327 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Overview of Dynamic Facility Layout Planning as a Sustainability Strategy

    Full text link
    [EN] The facility layout design problem is significantly relevant within the business operations strategies framework and has emerged as an alternate strategy towards supply chain sustainability. However, its wide coverage in the scientific literature has focused mainly on the static planning approach and disregarded the dynamic approach, which is very useful in real-world applications. In this context, the present article offers a literature review of the dynamic facility layout problem (DFLP). First, a taxonomy of the reviewed papers is proposed based on the problem formulation current trends (related to the problem type, planning phase, planning approach, number of facilities, number of floors, number of departments, space consideration, department shape, department dimensions, department area, and materials handling configuration); the mathematical modeling approach (regarding the type of model, type of objective function, type of constraints, nature of market demand, type of data, and distance metric), and the considered solution approach. Then, the extent to which recent research into DFLP has contributed to supply chain sustainability by addressing its three performance dimensions (economic, environmental, social) is described. Finally, some future research guidelines are provided.This research was funded by the Spanish Ministry of Science, Innovation and Universities Project CADS4.0, grant number RTI2018-101344-B-I00; and the Valencian Community ERDF Programme 2014-2020, grant number IDIFEDER/2018/025.PĂ©rez-Gosende, P.; Mula, J.; DĂ­az-Madroñero Boluda, FM. (2020). Overview of Dynamic Facility Layout Planning as a Sustainability Strategy. Sustainability. 12(19):1-16. https://doi.org/10.3390/su12198277S1161219Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93-103. doi:10.1016/j.jmsy.2015.09.003Kheirkhah, A., Navidi, H., & Messi Bidgoli, M. (2015). Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Transactions on Engineering Management, 62(3), 396-410. doi:10.1109/tem.2015.2437195Altuntas, S., & Selim, H. (2012). Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 39(1), 3-13. doi:10.1016/j.eswa.2011.06.045Ku, M.-Y., Hu, M. H., & Wang, M.-J. (2011). Simulated annealing based parallel genetic algorithm for facility layout problem. International Journal of Production Research, 49(6), 1801-1812. doi:10.1080/00207541003645789Navidi, H., Bashiri, M., & Messi Bidgoli, M. (2012). A heuristic approach on the facility layout problem based on game theory. International Journal of Production Research, 50(6), 1512-1527. doi:10.1080/00207543.2010.550638Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. doi:10.1007/s00170-017-0895-8Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Carter, C. R., & Washispack, S. (2018). Mapping the Path Forward for Sustainable Supply Chain Management: A Review of Reviews. Journal of Business Logistics, 39(4), 242-247. doi:10.1111/jbl.12196Roy, V., Schoenherr, T., & Charan, P. (2018). The thematic landscape of literature in sustainable supply chain management (SSCM). International Journal of Operations & Production Management, 38(4), 1091-1124. doi:10.1108/ijopm-05-2017-0260Barbosa-PĂłvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. doi:10.1016/j.ejor.2017.10.036Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. International Journal of Business Innovation and Research, 7(2), 143. doi:10.1504/ijbir.2013.052576SĂĄnchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & RamĂ­rez-Barreto, M. E. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies. Sustainability, 12(17), 6972. doi:10.3390/su12176972Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. doi:10.1016/j.jclepro.2016.04.150Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. doi:10.1016/j.psep.2018.05.009Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. Production and Operations Management, 27(4), 756-773. doi:10.1111/poms.12822Roy, S., Das, M., Ali, S. M., Raihan, A. S., Paul, S. K., & Kabir, G. (2020). Evaluating strategies for environmental sustainability in a supply chain of an emerging economy. Journal of Cleaner Production, 262, 121389. doi:10.1016/j.jclepro.2020.121389Morais, D. O. C., & Silvestre, B. S. (2018). Advancing social sustainability in supply chain management: Lessons from multiple case studies in an emerging economy. Journal of Cleaner Production, 199, 222-235. doi:10.1016/j.jclepro.2018.07.097Stindt, D. (2017). A generic planning approach for sustainable supply chain management - How to integrate concepts and methods to address the issues of sustainability? Journal of Cleaner Production, 153, 146-163. doi:10.1016/j.jclepro.2017.03.126MOSLEMIPOUR, G., LEE, T. S., & LOONG, Y. T. (2017). Performance Analysis of Intelligent Robust Facility Layout Design. Chinese Journal of Mechanical Engineering, 30(2), 407-418. doi:10.1007/s10033-017-0073-9Emami, S., & S. Nookabadi, A. (2013). Managing a new multi-objective model for the dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2215-2228. doi:10.1007/s00170-013-4820-5Al Hawarneh, A., Bendak, S., & Ghanim, F. (2019). Dynamic facilities planning model for large scale construction projects. Automation in Construction, 98, 72-89. doi:10.1016/j.autcon.2018.11.021Pournaderi, N., Ghezavati, V. R., & Mozafari, M. (2019). Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Applied Sciences, 1(8). doi:10.1007/s42452-019-0865-xTuranoğlu, B., & Akkaya, G. (2018). A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Systems with Applications, 98, 93-104. doi:10.1016/j.eswa.2018.01.011Moslemipour, G., Lee, T. S., & Rilling, D. (2011). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27. doi:10.1007/s00170-011-3614-xTebaldi, L., Bigliardi, B., & Bottani, E. (2018). Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability, 10(11), 3946. doi:10.3390/su10113946Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. doi:10.1016/j.resconrec.2018.10.009Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi:10.1016/j.jclepro.2019.119869Boar, A., Bastida, R., & Marimon, F. (2020). A Systematic Literature Review. Relationships between the Sharing Economy, Sustainability and Sustainable Development Goals. Sustainability, 12(17), 6744. doi:10.3390/su12176744Novais, L., Maqueira, J. M., & Ortiz-Bas, Á. (2019). A systematic literature review of cloud computing use in supply chain integration. Computers & Industrial Engineering, 129, 296-314. doi:10.1016/j.cie.2019.01.056Masi, D., Day, S., & Godsell, J. (2017). Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability, 9(9), 1602. doi:10.3390/su9091602Zavala-AlcĂ­var, A., Verdecho, M.-J., & Alfaro-Saiz, J.-J. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability, 12(16), 6300. doi:10.3390/su12166300Li, K., Rollins, J., & Yan, E. (2017). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20. doi:10.1007/s11192-017-2622-5Kulturel-Konak, S., & Konak, A. (2014). A large-scale hybrid simulated annealing algorithm for cyclic facility layout problems. Engineering Optimization, 47(7), 963-978. doi:10.1080/0305215x.2014.933825Madhusudanan Pillai, V., Hunagund, I. B., & Krishnan, K. K. (2011). Design of robust layout for Dynamic Plant Layout Problems. Computers & Industrial Engineering, 61(3), 813-823. doi:10.1016/j.cie.2011.05.014Peng, Y., Zeng, T., Fan, L., Han, Y., & Xia, B. (2018). An Improved Genetic Algorithm Based Robust Approach for Stochastic Dynamic Facility Layout Problem. Discrete Dynamics in Nature and Society, 2018, 1-8. doi:10.1155/2018/1529058McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171-182. doi:10.1016/j.ejor.2009.02.028Yang, C.-L., Chuang, S.-P., & Hsu, T.-S. (2010). A genetic algorithm for dynamic facility planning in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52(1-4), 303-309. doi:10.1007/s00170-010-2733-0Abedzadeh, M., Mazinani, M., Moradinasab, N., & Roghanian, E. (2012). Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 65(1-4), 197-211. doi:10.1007/s00170-012-4160-xGuan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Computers & Industrial Engineering, 63(1), 98-108. doi:10.1016/j.cie.2012.01.016Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279-4293. doi:10.1080/00207543.2011.613863Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39(11), 2642-2658. doi:10.1016/j.cor.2012.01.012McKendall, A. R., & Liu, W.-H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878. doi:10.1080/00207543.2010.545446Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm optimisation for dynamic facility layout problem. International Journal of Production Research, 51(14), 4325-4335. doi:10.1080/00207543.2013.774486Kaveh, M., Dalfard, V. M., & Amiri, S. (2013). A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Computing and Applications, 24(5), 1179-1190. doi:10.1007/s00521-013-1339-5KIA, R., JAVADIAN, N., PAYDAR, M. M., & SAIDI-MEHRABAD, M. (2013). A SIMULATED ANNEALING FOR INTRA-CELL LAYOUT DESIGN OF DYNAMIC CELLULAR MANUFACTURING SYSTEMS WITH ROUTE SELECTION, PURCHASING MACHINES AND CELL RECONFIGURATION. Asia-Pacific Journal of Operational Research, 30(04), 1350004. doi:10.1142/s0217595913500048Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5-8), 929-943. doi:10.1007/s00170-012-4229-6Samarghandi, H., Taabayan, P., & Behroozi, M. (2013). Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2701-2715. doi:10.1007/s00170-012-4685-zYu-Hsin Chen, G. (2013). A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems. International Journal of Production Economics, 142(2), 362-371. doi:10.1016/j.ijpe.2012.12.012Bozorgi, N., Abedzadeh, M., & Zeinali, M. (2014). Tabu search heuristic for efficiency of dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 689-703. doi:10.1007/s00170-014-6460-9CHEN, G. Y.-H., & LO, J.-C. (2014). DYNAMIC FACILITY LAYOUT WITH MULTI-OBJECTIVES. Asia-Pacific Journal of Operational Research, 31(04), 1450027. doi:10.1142/s0217595914500274Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7-8), 1871-1885. doi:10.1007/s00521-014-1678-xKia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218-232. doi:10.1016/j.jmsy.2013.12.005Nematian, J. (2014). A robust single row facility layout problem with fuzzy random variables. The International Journal of Advanced Manufacturing Technology, 72(1-4), 255-267. doi:10.1007/s00170-013-5564-yPourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing, 24, 457-469. doi:10.1016/j.asoc.2014.06.051Derakhshan Asl, A., & Wong, K. Y. (2015). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317-1336. doi:10.1007/s10845-015-1053-5Li, L., Li, C., Ma, H., & Tang, Y. (2015). An Optimization Method for the Remanufacturing Dynamic Facility Layout Problem with Uncertainties. Discrete Dynamics in Nature and Society, 2015, 1-11. doi:10.1155/2015/685408Ulutas, B., & Islier, A. A. (2015). Dynamic facility layout problem in footwear industry. Journal of Manufacturing Systems, 36, 55-61. doi:10.1016/j.jmsy.2015.03.004Zarea Fazlelahi, F., Pournader, M., Gharakhani, M., & Sadjadi, S. J. (2016). A robust approach to design a single facility layout plan in dynamic manufacturing environments using a permutation-based genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2264-2274. doi:10.1177/0954405415615728Hosseini, S. S., & Seifbarghy, M. (2016). A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem. RAIRO - Operations Research, 50(4-5), 869-890. doi:10.1051/ro/2016057Pourvaziri, H., & Pierreval, H. (2017). Dynamic facility layout problem based on open queuing network theory. European Journal of Operational Research, 259(2), 538-553. doi:10.1016/j.ejor.2016.11.011Tayal, A., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1-2), 489-514. doi:10.1007/s10479-016-2237-xKumar, R., & Singh, S. P. (2017). A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems. Engineering Optimization, 49(11), 1848-1867. doi:10.1080/0305215x.2016.1274205Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052-1063. doi:10.1016/j.ejor.2017.04.002Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146-157. doi:10.1016/j.ijpe.2016.03.019Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem—A general layout formulation. Computers & Operations Research, 88, 187-207. doi:10.1016/j.cor.2017.06.025Li, J., Tan, X., & Li, J. (2018). Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/6040561Vitayasak, S., & Pongcharoen, P. (2018). Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Systems with Applications, 98, 129-152. doi:10.1016/j.eswa.2018.01.005Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7(1), 109-124. doi:10.1080/21693277.2019.1602486Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. Journal of Intelligent Manufacturing, 18(2), 273-284. doi:10.1007/s10845-007-0020-1Sharma, P., & Singhal, S. (2016). Implementation of fuzzy TOPSIS methodology in selection of procedural approach for facility layout planning. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1485-1493. doi:10.1007/s00170-016-8878-8Bukchin, Y., & Tzur, M. (2014). A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. International Journal of Production Research, 52(24), 7339-7359. doi:10.1080/00207543.2014.930534Meller, R. D., Kirkizoglu, Z., & Chen, W. (2010). A new optimization model to support a bottom-up approach to facility design. Computers & Operations Research, 37(1), 42-49. doi:10.1016/j.cor.2009.03.018Feng, J., & Che, A. (2018). Novel integer linear programming models for the facility layout problem with fixed-size rectangular departments. Computers & Operations Research, 95, 163-171. doi:10.1016/j.cor.2018.03.013Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46-62. doi:10.1016/j.eswa.2017.07.049Ahmadi, A., Pishvaee, M. S., & Akbari Jokar, M. R. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. doi:10.1016/j.cie.2017.03.015Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. doi:10.1016/j.arcontrol.2007.04.001Grobelny, J., & Michalski, R. (2017). A novel version of simulated annealing based on linguistic patterns for solving facility layout problems. Knowledge-Based Systems, 124, 55-69. doi:10.1016/j.knosys.2017.03.001Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer programming model for a multi-floor facility layout. International Journal of Production Research, 51(14), 4223-4239. doi:10.1080/00207543.2012.75348

