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Abstract 

Microgrids are expected to become part of the next electric power system evolution, not only in rural 
and remote areas but also in urban communities. Since microgrids are expected to coexist with 
traditional power grids (such as district heating does with traditional heating systems), their planning 
process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a 
microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually 
planning goals conflict each other and, as a consequence, different optimization problems appear along 
the planning process. In this context, technical literature about optimization techniques applied to 
microgrid planning have been reviewed and the guidelines for innovative planning methodologies 
focused on economic feasibility can be defined. Finally, some trending techniques and new microgrid 
planning approaches are pointed out. 

1. Introduction 
 

Modern societies are highly dependent on electric energy supply. Following IEA energy statistics, this 
dependence has been increasing during the last 40 years. Nevertheless, electric power systems have not 
been significantly upgraded for decades. Since new enabling technologies for energy systems are being 
developed (such as ICT, microCHP, energy storage and renewable energy sources, smart meters, etc.), 
new concepts are appearing in modern power systems. One of the most popular is the microgrid 
concept, being a novel power grid structure based on DER, RES, power electronics and ICTs.  

One of the earliest definitions of microgrids was made by CERTS. They define microgrids as clusters of 
generators, including heat recovery, storage, and loads, which are operated as single controllable 
entities. In addition a comparison between microgrid concepts is done by J.I. Ping et al. in [1]  

Some microgrid classifications have been presented in technical papers since this concept appeared in 
1998, according to Web of Science (WOS) references. P. Lilienthal points out in [2] different criteria for 
microgrid classification such as: other grids connection, types of energy generation, voltage level of 
distribution system, peak load, generation capacity, energy production, number of customers served, 
load management and metering. He also makes a proposal for microgrid classification regarding size and 
grid connection, defining four main microgrids types such as: large grid-connected microgrids, small 
grid-connected microgrids, large remote microgrids and small remote microgrids.  

Due to the modular nature of microgrids, they can operate both independently or in conjunction with 
the main electrical grid. Microgrids not only have less financial commitments and require fewer 
technical skills to operate, but also rely more on automation [3,4]. These advantages make microgrids a 
suitable solution to gradually modernize existing power grids. Other advantages for microgrid 
establishment are the integration of renewable resources from local areas and the independence of the 
consumer from large corporations that manage actual power grids. 
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Despite all these advantages, planning a cost-effective microgrid is considered as a complex process 
due to all alternatives to consider at any decision level. Every decision taken in a planning process will 
influence the capacities of the system in a competitive energy market. Every planning process is built 
around specific goals and constraints. Not only goals and constraints (such as technical, environmental, 
geographical, social and regulatory constraints) define by themselves the whole framework of the 
planning process, but also uncertainties are a key factor in every planning process. They are a powerful 
source of risks that system planners need to avoid, or at least to control. S. French in [5] identifies 
several sources of uncertainties in all the main steps of a decision making process: uncertainties in 
modelling, uncertainty expressed during the exploration of the model and uncertainties in the 
interpretation of results. But other authors in [6], motivated by practical needs for modelling the 
decision making problem, have classified every uncertainties under two main categories:  

• External uncertainty: related to the lack of knowledge (about the consequences of an action, 
outside of the control of the decision-maker), and to the nature of the environment. 

• Internal uncertainties: presented in the process of identification, structuring and analysis of the 
decision-maker (depending on the decision maker).  

Beyond these uncertainties, constraints and planning objectives, every commercial microgrid must be 
addressed towards two main goals: cost efficiency and customer satisfaction. In a microgrid, consumer 
satisfaction means reliability and quality keeping, causing as low environmental impact as possible. 
Hence, some of these objectives can be opposed to the others regarding costs of the system. It is 
generally accepted that it is necessary to invest in renewable power sources and in energy efficiency-
based technologies in order to minimize the environmental impact of a microgrid. These investments 
may upgrade the system, but also influences economic feasibility. For instance, economic feasibility for 
renewable power sources will depend on different issues such as local electricity costs, space 
requirements, allocation, initial investment, operational and management costs, grid-connection 
charges, taxes and grants. Strong investments are also needed in order to raise the reliability or the 
quality of supply, but every project has its own economical constraints, especially at the design stage. 
That is the reason why the microgrid planning process is usually based on an optimal or trade-off 
solution searching process. 

A microgrid (considered as a community energy system) usually encompasses a mix of traditional an 
renewable power sources-based technologies. Different authors have previously reviewed planning 
tools for microgrid-related technologies [7,8]. For example, in [7] G. Mendes et al. introduce the most 
common available tools for community energy systems planning. They include a survey of these tools, 
qualifying them as bottom-up, simulation, equilibrium, operation optimization and investment 
optimization tools. Some of these tools are suitable for microgrid planning, such as HOMER, DER-CAM, 
EAM, MARKAL/TIMES, RETScreen and H2RES. Also D. Conolly et al. presents in [8] a deep comparison of 
37 different analysis software tools used to evaluate renewable energy sources integration projects. This 
paper also includes HOMER, MARKAL/TIMES, RETScreen and H2RES. 
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Since a microgrid planning process can be approached as a sequence of optimization problems, along 
technical literature different optimization problems have been considered at different planning levels. In 
this context, different researches have decided to reviewed optimization applied to microgrid-related 
technologies such as renewable power sources [9–11]. R. Baños et al review in [10] optimization 
methods applied to wind power, solar energy, hydropower, bioenergy, geothermal energy and hybrid 
systems. Different approaches to optimal design of renewable energy based on hybrid systems are also 
reviewed in [9] by O. Erdinc et al. M. Iqbal et al present in [11] a generic list of inputs, outputs, 
objectives and constraints resource allocation problem of renewable energy sources. They also 
introduce a list of optimization tools, a conflicting objective matrix, and an optimization techniques 
review. 

