposed feature 

selection technique according to [36]. The higher mutual 

information value implies a higher input and output 

dependency. Based on the computed mutual information, the 

input features are sorted in descending order. Input features 

that have a lower value of mutual information than the 

relevancy threshold TH and have a less significant influence 

on the output are eliminated. The relevancy criterion of TH = 

0.46 is used to filter out redundant features. A total of 68 

features have been determined to be the most relevant 

attributes after the filtering process was completed.  

Feature selection approach is the most suitable approach for 

identifying variable of input. Through feature selection, the 

accomplishments of the final predictor variables (HOED and 

HOEP in preceding hours) in the best SVM models were 

assessed. It is worth noting that these factors were discovered 

by developing and manipulating multiple models with 

various input variables. While the model is being built, the 

embedded method is figured out which is the subset of 

features and has contributed the most to its accuracy. The 

feature selection and training processes in embedded 

methods are indistinguishable because feature selection and 

model construction is carried out simultaneously. The major 

downside of these methods is that the chosen features are 

responsive to the layout of the underlying model so that 

embedded methods are typically unique to their learning 

algorithms, even though the embedded methods are less 

computationally intensive than wrapper methods. 

Classification trees, random woodlands and regularization 

approaches are multiple type of embedded system. The most 

common types of embedded feature selection methods are 

regularization approaches often known as penalization 

approaches. The penalization approaches apply more 

constraint to the model building procedure by penalizing the 

model for higher complexity caused the model bias toward 

the simplicity.  

An embedded technique is developed for feature selection 

using SVMs. The reason for using this strategy is that 

through optimizing the Kerenl function, the classification 

performance can be improved by avoiding the features which 

influence on classifier’s generalization. The main concept is 

to utilize a gradient descent approximation for Kernel 

optimization and feature deletion to penalize the usage of 

features in the dual formulation of SVMs [37]. The proposed 

approach combines the parameters of generalization (using 

the2-norm), goodness of fit, and feature selection (using a0-

‘‘norm” estimation) to identify the most appropriate RBF-

type kernel function for each problem with a minimum 

dimension.    

In the proposed technique, the anisotropic Gaussian Kernel 

function is utilized as follows: 
2

2
1

( )
( , ) exp

2

n
ij sj

i s

j j

A A
K A A




   

(36) 

Where, 1 2[ , ,....., ]n      is the kernel shape for n 

number of variables. Different widths in various dimensions 

are considered to find out the importance of feature j . For 

a large value of j , the importance of j is less while small 

value of j   increases the importance of j. 

To convert the feature selection process into a minimization 

of problem 1 2[1 / ,1 / ,.....,1 / ]n     the changing of 

variables as follows:   
2

( , , ) exp( )
2

i s

i s

A A
K A A

 


  
  (37) 

Where, * indicates the component wise vector product 

operator.  

The proposed method incorporates the feature selection in 

the dual formulation of SVMs. In the formulation process, a 

penalization function ( )f   based on “0” norm estimation 

and modification of the Gaussian Kernel applying anisotropic 

width vector as a decision variable. The penalization of the 

feature should be negative as the dual SVM is a 

maximization problem. The formulation of SVMs for feature 

selection is initially proposed as follows: 
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Since the equation 38 is a non-convex, an iterative algorithm 

is developed as an estimation of this formulation. Thus, a 

two-step methodology is proposed where traditional 

formulation of SVM for a fixed kernel width   is 

determined in the first step.  
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In the second step, for a certain value of  , the algorithm is 

solved according to the following equation: 

2min ( ) ( , , ) ( )

,

0, 1,..........

i s i s i s

j

F Y Y K A A C f
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V j n

      

 

 (40) 

Among the 68 selected candidates, 30 features with most 

influential effect on electricity price are selected by 

developing KP- SVM algorithms as inputs for the next 

forecasting process. The optimal subsets of input variables 

selected by KP- SVM approach are presented as follows:  