    Bacterial-foraging optimization algorithm for non-hazardous plant layouts

    Get PDF
    PresentationThe following article approaches a safe plant layout design problem based on a bacterial-foraging optimization algorithm. Our approach finds the position in the two dimensional plane for each main process unit and evaluates the possibility of secondary contention for pertinent units, in order to minimize capital costs associated to equipment loss, piping, secondary contention, and usage of area. Fire and Explosion hazard is considered as the relevant safety aspect for distribution, and it is assessed through Dow’s Fire and Explosion Index. The proposed solution approach provides an alternative to hard-optimization methods, by allowing greater flexibility in accounting for both safety and economic aspects, while providing high quality solutions in a limited computation time. The aim of our proposed solution approach is to provide support to expert decision-making during the early plant layout design steps. A case study based on an acrylic-acid production plant, which has been used by several other papers that appeared in the literature, serves the purposes of showing the appropriateness and effectiveness of the method

    Multiple order-up-to policy for mitigating bullwhip effect in supply chain network

    Get PDF
    This paper proposes a multiple order-up-to policy based inventory replenishment scheme to mitigate the bullwhip effect in a multi-stage supply chain scenario, where various transportation modes are available between the supply chain (SC) participants. The proposed policy is similar to the fixed order-up-to policy approach where replenishment decision “how much to order” is made periodically on the basis of the predecided order-up-to inventory level. In the proposed policy, optimal multiple order-up-to levels are assigned to each SC participants, which provides decision making reference point for deciding the transportation related order quantity. Subsequently, a mathematical model is established to define optimal multiple order-up-to levels for each SC participants that aims to maximize overall profit from the SC network. In parallel, the model ensures the control over supply chain pipeline inventory, high satisfaction of customer demand and enables timely utilization of available transportation modes. Findings from the various numerical datasets including stochastic customer demand and lead times validate that—the proposed optimal multiple order-up-to policy based inventory replenishment scheme can be a viable alternative for mitigating the bullwhip effect and well-coordinated SC. Moreover, determining the multiple order-up-to levels is a NP hard combinatorial optimization problem. It is found that the implementation of new emerging optimization algorithm named bacterial foraging algorithm (BFA) has presented superior optimization performances. The robustness and applicability of the BFA algorithm are further validated statistically by employing the percentage heuristic gap and two-way ANOVA analysis

    Designing a manufacturing cell system by assigning workforce

    Get PDF
    Purpose: In this paper, we have proposed a new model for designing a Cellular Manufacturing System (CMS) for minimizing the costs regarding a limited number of cells to be formed by assigning workforce. Design/methodology/approach: Pursuing mathematical approach and because the problem is NP-Hard, two meta-heuristic methods of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms have been used. A small randomly generated test problem with real-world dimensions has been solved using simulated annealing and particle swarm algorithms. Findings: The quality of the two algorithms has been compared. The results showed that PSO algorithm provides more satisfactory solutions than SA algorithm in designing a CMS under uncertainty demands regarding the workforce allocation. Originality/value: In the most of the previous research, cell production has been considered under certainty production or demand conditions, while in practice production and demand are in a dynamic situations and in the real settings, cell production problems require variables and active constraints for each different time periods to achieve better design, so modeling such a problem in dynamic structure leads to more complexity while getting more applicability. The contribution of this paper is providing a new model by considering dynamic production times and uncertainty demands in designing cells.Peer Reviewe

    A face - off - classical and heuristic - based path planning approaches

    Get PDF
    Robot path planning is a computational problem to find a valid sequence of configurations to move a robot from an initial to a final destination. Several classical and heuristic-based methods exist that can be used to solve the problem. This paper compares the performance of a classical method based on potential field, Lyapunov-based Control Scheme, with those of the standard and stepping ahead Firefly Algorithms. The performance comparison is based on the optimal path distance and time. The results show that the stepping ahead Firefly algorithm finds a shorter path in lesser duration when compared with the Lyapunov-based method. The LbCS also inherently faces the local minima problem when the start, target, and obstacle’s center coordinates are collinear. This problem is solved using the firefly algorithm where the diversification of the fireflies helps escape local minima

    The aperiodic facility layout problem with time-varying demands and an optimal master-slave solution approach

    Get PDF
    In many seasonal industries, customer demands are constantly changing over time, and accordingly the facility layout should be re-optimized in a timely manner to adapt to changing material handling patterns among manufacturing departments. This paper investigates the aperiodic facility layout problem (AFLP) that involves arranging facilities layout and re-layout aperiodically in a dynamic manufacturing environment during a given planning horizon. The AFLP is decomposed into a master problem and a combination set of static facility layout problems (FLPs, the slave problems) without loss of optimality, and all problems are formulated as mixed-integer linear programming (MILP) models that can be solved by MIP solvers for small-sized problems. An exact backward dynamic programming (BDP) algorithm with a computational complexity of O(n 2) is developed for the master problem, and an improved linear programming based problem evolution algorithm (PEA-LP) is developed for the traditional static FLP. Computational experiments are conducted on two new problems and twelve well-known benchmark problems from the literature, and the experimental results show that the proposed solution approach is promising for solving the AFLP with practical sizes of problem instances. In addition, the improved PEA-LP found new best solutions for five benchmark problems

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • 

    corecore