Hence, several optimization planning techniques have been applied not only to renewable energy 
sources, but also to energy community systems, e.g. district heating [12–15]. Different energy 
community systems may require different optimization techniques due to system constraints (mainly 
technical, environmental and economical) and uncertainties. The appearance of new computational 
optimization methods and algorithms are allowing new approaches to planning problems. The 
coexistence of these widely used mathematical optimization techniques with new ones makes more 
attractive the idea of reviewing microgrid planning problems.  

2. Computational optimization techniques: a brief introduction 
 

The term computational optimization refers to a group of mathematical techniques focused on the 
selection of an optimal solution (with regard to some criteria) from a set of available alternatives. 
Indeed, optimization includes finding the best available values of some objective function given a 
defined domain or a set of constraints, including a wide range of objective functions and types of 
domains. The generalization of optimization theory and techniques to other formulations comprises a 
large area of applied mathematics. R. Baños et al. introduce in [10] different disciplines included into 
computational optimization such as mathematics to formulate the model, operations research to model 
the system, computer science for algorithmic design and analysis, and software engineering to 
implement the model. 

U. Diwerak describes optimization process as an iterative procedure, which is basically composed of an 
optimizer and a model [16]. Modelling is defined as the process of identifying objectives, variables and 
constraints for a given problem [17]. The optimizer invokes the model with a set of values of decision 
variables, while the model calculates the objective function and constraints. This information is utilized 
by the optimizer to calculate a new set of decisions variables. This iterative sequence continues until the 
optimization criteria pertaining to the optimization algorithm are satisfied [16].  

Optimization algorithms, iterative and heuristics methods are cited among computational optimization 
techniques. The use of different optimization algorithms depends upon the type of optimization 
problem. At the same time, there exist many different optimization problem classifications, depending 
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on the type of decision variables, objective functions and constraints. J. Nocedal and S.J. Wright [17] 
define different categories such as: continue and discrete, constrained and unconstrained, global and 
local, stochastic [18] and deterministic, multimodal and multiobjective and heuristic and metaheuristic  
optimization [19].  

Despite of the name, an optimization method will not always find the optimum solution. Sometimes an 
optimization problem can be unfeasible due to the characteristics of the problem. For example, when in 
a LP optimization problem all the unknown variables are required to be integers, the problem is called 
ILP or IP problem. In contrast to linear programming, which can be solved efficiently, IP problems are in 
many practical situations Non-deterministic Polynomial-time hard (NP-hard) [20]. Algorithms used to 
solve a NP-hard problem might need exponential computation time to obtain the optimum, which leads 
too high times for practical purposes. Thus, during the last years many authors have proposed 
approximate methods (including heuristic and metaheuristic approaches) to solve optimization 
problems. 

Heuristic methods are designed to find a good solution among a large set of feasible solutions with less 
computational effort than optimization techniques [9]. They are useful approaches for optimization 
problems when classic optimization techniques are not able to find the optimal solution. Besides 
heuristics there exists metaheuristics. Metaheuristics are used to find an optimal solution from discrete 
search-space The point of metaheuristics is that they can combine more than one heuristic method: the 
first one can be used to find a primary solution and later another heuristic method can be used in order 
to find a better solution. Perhaps the most popular way of classifying metaheuristic algorithms is based 
on trajectory methods vs. population-based methods, but other classifications such as bio-inspired one 
[21] are often used: 

• Trajectory meta-heuristics use a single-solution approach focused on modifying and improving a 
single candidate solution during the search process. The outcome is also a single optimized 
solution. The main meta-heuristic methods in this category includes: SA, TS, GRASP, VNS and ILS. 

• Population-based meta-heuristics use a population of solutions, which evolve during a 
previously fixed number of iterations, returning a population of solutions when the stop 
condition is fulfilled. Perhaps GA and PSO are the most popular algorithms in this category. 

• Bio inspired metaheuristics: are metaheuristics that mimics the nature for solving optimization 
problems. In [21] S. Binitha and S. Shatia classify these techniques into three main types: 
Evolutionary algorithms, Swarm intelligence and Ecology-based algorithms. 

In addition, other kind of metaheuristics can be considered, such as hybrid and parallel metaheuristics. 
The hybrid metaheuristic combines other optimization approaches with the metaheuristic one. 
Meanwhile the parallel metaheuristic is an algorithm that runs multiple metaheuristic searches in 
parallel by using parallel computing techniques. 
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In some cases, the complexity of the problems to solve is so high that no heuristic neither metaheuristic 
method is able to obtain accurate solutions in reasonable runtimes. Hence, parallel computing becomes 
an interesting way to obtain good solutions with reduced runtimes. Parallel computing is a form of 
computation in which large problems can be divided into smaller ones, carrying out many calculations 
simultaneously. Common types of problems found in parallel computing for microgrid applications are 
Monte Carlo Simulation [22–24] and Dynamic Programming [25,26]. 

Regarding this brief introduction to computational optimization, it could be asserted that a holistic real-
life microgrid planning problem can be considered constrained, stochastic, and multi-objective. But 
several authors have applied different approaches to microgrid planning problems. Those problems will 
be reviewed in the following sections, together with optimization techniques applied to solve them.  