HOED(t), HOEP(t-1), HOED(t-1), HOEP(t-2), HOED(t-2), 

HOEP(t-3), HOEP(t-23), HOEP(t-24), HOED(t-24), 

HOEP(t-25), HOED(t-25, HOEP(t-48), HOEP(t-49), 

HOEP(t-72), HOEP(t-73), HOED(t-73), HOEP(t-96), 

HOEP(t-97) , HOED(t-97) , HOEP(t-121) , HOED(t-121) , 

HOEP(t-144) ,HOED(t-144), HOEP(t-145), HOEP(t-168), 

HOED(t-168), HOEP(t-169), HOEP(t-192), HOEP(t-193),  

HOEP(t-337 ) 
V. NUMERICAL RESULTS 

The electricity price forecasting process and development 

were coded in MATLAB (R2021b) and run on a personal 

computer, with a corei7 (4 generation processor of 2.70 GHz 

clock speed) and 8GB RAM. In the next process, SVR-BSA 

has been employed into this study to enhance the precision of 

EPF in Ontario mainland which considered as one of the 

most unstable and volatile market for electricity. The most 

effective input variables are selected by proposed feature 

selection method by developing MI-SVM as an input for 

electricity price prediction. In addition, SVR-BSA is 

compared to different machine learning algorithms for the 

short-term of EPF accuracy purposes. The process for the 

proposed short-term electricity price forecasting (EPF) 

methodology is displayed in Figure. 5. Sequential steps to 

acquire the suitable models for short-term EP forecasting are 

implementing as follows: 

Step 1: To establish the relationship between the electricity 

price and demands, an hourly interval-based time series can 

be demonstrated that may be seen in a dynamic electricity 

market. Literally, electricity price is a function of the 

electricity demand that relies on the present price of 

electricity and demand value for hour t and hour t-1 as 

specified at Eq. (34). The specific data from the Ontario 

electricity market in 2020 (HOEP and HOED) obtained using 

the suggested feature selection approach are treated as 

variables that are independent of any other variable and the 

HOEP of dependent variable is calculated. Due to seasonal 

impacts, the effectiveness of the employed approaches has 

been evaluated for EPF in various seasons by including one 

month from each season (i.e., winter (February), spring 

(May), summer (August), and autumn (November). 

Variables are divided into two categories: independent and 

dependent variables types. They are two subdivisions, with 

the first three weeks' hourly data used for design phase 

training and the last week of each month's hourly data used 

for testing phase of models created from the analysis. 

Step 2: Development of training step includes deriving 

algorithms that bind input variables with the output variables 

and in order to expedite the learning process, the formulation 

in Eq. (35) is used to normalize the input and output 

variables. A data set beyond the training data set known as 

the test data set is used to determine the predicted price. By 

using the values in the testing phase, the reliability of the 

produced model can be established. 

Step 3: For a precise prediction of the electricity price, 

SVM-BSA is deployed by minimizing the cost function 

described as follows: 

1

( ) ( )
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

   (41) 

Step 4: Various assessment parameters, such as root mean 

square error (RMSE), mean absolute percentage error 

(MAPE), and Thiel's inequality coefficient (U – statistic), 

are deployed to indicate the efficacy of prediction models: 
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FIGURE 5. The procedure of developing SVR-BSA based method for short-term electricity price forecasting (EPF). 
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Binary results [0,1] frequently generated by U-statistic with 

value of zero is represented at more precise prediction, 

meanwhile value of one is depicted an approximation that is 

as inaccurate as a naive guess. 

Because determining dependent parameters of AI-based 

methods is complex and there is no consensus on their 

optimal values, effective procedures in the literature of 

electricity price forecasting are used to characterize the 

control parameters of the simulated systems in this study. 

The parameter setting of the proposed techniques are 

summarized in Table 1.     
TABLE I 

UNITS FOR MAGNETIC PROPERTIES 

Definition of the appropriateness of the data series are which  

have been assured by the whiteness test obtained through the 

models, well-known as the Durbin-Watson test [38], after 

obtaining a confirmatory analysis. The goal of confirmatory 

analysis is to affirm the whiteness of the approximate 

residues (e(t)), that indicates the non-correlation among 

them. To generate this calculation defined by the following 

equation, the Residual Autocorrelation Function (RACF) is 

applied. RACF results vary from 0 to 1. The RACF goes 

beyond the confidence range if it varies considerably from 

zero, indicating a non-correlation (whiteness) of the residuals 

and suggesting that a significant independent variable is 

already omitted from the model under investigation. 
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(45) 

 

