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Abstract— Robot path planning is a computational 
problem to find a valid sequence of configurations to move a 
robot from an initial to a final destination. Several classical 
and heuristic-based methods exist that can be used to solve the 
problem. This paper compares the performance of a classical 
method based on potential field, Lyapunov-based Control 
Scheme, with those of the standard and stepping ahead Firefly 
Algorithms. The performance comparison is based on the 
optimal path distance and time. The results show that the 
stepping ahead Firefly algorithm finds a shorter path in lesser
duration when compared with the Lyapunov-based method. 
The LbCS also inherently faces the local minima problem 
when the start, target, and obstacle's center coordinates are 
collinear. This problem is solved using the firefly algorithm
where the diversification of the fireflies helps escape local 
minima. 

Keywords—Firefly Algorithm, point-mass robot, 
optimization, Lyapunov based control scheme, heuristic 
approach, stepping ahead, local minima

I. INTRODUCTION

Path planning of autonomous robots has been an active 
research area for more than two decades [11], [12], [13].
Path planning attempts to find a short, collision-free path 
for robots from the starting position towards the predefined 
ending location [50]. Some notable real-life applications of 
motion planning include Advanced Driver Assistance 
Systems [44], bacterial foraging [45], avoidance of 
autonomous vehicles [42], chemical process regulation 
[41], obstacle minimum time maneuvering for Uninhabited 
Combat Air Vehicle [43] and industrial automation [40].
Path planning is important for the navigation and motion 
control of autonomous robot manipulators [10]. In 
computational complexity theory, path planning is 
classified as an NP (nondeterministic polynomial time) 
complete problem [2]. For example, in Kino dynamic
motion planning, where the velocity, acceleration and 
torque bounds need to be satisfied together with obstacle 
avoidance, the time can increase exponentially [38].

Robot path planning and obstacle avoidance is also 
treated as one of the common optimization problems in the 
literature [46], [47], [48]. Path planning can be seen as 
finding the solution of an objective function [49], where 
local and global extrema are of interest in defined regions 
[6].

According to Yang, optimization algorithms can be 
classified into two main categories, namely deterministic 
and stochastic [1]. Deterministic algorithms will produce 
the same set of solutions if the iterations start with the same 
initial guess. On the other hand, stochastic algorithms often 
produce different solutions, even with the same initial 
starting point. The results will eventually converge to the 
same optimal solution within a given accurateness [1].  

Solving the robot path planning problem can be divided 
into classical and heuristic approaches [18], [33]. Some of 
the classical methods used to solve the path planning 
problem include cell decomposition [34], Artificial 
Potential Field (APF) [35], virtual force field [36], Subgoal
Network (SN) method [37], and Road Map [17]. A popular
potential field-based method used to solve the motion 
planning and control problem is the Lyapunov-based 
Control Scheme (LbCS) [14], [15], [16]. LbCS is a time-
invariant nonlinear algorithm which is used to derive the 
velocity or acceleration based controllers for a robot to 
navigate safely in the workspace, reaching its desired target 
while avoiding the obstacles in the workspace [17].

The heuristic-based method may be defined as a 
procedure for solving problems by an intuitive approach.
The structure of the problem can be interpreted and 
exploited intelligently using methods such as neural 
network, genetic algorithm, particle swarm optimization, 
ant colony optimization to obtain a reasonable solution
[19]. While heuristic methods are based on problems, 
metaheuristic techniques are problem-independent [20].
Metaheuristic algorithms are mostly inspired by nature and 
have multiple interacting agents [51]. Swarm Intelligence
(SI) based algorithms is a subcategory of metaheuristic 
algorithm. SI was developed by imitating the swarm-
intelligence characteristics of humans, birds, bees, ants, 
fish and other biological agents [2], [3], [21]. Swarm 
intelligence refers to a research field concerned with 
collective behavior within self-organized and decentralized 
systems [4].