3. Optimization techniques applied to microgrid planning problems. 
 

Community energy systems planning problems have been traditionally addressed towards cost 
minimization objectives [27–29]. Beyond economic goals, during the planning process other different 
goals can be considered, such as total environmental impact, power quality and reliability [30].  

Even though each microgrid planning process has its own constraints and specific goals, some planning 
problems can be considered common to every microgrid, according to the reviewed technical 
literature. These planning problems are:  

• Power generation mix selection and sizing: Microgrid design engineers are responsible of 
choosing the best available power system to satisfy demand requirements for a particular area. 
Power sources selection requires a deep analysis of suitable electric power supplies for 
microgrid applications in the influence area. Power generation and energy storage equipment 
must be sized according the peak-load demand and cost effectiveness criteria. Not only a high 
percentage of the initial investment is done at this stage, but also other critical decisions must 
be done. Types of fuels suitable for the power plant must also be selected, which is a critical 
issue regarding cost efficiency and reliability of the system. In summary, this problem must be 
considered among strategic issues for the system and there exist three main objectives to fulfil 
during this planning stage: high cost-effectiveness, low environmental impact and high 
reliability.  

• Siting problem covers power sources allocation and power lines layout in order to keep quality 
constraints. In this process not only actual consumers, but also potential customers must be 
considered. As a result power lines must serve customers areas and also must be addressed to 
potential areas. This problem can also be considered among strategic level problems. As in sizing 
problem, initial investment depends directly on final design at this stage. In this planning stage 
not only it is necessary to provide high cost-effectiveness and high reliability as in the previous 
one, but also low power losses are required. 
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• Scheduling is the main problem of tactical planning level, because it is focused on available 
resources planning, such as generators and storage devices. Scheduling problem is aimed at 
minimizing operational costs, environmental impact and quality keeping while demand is 
covered. Optimal operational conditions for different microgrid configurations are searched 
using different optimization techniques towards one or more than one objective optimization. 

These stages are common in every feasibility study when planning a microgrid. A survey of 
optimization techniques taking part in these stages is presented in this section. In addition, some 
related mathematical techniques such as simulation, fuzzy logic and forecasting, including 
uncertainty management, will also be presented. 

3.1. Power generation mix selection and sizing: economic load dispatch 
problem basis 

 

Economic issues are a high priority in the microgrid planning in order to address long-term 
establishment for the system. The successful deployment of a microgrid depends on the economic 
success of small clusters of mixed technology generators, grouped with storage devices and other 
reliability-based factors such as fuels allowed. Main problems in technical papers at strategic planning 
level are power sources selection [31] and sizing [9], energy storage devices selection and sizing [32] and 
siting. Determination of the real power outputs for the generators so that the total cost of the system is 
minimized is also known as the problem of economic load dispatch. As it will be described below, 
power mix selection and sizing problems are addressed towards ELD problem. 

Traditional optimization techniques are used in [33] by M. Vafaei and M. Kazerani, selecting and sizing, 
different power generation technologies and storage devices for a microgrid, in order to minimize 
operational costs. The optimization model is formulated as a MIP (Mixed Integer Programming) problem 
in GAMS environment.  Also, a classical optimization method is reviewed towards microgrid modelling 
purposes in [34] by Augustine et al. They perform the power mix selection of four different types of 
microgrids by using the Reduced-Gradient Method for Economic Dispatch algorithm and Matlab 
software in order to simulate the system. In this paper the final selection is based on economic dispatch 
costs, taking into account renewable energy sources penetration, costs and receipts associated.  

Y. Han et al. in [35] solve the ELD problem using the Karush-Kuhn-Tucker (KKT) conditions. Allowing 
inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange 
multipliers, which allows only equality constraints. The KKT approach guarantees to find the true 
optimum (versus heuristic search approaches), but is also readily capable of being extended with further 
realistic constraints/costs, versus purely analytic approaches. 

In [36] T. Logenthiran compares a classical Integer Minimization Problemn (IMP) with Evolutionary 
Strategy (ES) method (a generic population-based optimization metaheuristic algorithm) in order to size 
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power equipment for an islanded microgrid. The optimization aim is to minimize the sum of the total 
capital, operational and maintenance cost of DERs.  

Heuristics are widely used in sizing and power generation mix selection. Erdinc in [9] highlights some 
heuristic optimization techniques for hybrid renewable energy systems sizing such as: GA, PSO, SA and 
some promising techniques such as Ant Colony and AIS.  In [37] S.M.M. Tafreshi et al model a microgrid 
using MATLAB and GA to solve the sizing problem with some restrictions. They evaluate the system 
considering costs and benefits such as: the cost function annualized capital, replacement, operational, 
maintenance, fuel costs and annual earning by selling power to grid.  SA algorithm is used to solve the 
optimal sizing problem for renewable energy generations and combined heat and power (CHP) units in a 
hybrid energy microgrid in [38] . Stochastic variability of renewable energy resources and the heat and 
power requirements are considered in order to meet customer requirements with minimum system 
annual cost. 