As shown in Tables 2 and 3, the SVR-BSA performance for 

the EPF of the Ontario region in various months for the year 

2020 are compared with multiple machine learning methods 

for the intention of further evaluation of solution 

methodology. The RACF values produced demonstrate the 

fact that the expected residuals of all models are uncorrelated 

and generated models are adequately designated the provided 

set of data. The forecasting accuracy of the employed 

approaches is ranked as SVR-BSA > SVR-PSO > SVR-CSA 

> SVR depicted at Tables 2 and 3. This ranking is based on 

multi-criteria decisions using the mean rank of the methods 

for each indicator (absolute error, RMSE, U-statistic and 

MAPE) in whole set. According to the findings from the 

comparison of studied methods for electricity market in 

Ontario region for different months in different seasons, 

SVR-BSA approach performs much better than other 

methods in terms of electricity forecasting since it has higher 

precision in terms of various indices such as U-statistic, 

MAPE (%), RMSE and absolute error. Figures 6,7,8, 9 

depicts the SVR-BSA performance for forecasting the 

electricity price in February, May, August and November 

during the training and testing phase for Ontario region in 

2020 year.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied 

methods 

Parameters setting 

SVM 

(SVR) 
RBF kernel 

∂:1/6 

C:1 

ʋ:0.5 

BSA 
Number of individuals = 100 

Control parameter (P)= 100% 

PSO 

Swarm population (Np)=100  

wmax = 0.9,wmin =0.4 

c1= c2 = 2 

CSA 

Number of nests (Np) = 100 

Probability of an alien egg (Pa) = [0, 1] 

Distribution factor (ß) = 1.5 

TABLE II 

COMPARISON BETWEEN FORECASTING ACCURACY OF STUDIED METHODS FOR EPF OF ONTARIO IN FEBRUARY AND MAY IN 2020. 
 

 

Performance Indexes 
February May 

SVM SVM-CSA SVM-PSO SVM-BSA SVM SVM-CSA SVM-PSO SVM-BSA 

RACF Training  0.385 0.784 0.967 0.953 0.021 0.036 0.058 0.961 

Testing  0.928 0.927 0.957 0.943 0.966 0.982 0.981 0.982 

Absolute 

error 

Training  0.971 0.913 0.897 0.884 1.644 1.456 1.277 0.819 

Testing  0.839 0.846 0.883 0.855 0.838 0.855 0.851 0.841 

RMSE Training  1.573 1.029 0.911 0.905 10.13 6.808 5.207 0.833 

Testing  0.872 0.988 0.899 0.884 0.848 0.856 0.856 0.832 

U-statistic Training  0.042 0.028 0.024 0.024 0.216 0.139 0.104 0.016 

Testing  0.024 0.024 0.025 0.024 0.025 0.025 0.025 0.022 

MAPE (%) Training  6.563 6.353 6.343 6.252 7.763 7.681 7.633 7.077 

Testing  5.789 5.784 5.767 5.716 6.322 6.279 6.269 6.175 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3129449, IEEE Access

 

VOLUME XX, 2017 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III 

COMPARISON BETWEEN FORECASTING ACCURACY OF STUDIED METHODS FOR EPF OF ONTARIO IN AUGUST AND NOVEMBER 2020. 

 

Performance Indexes 
August November 

SVM SVM-

CSA 

SVM-PSO SVM-

BSA 

SVM SVM-

CSA 

SVM-PSO SVM-

BSA 

RACF Training  0.232 0.475 0.487 0.943 0.003 0.004 0.022 0.058 

Testing  0.925 0.965 0.959 0.963 0.726 0.917 0.962 0.965 

Absolute 

error 

Training  0.934 0.752 0.749 0.663 4.793 3.963 1.911 1.281 

Testing  0.683 0.671 0.668 0.672 1.141 0.957 0.953 0.921 

RMSE Training  2 1.108 1.089 0.069 49.834 42.728 11.221 5.185 

Testing  0.715 0.683 0.682 0.671 1.306 0.983 0.971 0.953 

U-statistic Training  0.041 0.023 0.022 0.014 0.636 0.521 0.103 0.044 

Testing  0.019 0.018 0.018 0.018 0.051 0.039 0.038 0.037 

MAPE (%) Training  4.816 4.196 4.185 3.829 6.372 5.373 5.058 4.889 

 Testing  4.349 4.241 4.228 4.219 4.822 4.236 4.225 3.439 

 

 
 

 
FIGURE 6. The performance of SVM(SVR)-BSA during training of design phase and testing phase and its corresponding error for EPF of Ontario in February 
2020.  