Firefly algorithm, as proposed by Yang in 2008, is a 
swarm intelligent algorithm that is based on the grouping 
behavior of fireflies [5]. It belongs to the stochastic 
algorithm category, which uses meta-heuristic techniques.
The algorithm simulates the characteristic behavior of the 
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fireflies. Fireflies' population shows characteristic 
luminary flashing activities to function as attracting the 
partners, communication, and risk warning for predators 
[7]. The algorithm works under the assumption that all 
fireflies are unisexual and all fireflies have attracting 
potential for each other. The attractiveness is directly 
proportionate to the brightness level of individuals [8]. 
Hence, the brighter fireflies attract the less bright ones by 
moving it towards them which creates the path. If there is 
no brighter firefly than a certain firefly, it moves randomly 
[9]. In literature, there are several instances where the 
firefly algorithm has been modified or hybridized to 
improve optimization [22], [23], [24]. Some recent 
examples include Quaternion FA[28], [32], Modified FA 
[29], New Dynamic FA [30] and Chaotic FA [31].  In [24], 
Nand et al. modified the firefly algorithm by introducing an 
additional step to the algorithm that finds the solution by 
‘Stepping Ahead’ from the fireflies' usual movement. This 
paper will adopt this stepping ahead strategy to find 
feasible and stabilizing solutions to the motion planning 
problem.  

 The objective of this paper is to simulate the path of a 
point mass robot in a known environment with a fixed 
obstacle using three different methods: LbCS, firefly 
algorithm (standard), and modified firefly algorithm 
(stepping ahead). The path distance and time taken for the 
convergence of each instance is recorded and compared. 
This paper also attempts to solve the local minima problem 
faced by LbCS method when exposed to a collinear state 
using the firefly algorithm method. The contribution of this 
paper is that it reaffirms the stepping ahead firefly 
algorithm as a better algorithm when compared to LbCS in 
terms of time complexity and path distance.  

The rest of the paper is organized as follows. Section II 
explains how LbCS works. Section III and IV describes the 
standard and Stepping Ahead firefly algorithm and the 
objective functions used for path optimization. In section 
V, we discuss the local minima problem faced by LbCS. 
Section VI discusses the simulation results, while Section 
VII concludes the paper and essays suggestions for future 
work.  

II. LYAPUNOV- BASED CONTROL SCHEME (LBCS) 

 

Fig. 1. The trajectory of the robot in the presence of a 
fixed obstacle using the LbCS. 

For path planning, we have utilized target attraction and 
obstacle avoidance functions based on LbCS [24]. The 
governing principle behind the LbCS is to design a 
Lyapunov function (energy function) which comprises of 
the attractive (for target convergence) and repulsive 
potential field functions (for obstacle avoidance). These 
functions are basically the Euclidean measures between the 
robot and its target, or between the robot and the obstacles. 
We note that in LbCS, the repulsive potential field function 
is a fraction consisting of tuning (control) parameter in the 
numerator and avoidance function in the denominator.  
Finally, the sum of the attractive and repulsive potential 
field functions will form a Lyapunov function, from which, 
the velocity-based controls are extracted. 

The following definitions and equations are adapted from 
[24]: 

Definition 1: A point-mass P  in the Euclidean space 

 is a circular disk of radius and is positioned at 

 at time 0t � . The point-mass is the set (as 

defined in [24]) 

 

Suppose the instantaneous velocity of the point-mass be 

given as , then the kinematic equation for the 
point-mass is given as: 

 
 

Here  and  are treated as controllers, which will 
be designed such that the point mass robot can navigate 
safely to the desired target while avoiding collision with 
stationary obstacles in the workspace. 

Definition 2: The target of the point–mass P is a disk  in 

 with center 
1 2

( , )p p and radius Tr , and is described as 

the set  

 

The point-mass is required to move from an initial position 

to its designated target and remain there as . Hence a 
tentative attractive potential function is 

  (1) 

which is a measure of the Euclidean distance between the 
point mass position and the target position. 

Definition 3: The thl  stationary circular solid obstacle 

is a disk with center and radius  which is 
defined as the set  

 

for .  

The robot must avoid stationary obstacles while on its way 
to the target. Hence, the following avoidance function is 
used, which will appear in the Lyapunov function as the 
denominator of the repulsive potential function. 

   (2) 
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The attractive and avoidance functions as given in (1) and 
(2) are combined to form the total potentials or the 
Lyapunov function  as  

 

where  are called control parameters.  

According to the Direct Method of Lyapunov, the 
derivative of the Lyapunov function (with respect to time t) 
should be non-negative. Hence, by introducing the 

convergence parameters  and , we let 

( , ) 0L x y �( , ) 0L x y( ,, to obtain the controllers  and 
2 ( )u t  as: 

 

 

 

III. FIREFLY ALGORITHM 

 
Objective function  

Initialize a population of fireflies  

Define light absorption coefficient  

while  
for  
  for  
     Light intensity  at  is determined by  

     if  

        Move firefly i towards j in all d dimensions 
     end if 
    Attractiveness varies with distance r via ) 
    Evaluate new solutions and update light intensity 

  end for  

end for  
Rank the fireflies and find the current best 
end while 
Post-processing the results and visualization; 