Energy efficiency and renewable power sources are nowadays the guidelines to minimize the 
environmental impact of a microgrid. But since renewable power sources are not always ready to 
produce energy at their peak power, energy storage becomes an important topic in microgrids. Thus, 
sizing problem concerns not only to power sources but also to energy storage devices. These devices 
must be sized and located regarding cost-effectiveness, environmental impact, reliability and quality 
goals. This topic is introduced by S. Bahramirad et al. in [39] in which the optimal ESS sizing problem is 
proposed both for initial investment and expansion problems. The problem is analysed from an 
economical point of view, using a MIP approach in order to minimize investment in storage devices and 
microgrid operational costs. 

S.X. Chen et al. propose in [32] a method based on the cost-benefit analysis for optimal sizing of an 
energy storage system in a microgrid. Time series and Feed-forward neural network techniques are used 
for forecasting the wind speed and solar radiations respectively. The main problem is formulated as a 
MILP, which is solved in AMPL (A Modelling Language for Mathematical Programming). A specific 
Artificial Neural Network algorithm is used for production forecasting, meanwhile a classical approach is 
used for the optimization problem. An heuristic method is again used in [40] by Navaeefard et al. They 
introduce uncertainty in a microgrid sizing problem that includes photovoltaic PV/wind hybrid system 
with storage energy systems. Wind power uncertainty is proposed and reliability index are considered as 
a constraint. PSO algorithm is used to obtain global optimal solutions using MATLAB.  

In [41] O. Menniti et al. propose a methodology to determine the optimum sizing and configuration of a 
grid-connected hybrid Photovoltaic/Wind system, including energy storage systems and ensuring that 
the system total cost is minimized while guaranteeing a highly reliable source of load power. They base 
their analysis on simulation techniques. 

Some of these mathematical programming methods are nowadays implemented by software tools, 
which are widely used in microgrid planning. Most of these tools, instead of not being specifically 
focused on microgrids, are suitable for microgrid modelling. ETAP is introduced as one of these tools in 
[42]. A comparison between two different technology selection and sizing softwares such as HOMER and 
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WEBOPT is done by A. Litchy et al. in [43].  Since WebOpt is based in a MILP optimization, HOMER is 
based on alternatives simulation, creating a list of feasible configurations sorted by net present cost. 
DER-CAM software is the main tool for a commercial-building microgrid technology selection and 
operation in [44]. The output from DER-CAM is a cost-minimizing equipment combination for a building, 
including CHP equipment and RES. The results of DER-CAM suggest not only an optimal (potentially 
mixed technology) microgrid, but also an optimal operating schedule that can serve as the basis for a 
microgrid control strategy. 

HOMER software is widely used with microgrid modelling purposes. It is used by C. Nayar et al. in [45] in 
order to define a layout of power plants for an hybrid microgrid in remote islands in Republic of 
Maldives. A stand-alone microgrid is also designed in [46] for Pulau Ubin Island of Singapore. In this 
paper authors simulate different systems using HOMER in order to fit the needs with optimum cost and 
available renewable sources, including storage units sizing. A similar work is presented in [47], selecting 
and sizing power generators for a rural microgrid in India. Environmental objectives can also be 
considered using this modelling software. In [48] W. Su et al. study the planning and operation of micro-
source generators to accommodate the high demand of renewable energy and the environment policy.  

3.2. Siting  
 

Nowadays there exist many papers on allocation of energy resources, not only for DERs and RES, but 
also for energy community systems, such as district heating [49]. However, there exist two main 
approaches: power lines layout and equipment siting (power and storage equipment). Both are focused 
on power loss minimization and quality keeping goals. 

Q. Cui et al. presents in [50] a traditional approach to design cost-optimized microgrid architectures  
subject to reliability constraints. The method is based on DP and consists on determining the optimal 
power line layout between microsources and load points, given their locations and the rights of way for 
possible interconnections.  

A. Khodaei presents in [51] an algorithm for microgrid planning as an alternative to the optimization of 
traditional electric power systems regarding generation and transmission. The optimization problem is 
decomposed into a planning problem and an annual reliability problem. The objective is to minimize the 
total system planning cost, and a software called Versatile Energy Resource Allocation (VERA) is used. A 
prediction of demand coverage based on local weather conditions is also performed. Nonlinear aspects 
of the problem are solved with Sequential Quadratic Programming technique (SQP). 

In [52] V. Verda and C. Ciano deals with the choice of the optimal configuration of a district heating 
network to be built in an urban area. Users to be connected to the network are determined and an 
economic objective function is optimized using SA. Despite this is not a specific microgrid planning 
problem, a similar method could be used when a microgrid has to deal with competence in an urban 
area. The technique Modified Discrete Particle Swarm Optimization is used in [53] by M.T. Wishart et al. 
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to plan a distribution system upgrade over a 20 year period. The objective is to minimize the system 
total lifetime cost regarding: line loss, reliability costs and investment needed in DGs, capacitors, lines, 
and transformers. The bus voltage, feeder current and the DG output power are incorporated in the 
optimization procedure as constraints. M.V. Kirthiga et al. in [54] propose a methodology to transform 
an existing radial distribution network into an autonomous microgrid, in which sizing and siting 
strategies for distributed generators and structural modifications for autonomous microgrids are 
developed. The optimal sites and corresponding sizes of renewable resources for autonomous operation 
are obtained using PSO and GA. An optimization problem for system losses and costs is formulated, 
considering quality constraints, generators loads and balance.  