 

 
 

 

FIGURE 7. The performance of SVM(SVR)-BSA during training of design phase and testing phase and its corresponding error for EPF of Ontario in May 
2020.  
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Computational time of the applied method with different 

methods has been listed in table IV 
TABLE IV 

 COMPUTATIONAL TIME OF DIFFERENT METHODS 

 

months 

Computational time of applied 

methods(s) 

SVM-CSA SVM-PSO 
SVM-

BSA 

February 6105.5 5106.4 300.2451 

May 4001.2 4941.3 72.5930 

August 3589.4 1147.0 87.7186 

November 2698.7 1945.3 58.9205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validity of mathematical models developed by SVM (SVR)- 

BSA is verified through application of different statistical 

methods as external validation. Following attributes are 

recommended to assess the performance of the developed 

model [39]:  

i- For a model that generates |R| > 0.8, a strong 

correlation emerges between the predicted and 

observed values. 

ii- For a model that generates 0.2 < |R| < 0.8, a 

correlation emerges between the predicted and 

observed values.  

 
 

 
FIGURE 8. The performance of SVM(SVR)-BSA during training of design phase and testing phase and its corresponding error for EPF of Ontario in August 
2020.  

 
 

 
FIGURE 9. The performance of SVM(SVR)-BSA during training of design phase and testing phase and its corresponding error for EPF of Ontario in 

November 2020. 
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iii- For a model that generates |R| < 0.2, a weak 

correlation emerges between the predicted and 

observed values.  

Various months of Ontario mainland are being considered for 

computing the statistical factors of the forecasting model. 

Table V shows that the developed model meets all of the 

statistical requirements. For de-regulated electricity market, 

the findings specify that the created model is a good potential 

and enthusiastic approach to be executed for forecasting the 

future electricity price. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. CONCLUSION 

In this research, SVR-BSA model for day ahead electricity 

price prediction in the Ontario electricity market based on 

historical data i.e. HOEP (t) and HOED (t) are satisfactorily 

developed. 

 

 A key element of machine learning algorithm is 

feature selection. Proper feature selection, which 

includes selecting significant data from a large pool 

of incoherent and redundant information, can result 

in high prediction accuracy. A hybrid feature 

selection technique, with the combination of SVM 

and mutual information techniques is proposed in 

this work that selects optimal subset of features 

among a pool of 68 features and set as input for the 

prediction. The proposed method shows the 

robustness with the proficient suitable features 

selection and removing the redundant and irrelevant 

data. 

 

 

 

 Results validate the robustness of developed model 

in Ontario electricity market, as it ensures a higher 

forecasting legibility and simplicity for electricity 

price forecasting in term of, MAPE = 5.72%, 

6.17%, 4.22% and 3.44% in February, May, 

August, and November respectively with respect to 

other artificial intelligence (AI) models.  

 It is attained that the generated models by SVR are 

sufficiently able to predict the short-term EP with 

low complexity using a simple computer. For the 

forthcoming sustainable and smart grid 

technologies, the proposed technique has a great 

advantage in electricity price forecasting in any 

competitive and deregulated power market. Hence, 

the proposed technique can be termed as an 

intelligent technique in energy market for the 

electricity suppliers in addition to the researchers 

plainly. 

 

 

TABLE V 

 STATISTICAL FACTORS OF THE SVM(SVR)-BSA MODEL FOR EPF OF ONTARIO IN FEBRUARY, MAY, AUGUST AND NOVEMBER 2020. 

Item Formula Condition 
SVR-BSA-based Method 

February May August November 

1 R  0.8<R0 0.9988 0.9936 0.9854 0.9997 

2 
 

1

2

1

n

i ii

n

ii

h t
K

h










 0.85<k<1.15 0.9977 0.9986 0.9964 0.9972 

3 
 

' 1

2

1

n

i ii

n

ii

h t
K

t










 0.85<k’<1.15 1.0032 1.0012 1.0022 1.0007 

4 
2 2

2

oR R
m

R


  │m│<0.1 -0.0032 -0.0035 -0.0041 -0.0023 

5 
'

2 2

2

O
R R

n
R


  │n│<0.1 -0.0032 -0.0037 -0.0042 -0.0023 

6  2 2 21m oR R R R     0.5<Rm 0.9973 0.9922 0.9866 0.9981 

Where 

 

 
2

2 1

2
_

1

1 ,

n o

i i oi

o i i

n

i ii

t h
R h k t

t t






   

 
 

 





 
      0.8<R0

2<1 0.9997 1.0000 1.0000 0.9995 

 
'

2

2 '1

2
_

1

1 ,
O

n o

i i oi

i i

n

i ii

h t
R t K h

h h






   

 
 

 





 

0.8<R0’ 
2<1 0.9997 1.0000 1.0000 0.9995 
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