 

Fig. 2. Firefly Algorithm as adapted from [1] 

The point mass robot, the target of the robot and the 
obstacle are constructed as defined in II. Each firefly is 
compared with the rest of the fireflies based on the cost 
function. The cost function is defined as: 

  (3) 

where  in (3) is the cost of the firefly which is 

determined by the distance.  and are the center 

coordinates of the obstacle.  and  are the coordinates 

of the firefly for which the cost is calculated.  and   are 

the coordinates of the target. is the weightage of the 

distance between the firefly and the obstacle and  is the 
weightage of the distance the firefly has with the target. 
Both weights are essential in determining each firefly's 

cost, which eventually decides on the most optimized 

firefly. If then the firefly i moves towards firefly

j. The convention here is of the objective function to 
minimize the cost.  The magnitude of the movement is 

based on the attractiveness coefficient, of the attracting 
firefly, which roots from the flashing characteristics of the 
firefly.  

As explained by Hashmi et al. [25], FA is based on the 
flashing characteristic of fireflies. The basic concept is that 
the light intensity is maximum at the source and gradually 
decreases with distance. The brightness of a firefly relative 
to another is defined by the inverse square law (4) where 
the intensity decreases at the rate of the squared distance 
between the fireflies.  

       (4) 

In (4), is the light intensity at a distance  from the 

firefly and  is the intensity of the firefly at the source. The 
equation can be redefined to include the inverse square law 
and the light absorption coefficient of the medium using the 
following Gaussian form: 

     (5) 

where   is the light intensity at a distance r,   is the 
light intensity at the source, γ is the light absorption 
coefficient, and r is the viewer's distance from the source. 
As we know, a firefly's attractiveness is proportional to the 
light intensity seen by adjacent fireflies; thus, the 
attractiveness β of firefly can be determined by the 
equation:  

(6) 

where  is the attractiveness of a firefly and is the 

constant and presents the attractiveness at .  

IV. STEPPING AHEAD FIREFLY ALGORITHM 

 
Step 1: Initialize population of fireflies 
Random partition  
Step 2: Formulate light intensity I so that it is associated with  
Step 3: Define absorption coefficient  

while  do 
   foreach  do 

      foreach do 
         if  then 

            Vary attractiveness with distance r via ); 
            Step 4: Stepping ahead 
            move firefly i further than j that is j distance plus 
            distance difference j and i; 
            Evaluate new solutions and update light intensity; 
            if new solution not better then 

               move firefly i in relation to j that is i distance plus 
distance difference j and i; 

                Evaluate new solutions and update light intensity; 

           end 
        else 
             nothing 
        end 
     end 
   end 
   Rank fireflies and find the current best; 
end 
Post-processing the results and visualization; 

 

Fig. 3. Stepping Ahead FA. Adapted from [23]. 

 

Authorized licensed use limited to: University of the South Pacific. Downloaded on May 04,2021 at 00:42:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3 shows Stepping Ahead Firefly Algorithm where 
the original algorithm has been modified for better 
optimization. In this algorithm, the original 3 steps of the 
FA have been retained. Specifically, they are 1. Initializing 
the firefly population, 2. Formulating the light intensity, I 
so that it is associated with the cost function and 3. Defining 
of the absorption coefficient.  

The 4th step has been modified so that the new solution is 
found in relation to the firefly j where the movement of the 
firefly is further away than the usual movement of firefly i 
closer to the best solution as in standard FA. The term 
coined for this approach is Stepping Ahead. 

V. LOCAL MINIMA PROBLEM FACED BY LBCS 

Local Minima is one of the issues faced by the APF 
methods including LbCS in robot path planning, as shown 
in Fig. 4. This happens when the coordinates of the start 
point, target, and obstacle are in collinear. A local 
minimum or minima is a suboptimal equilibrium point at 
which system error is non-zero, and the hidden output 
matrix is singular [26]. As stated in [27], when the 
Lyapunov function includes the obstacle situation, it may 
have local minima in the open subset. If the controlled 
system closes near the local minima, it will fall in the 
minima, and it cannot escape. 

 

Fig. 4. Local minima problem faced by LbCS 

The heuristic-based optimization algorithm like FA 
solves this issue.    