Regarding microgrids siting problems, some multi-objective optimization algorithms are combined with 
sensitivity analysis. For example, in [55] K. Buayai et al. carry out using MATLAB a two stage multi-
objective optimization process for MG planning in two primary distribution systems. In the first stage, 
loss sensitivity factor is proposed to identify the MG area in a primary distribution system. In the second 
stage, a Pareto-based NSGA-II is proposed to find locations and sizes of a specified number of 
distributed generators within microgrids. Multi-objective functions include system real power loss, load 
voltage deviation and annualized investment cost. A fuzzy decision making analysis is used to obtain the 
final trade-off optimal solution.  Another multi-objective method is proposed by G. Celli et al in [56] to 
solve sizing and siting problems in distribution networks. The objective is to achieve the best alternative 
between cost of network upgrading, cost of power losses, cost of energy not supplied, power quality 
cost and the cost of energy required by the served customers. Using a GA, they apply the Ɛ-constrained 
technique to obtain a compromised non-inferior solution.  

As it has been described in [56], heuristics have also been applied to siting problems. A. Basu et al. 
selects in [57] bus locations by loss sensitivity analysis. PSO is implemented using MATLAB in order to 
maximize the value of benefit to cost ratio (BCR). Cost of electricity generation is minimized, not only 
using CHP-based DER technology but also deploying them in the microgrid system regarding their type, 
capacity-size and bus-location. G. Celli et al. propose in [58] a new software procedure based on a GA, 
capable to establish the optimal distributed generation allocation on an existing medium voltage (MV) 
distribution network, considering technical constraints of real size scenarios with several hundreds of 
nodes. In [59] G. Carpinelli presents a three step procedure, based on GA, applied to establish the best 
distributed generation siting and sizing on an MV distribution network.  

M.R. Vallem et al in [60,61] describe a method for siting of DER within the framework of an optimal 
microgrid architecture regarding minimum cost interconnection, sizing, and siting of DER subject to 
stipulated global and local reliability criteria. The siting problem considers factors like deployment costs 
and savings gained by the use of CHP and it is formulated as a SA optimization problem. An optimal 
economic and allocation model of an industrial photovoltaic microgrid is proposed in [62] by M. Mao. 
The economic indexes analysed include energy cost, emission reduction benefits and payback period. 
The optimization problem is solved using PSO optimization technique. S.Tan considers necessary in [63] 
to integrate microgrid load dispatch and network reconfiguration together. This results in a non-convex 
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non-linear problem. Four evolution computational optimization methods have been compared in this 
paper such as GA, PSO, AIS and Vaccine-AIS. 

3.3. Operation scheduling: economic load dispatch problem 
 

The control strategy of each microgrid has a great impact on the energy contribution of the different 
DGs. The Economic Dispatch Problem is usually solved by mathematical computing techniques and 
specific computer software. Final scheduling must fulfil system goals in the framework shaped by 
demand, operational and system constraints of the available resources and corresponding transmission 
capabilities. In [64] C. Colson and M. Nehrir reviewed microgrid management challenges emphasizing 
tasks in DER and CHP integration, power management and control as the main fields of development.  

A classical approach for other energy community systems is presented in [65]. A Combined Cooling and 
Heating Power model of a rural microgrid is built and optimized by using a MINLP optimization process 
to improve system efficiency of energy utilization and other goals with a BONMIN solver. The whole 
system model is mathematically programmed into the platform of GAMS. Again MINLP is used in [66]. 
C.A. Hernandez-Aramburo et al. try to minimize the fuel consumption rate for a two-generation unit 
microgrid, while constraining it to fulfil the local energy demand (both electrical and thermal) and 
provide a certain minimum power reserve. P. Stluka et al. focus in [67] the problem of powering a set of 
buildings through a microgrid, formulating a cost-minimizing problem. Load forecasting and sitting 
problems are solved using a MINLP approach with the optimization software VERA. 

In fact, as it can be seen in [68] and [69], classical optimization methods such as IP and LP are still a good 
approach depending on the problem definition, being GAMS a widely used modelling system. In both 
papers the optimization model for a microgrid based in a CHP generation unit operation is formulated.  
LP is also used in [70] by D. Quiggin et al. to model a microgrid including a mix of renewable generation 
technologies, energy storage and DR, based on real world data of residential energy consumption and 
weather variables. 

DP is used to solve optimization problems in [71] by A. Sobu and in [72] by M.Y. Nguyen, et al.. A. Sobu 
defines a dynamic optimal schedule management method for an isolated or grid-connected microgrid 
system, considering forecast errors with uncertainties of solar radiation, wind speed and local user 
demand. Nguyen et al. try to maximize the profit that owner might achieve from energy trading in a day, 
either in isolated or grid-connected microgrids. C. Huang et al consider tariffs inside the ELD problem in 
[73]. A power-scheduling problem, solved by a MPDP approach, and considering load/generation 
changes and TOU tariff for a low voltage DC microgrid is developed. 

F. Mohamed and H. Koivo propose in [74–77] different multiobjective algorithms, which are also used 
to determine the optimal operating strategy for a microgrid such as: SQP, GA, and MADS. MADS is a 
generalization of the pattern search algorithm. The aim of these papers is to minimize the cost function 
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of the system. Multiobjective optimization based on modified game theory is applied in [76] to the 
environmental and economic problem of the MG.  

T.S. Mahmoud introduces in [78] fuzzy logic techniques for storage devices scheduling. A fuzzy logic 
based adaptive charging price is set for charging the storage device based on the microgrids local 
generation price at the time of charging, and the amount of daily storage device participation in the 
microgrid dispatch. A multi-objective PSO method is applied to optimize the energy dispatch for the 
managed microgrid. H. Kanchev et al. in [79] presents a microgrid energy tactical optimization in the 
presence of PV-based active generators. The optimization objective function is focused on the CO2 
equivalent emissions (environmental criteria), the fuel consumption (economical criteria) or a trade off 
between these two. This study is developed using fuzzy logic theories and PSO. Tools as MATLAB, 
TRNSYS, GenOpt and TRNOPT are proposed to solve this kind of problems [46,86] 

T. Niknam et al propose in [82] a probabilistic approach for economic/emission management of 
microgrids from a probabilistic optimization method, including uncertainties covering and a modified 
multi-objective algorithm based on the MGSA to find Pareto-optimal front of the operation 
management problem. 

Forecasting techniques have been introduced in optimization problems due to stochastic nature of 
demand and renewable energy resources. R.Y. Jaganmohan et al, design in [83] a system that forecasts 
the short (daily), medium (seasonal) and long term (yearly) load demand and the availability of energy 
resources at the microgrids. They use ANN feature to forecast both load and availability of energy 
resources at microgrids in different scenarios like daily, seasonal, and yearly. The layered ANN 
architecture is developed and trained with Levenberg-Marqurardt Back Propagation Algorithm. Other 
authors use in [84,85] forecasting techniques based on ANN. Although forecasting technique changes 
from some papers to others, the most common objective of these techniques is to forecast both load 
and availability of energy resources, as in [86].  

In [87] C. Chen et al. propose one unified model so that smart management of ESS, economic load 
dispatch and operation optimization of distributed generation are simplified into a single-objective 
optimization problem. They use an improved GA to solve the problem. Same algorithm is used by C. 
Chansong et al. in [93]  to determine an optimal schedule of all available units over a planning horizon so 
as to meet all system, plant and unit constraints, as well as meet the load and ancillary service demands. 
An ANN power forecasting is used to predict hourly power outputs. A GA is developed to make good 
operation and trading decisions while meeting constraints. 

S. Obara and E.G. El-Sayed in [89] develop an optimal operation algorithm of a compound microgrid 
using numerical weather information (NWI) which is freely available and a GA is developed to minimize 
system fuel consumption. L Ricalde et al. introduce in [90] some forecasting methods depending on 
temporal range of look-ahead times, and they address ANN as excellent approximations for nonlinear 
and stochastic models. 
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Operation of a microgrid with more than two DER units, especially in an autonomous mode, requires an 
Energy Management System (EMS). Fast response of the EMS is more critical for a microgrid compared 
with a conventional power system. The real-time management block receives the present and the 
forecasted values of load, generation, and market information to impose appropriate controls on power 
flow, output generation, consumption level of the utility grid, dispatchable sources, and controllable 
loads, respectively, as it is shown in figure 1. An EMS should ensure a set of control function, such as 
supply of electrical energy, participation in the energy market, pre-specified service level for critical 
loads, black start subsequent to a failure, provision for ancillary services, and so forth. The objectives are 
achieved through either a centralized or a decentralized supervisory control that includes three 
hierarchical levels: 

  distribution network and market operator (PCC Level) 

 local controllers (LCs) associated with each DER unit and/or load 

 Customer level associated to demand-based control strategies 

 

 

 
Figure 1. Energy Management System 
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Trends in microgrid control have been recently pointed out by D. Olivares et al. in [91]. They also 
present a brief review of the existing EMS architectures for microgrids in [92], identifying the main 
advantages of each approach, and have proposed a centralized EMS architecture for implementation on 
isolated microgrids in stand-alone mode of operation. D. Olivares D. y C.A. Cañizares search for a proper 
dispatch of the energy power and storage units, designing a centralized energy management system in 
[93]. In this paper, energy management problem is decomposed into unit commitment and optimal 
power flow problems in order to avoid a mixed-integer non-linear formulation. 

Some authors look for new approaches for power sources scheduling in microgrids. A calculation 
method of microgrid surplus load is proposed by M. Chen et al. and the features and influencing factors 
of its ultra-short-term forecasting are discussed in [94]. A simulation model of microgrid with wind 
farms, micro-turbines and fuel cells is established. A similar vision of the same problem, including 
demand side management is introduced by R. Palma-Behnke et al. in [95]. An energy management 
system (EMS) minimizes the operational costs while supplying the load demands. Also, a neural network 
method for a two days ahead electric consumption forecasting is presented. 

G. Celli et al in [96] develop a novel EMS that uses a Multi Layer Perceptron Neural Network for the 
optimal scheduling of generators in an industrial park. They train the Neural Network by using 
information about energy price, weather conditions and the forecasts on the energy and thermal load 
demand.  

H. Kanchev in [97] proposes a deterministic EMS for a microgrid, including advanced PV generators with 
embedded storage units and a gas microturbine. A. Borghetti describes in [98] the functions of an 
energy resources scheduler implemented in a microgrid management system. The scheduler periodically 
updates the set points of DERs regulators in order to achieve economic, reliability and power quality 
objectives, starting from the load and renewable production forecasts and from the results of the 
system state estimation.  

S. Chakraborty and M.G. Simoes in [99] and in [100], focus on renewable energy sources integration in a 
distributed generation system, implementing a distributed intelligent EMS to optimize operating costs. A 
Fuzzy ARTMAP Neural Network is used to predict hourly day-type outputs, based on which generation 
can be forecasted. Same authors introduce in [101] a Distributed Intelligent Energy Management System 
(DIEMS) to optimize operating costs of a representative PV-based microgrid. 