 

VI. SIMULATION RESULTS AND DISCUSSION 

TABLE I.  AVERAGE PATH DISTANCE AND CONVERGENCE TIME 

USING VARIOUS ALGORITHMS 

LbCS Stepping-
Ahead Firefly 

Standard 
Firefly 

Distance Time(s) Distance Time(s) Distance Time(s) 

30.386 62.059 29.818 3.207 30.297 19.564 

 

Table I shows the point-mass robot's performance using 
each algorithm in a 30 x 30 grid with a starting coordinate 
of (5,5) and ending coordinate of (25,25). Stepping-ahead 

firefly and standard firefly algorithm were iterated 90 times 
each. The average distance and time were recorded. LbCS 
did not require any iterations as all runs are in an exact 
scenario and provide the same results.  

TABLE II.  BEST AND WORST CASE  PATH DISTANCE AND 

CONVERGENCE TIME OF FIREFLY ALGORITHMS 

 

Table II shows the best and worst-case performance of 
all the firefly algorithms. The best and worst case of LbCS 
is acquired from Table I. The best-case time of stepping 
ahead was 2.075s, which is considerably low compared to 
the best case timing of LbCS and standard FA. Another 
interesting observation is that the range of standard FA's 
best and worst cases is quite small compared to the stepping 
ahead algorithm.   

 

Fig. 5. Robot path traced by standard FA. 

 

 

Fig. 6. Robot path traced by stepping-ahead FA 

Both stepping-ahead and standard firefly exhibited 
better performance both in time complexity and path 
distance when compared to LbCS. Overall, stepping-ahead 

  
Stepping-Ahead 

Firefly Standard Firefly 

  Distance Time(s) Distance Time(s) 

Best Case 29.161 2.075 29.984 19.007 

Worst Case 30.627 15.290 30.699 20.486 
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firefly's performance was slightly better than the other two 
methods. The execution time of 3.207s was just 5% of 
LbCS's time and 16% of standard firefly's time. Also, the 
path distance of stepping-ahead firefly algorithm was 
1.86% less when compared with LbCS. We note that in 
LbCS, the control/convergence parameters play a huge role 
in determining the time and safety of the robot. A large 
control parameter ensures that the robot avoids an obstacle 
from a greater distance. Similarly, large values of 
convergence parameters will decrease the rate of 
convergence of the robot to its target whereas very small or 
unsuitable values will enable the robot to converge to the 
target quickly and thus compromising its safely. In 
literature, brute-force procedure is mainly used to 
determine the values of these parameters and this method 
can adversely affect time optimality. 

Fig. 1, Fig. 2, and Fig. 3 show the path traced by the 
point mass robot when executed under identical conditions. 
One of the discussion points is the safety parameter of the 
robot in relation to the obstacle. The safety parameter of the 

firefly path from the obstacle is based on the weights,  

and  set in equation (6). These weights are set manually 
during the simulation. The path traced by all three 
algorithms also vary. LbCS has the smoothest path traced 
(since the differential equations governing the robotic 
motion are continuous for all time t > 0) while stepping-
ahead FA has an uneven path due to fewer fireflies involved 
in path creation.  

VII. CONCLUSION 

This paper used the Lyapunov base Control Scheme 
(LbCS) and Firefly Algorithm (FA) (standard and 
modified) to solve the robot path planning problem. Firstly, 
the workspace for the robot was defined together with the 
robot and obstacle. Then the objective function for each of 
the methods was defined and used in the algorithm. Each 
of the three methods was executed, recording the time of 
each iteration. The path distance during each execution was 
also recorded and analyzed.  

During the execution using LbCS when the start point, 
target, and obstacle were in collinear position, the robot got 
trapped in the local minima. When faced with the same 
scenario, FA was able to maneuver out of the trap because, 
during the initialization phase, the fireflies are randomly 
distributed which promotes diversification [39]. Even 
during the movement phase the fireflies do a local search 
and do not memorize the global best. This is one of the 
reasons why FA does better than LbCS when faced with 
local minima. It has been inferred that the meta-heuristic 
based algorithm like FA is more efficient in comparison to 
classical path planning methods when confronted with 
problems such as local minima.  

The stepping ahead FA outperformed the standard FA 
and LbCS which shows that the new algorithm has the 
potential to be used and further modified in the future. The 
idea present in this algorithm is exemplary which generally 
states that the algorithm should not settle for the best 
solution in the current region but to take one more step and 
check for the better solution.  

One of the issues which can be solved in future research 

is to optimize  and  values instead of assigning it 

manually. The optimization target can be the path distance 
and the time it takes to form the path. The research can be 
further extended to fine-tune stepping-ahead algorithm to 
provides a smoother path for the robot path planning 
problem.  
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