A probabilistic EMS based on an efficient Point Estimate Method is proposed in [102] by S. Mohammadi. 
This method models the uncertainty in the power generation of the wind farms and the PV systems, the 
market prices and the load demands. Moreover, an AMFA is employed to achieve an optimal 
operational planning with regard to cost minimization. Niknam et al. introduce in [103,104] two 
different probabilistic algorithms in order to optimize a microgrid operation: a self-adaptive mutation 
technique of the GSA and a self-adaptive Charged System Search called SCSS, devised to upgrade the 
original CSS algorithm. 
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H. Vahedi et al study in [105], the optimal operating strategy and cost optimization scheme using 
Bacterial Foraging Algorithm (BFA). L. Lu et al. study in [106] propose a class of competitive online 
algorithms, called CHASE, which tracks the offline optimal in an online fashion. They also extend these 
algorithms to intelligently leverage on limited prediction of the future, such as near-term demand or 
wind forecast. 

S. Tan et al in [107] search for an integrated solution that takes care of both microgrid load dispatch and 
network reconfiguration problems. The stochastic nature of wind, PV and load is taken into 
consideration and the bio-inspired optimization scheme Vaccine-AIS is adopted to solve the problem. A 
bio-inspired algorithm description is elaborated by S. Binitha and S. Sathya in [21]. In [108] a new bi-level 
prediction strategy is proposed for short-term load forecasting of microgrids by N. Amjady et al.. They 
propose a strategy composed of a feature selection technique and a forecast engine (including NN and 
EA) in the lower level as the forecaster and an enhanced differential evolution algorithm in the upper 
level for optimizing the performance of the forecaster. 

In order to manage all the aspects that influence a microgrid deployment, the design of multi-agent 
and energy management systems is proposed by some authors towards an optimal microgrid control. 
Multi-agent systems in microgrid applications are review by A. Kulasekera y K. Hemapala in [109]. N. 
Hatziargyriou develops in [110] a centralized control for optimizing microgrids operation regarding 
information exchange, market policies, demand-side bidding and security, and quantifies economical, 
environmental and operational benefits for centralized controlled-microgrids in [111]. But the same 
authors have also published some papers about agent-based control for virtual power plants [112] and 
microgrids [113–116]. They present in a MAS-based control architecture for an islanded microgrid, and 
compares it with a centralized approach. Along these papers, these authors developed an agent control 
structure focused in allowing the agents to learn and adapt to the environment based on a 
reinforcement learning algorithm. Agents should be capable to learn to cooperate between each other 
and to solve a problem that requires planning for the future in a stochastic environment without the 
existence of a central controller. 

T. Funabashi et al in [117] propose a microgrid control system using multi-agent technologies. In this 
control system, operation planning is realized based on generation and load forecasting by using ANN 
and fuzzy systems. 

4.  Conclusions and future trends 
 

This paper provides an overview of the latest research developments concerning the use of optimization 
algorithms to aid microgrid planning. Since a general approach to microgrid planning has been 
developed, economic feasibility has been taken into account along the paper as a key factor.  This survey 
of mathematical methods applied to microgrid planning can be useful for microgrid planners, or even to 
introduce power system engineers and young researchers in this field. After this review, some 
conclusions will be presented.  
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First of all, reviewed papers are classified in table 1 regarding the planning problem they try to solve and 
the optimization approach (classical vs multi-objective optimizacion). As it has been described in this 
table, linear optimization can be considered a good approach depending on the objective and 
constraints. Linear and non-linear problems are faced in technical papers in order to minimize 
operational costs or initial investment in generators and energy storage devices. Many optimization 
methods are based on traditional approaches, such as mixed-integer and interval linear-programming, 
while a growing number of research papers trend to use heuristic optimization. Heuristics, as it is shown 
in table 2, have become very popular in energy planning and designing problems such as GA, PSO and 
SA. As a consequence some new bio-inspired heuristics have been recently applied to microgrid 
planning such as AMFA, BFA, AIS and Vaccine-AIS. GA and PSO are widely used algorithms for planning 
purposes in microgrids. Operation scheduling is the most popular problem regarding economic 
feasibility issues for microgrids, as it has been summarized in table 3, in which a detailed list of 
references is presented. Regarding modern mathematical techniques, it can be highlighted that parallel 
processing has not been deeply explored for microgrid planning purposes. 

The second conclusion of this review paper is about planning methodology. When reviewing technical 
literature about community systems planning, some defined problems may appear, as it is shown in 
figure 2. In this paper four common problems have been identified for an economic feasibility approach 
to microgrids: power mix selection, sizing, siting and scheduling. Most researchers propose techniques 
to solve these individual problems, but real-world planning problems require wider and deeper 
approaches. Since microgrid planning problems must be considered in an aggregated way. Planning and 
feasibility guidelines have been proposed for some specific islanded microgrid scenarios with defined 
constrains and uncertainties, such as for instance in military campus [118]. But suitable conditions for 
the long-term success of a commercial microgrid have not been still addressed. The more the real-
market restrictions, uncertainties and optimization problems they can address, the better the conditions 
for a microgrid establishment will be defined. In conclusion, more complete optimization and multi-
criteria approaches towards market-oriented solutions are expected to appear, focused not only on 
newer and better approaches to solve single planning problems, but also to solve global ones. 

Finally, some trends in microgrid planning are described. Some of these new approaches to planning 
process may include GIS based techniques [50,55,119,120] and new algorithms associated to 
optimization, forecast and other microgrid related aspects. Other energy community systems, such as 
virtual power plants or district heating have many points in common with microgrids. Design and 
establishment processes of DH systems have been studied for a long time, such as control techniques 
for VPP. As a consequence, microgrid planning can be faced out using similar techniques. Technical 
literature previously applied to district heating systems have been considered in this paper. Regarding 
microgrid distributed control and operation, MAS are a hot topic in microgrids scheduling [64,121–124]. 
MAS-based systems are having a strong development, linking GIS, forecasting, optimization, risk analysis 
and decision making methods. They have been addressed to different objectives such as cost 
effectiveness, reliability, environmental, quality, protection and interaction with other microgrids. 
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Additional objectives can be considered in microgrids referring to economic feasibility. Microgrids can 
also be designed for supplying ancillary services. Indeed voltage support, reactive power support, peak 
load reduction, spinning reserve provision and thermal energy supplying are considered in some papers 
as [27,30,125].  As aforementioned in section 2  a real microgrid planning process can be described as a 
multi-objective, constrained, and stochastic optimization problem. That is the reason why sensitivity 
analysis has been revealed as a critical step in the microgrid planning in order to develop a robust 
architecture towards economic feasibility. A proposal for a microgrid planning process is presented in 
figure 2. 

As it can be seen in this figure, an additional stage in microgrid planning called pricing has been also 
identified in this review. Pricing stage is the final stage of a commercial microgrid planning process. 
During this stage, microgrid managers define the final price of energy and ancillary services regarding 
different operational scenarios, costs and particular pricing policies. This last is out of scope of this 
review because: it is only applied to commercial microgrids, it is not usually based on optimization 
techniques, and it is a topic far from technical approach to microgrid planning. Microgrid pricing 
strategies may be considered in future work. 

In authors’ opinion, microgrids are destined to become the next electric power system evolution. At the 
same time, smartcities strategies are designed to integrate, or at least to coordinate different urban 
systems or urban services. Following this approach, electric power lines can also be used as 
communication buses and microgrids could be a good test bench not only for smartgrid applications, but 
also for smartcities system integration. This perspective will also affect the microgrid planning process in 
a near future. 
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Table 1 MG planning problems, methods and references regarding single or multiple objective 
optimization 

APPROACH METHOD-ALGORITHM MAIN PROBLEM REFERENCES 

SINGLE-OBJECTIVE 
OPTIMIZATION 

 

MILP 
Power generation mix 

selection and sizing 
32, 43, 44 

Lagrange multipliers-KKT 
conditions 

Power generation mix 
selection and sizing 

35 

Reduced Gradient 
Method 

Storage devices mix selection 
and sizing 

34 

MIP 

 

Power generation mix 
selection and sizing 

33, 36 

Storage devices mix selection 
and sizing 

39 

SQP 

 

Siting 51 

Operation scheduling 77 

DP 

 

Siting 50 

Operation scheduling 71, 72 

MINLP Operation scheduling 65, 66, 67 

IP Operation scheduling 68 

LP Operation scheduling 69,70 

MPDP Operation scheduling 73 

MULTI-OBJETIVE 
OPTIMIZATION 

 

NSGA-II Siting 55 

Simulation-accounting 

 

Power generation mix 
selection and sizing 

41, 42, 45, 46, 47, 48 

Storage devices mix selection 
and sizing 

41 

Operation scheduling 
42, 96, 97, 98, 99, 100, 

101, 102 

Game theory Operation scheduling 76 
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Table 2 MG planning problems, methods and references using heuristic optimization 

 

 

 

 

 

HEURISTIC AND 

METAHEURISTIC 

OPTIMIZATION 

 

EA Power generation mix selection and sizing 36 

GA 

 

Power generation mix selection and sizing 37 

Siting 54, 56, 58, 59, 63 

Operation scheduling 75, 88, 89, 90 

SA 

 

Power generation mix selection and sizing 38 

Siting 52, 60, 61 

PSO 

 

Storage devices sizing 40 

Siting 54, 57, 62,63 

Operation scheduling 77, 79 

AIS Siting 63 

VACCINE-AIS 

 

Siting 63 

Operation scheduling 107 

MDPSO Siting 53 

MADS Operation scheduling 74, 78 

MGSA Operation scheduling 82 

AMFA Operation scheduling 102 

GSA Operation scheduling 103 

SCSS Operation scheduling 103 

BFA Operation scheduling 105 

CHASE Operation scheduling 106 
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Table 3 References per planning problem and optimization approach 

APPROACH MAIN PROBLEM PAPERS 

Single objective optimization Power generation mix selection and sizing 32, 33, 35, 36, 43, 44 

Storage generation mix selection and sizing 34, 39 

Siting 50,51 

Operation scheduling 65, 66, 67, 68, 69, 70, 
71, 72, 73, 77  

MO optimization Power generation mix selection and sizing 41, 42, 45, 46, 47, 48 

Storage generation mix selection and sizing 41 

Siting 55 

Operation scheduling 42, 76, 96, 97, 98, 99, 
100, 101, 102 

Heuristic optimization Power generation mix selection and sizing 36, 37, 38 

Storage generation mix selection and sizing 40 

Siting 52, 53, 54, 56, 57, 58, 
59, 60, 61, 62, 63 

Operation scheduling 74, 77, 78, 79, 82, 102, 
103, 105, 106, 107 
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Figure 2. Microgrid planning process scheme 
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