274 research outputs found

    A Vitual-Force Based Swarm Algorithm for Balanced Circular Bin Packing Problems

    Full text link
    Balanced circular bin packing problems consist in positioning a given number of weighted circles in order to minimize the radius of a circular container while satisfying equilibrium constraints. These problems are NP-hard, highly constrained and dimensional. This paper describes a swarm algorithm based on a virtual-force system in order to solve balanced circular bin packing problems. In the proposed approach, a system of forces is applied to each component allowing to take into account the constraints and minimizing the objective function using the fundamental principle of dynamics. The proposed algorithm is experimented and validated on benchmarks of various balanced circular bin packing problems with up to 300 circles. The reported results allow to assess the effectiveness of the proposed approach compared to existing results from the literature.Comment: 23 pages including reference

    Photovoltaic potential in building façades

    Get PDF
    Tese de doutoramento, Sistemas Sustentáveis de Energia, Universidade de Lisboa, Faculdade de Ciências, 2018Consistent reductions in the costs of photovoltaic (PV) systems have prompted interest in applications with less-than-optimum inclinations and orientations. That is the case of building façades, with plenty of free area for the deployment of solar systems. Lower sun heights benefit vertical façades, whereas rooftops are favoured when the sun is near the zenith, therefore the PV potential in urban environments can increase twofold when the contribution from building façades is added to that of the rooftops. This complementarity between façades and rooftops is helpful for a better match between electricity demand and supply. This thesis focuses on: i) the modelling of façade PV potential; ii) the optimization of façade PV yields; and iii) underlining the overall role that building façades will play in future solar cities. Digital surface and solar radiation modelling methodologies were reviewed. Special focus is given to the 3D LiDAR-based model SOL and the CAD/plugin models DIVA and LadyBug. Model SOL was validated against measurements from the BIPV system in the façade of the Solar XXI building (Lisbon), and used to evaluate façade PV potential in different urban sites in Lisbon and Geneva. The plugins DIVA and LadyBug helped assessing the potential for PV glare from façade integrated photovoltaics in distinct urban blocks. Technologies for PV integration in façades were also reviewed. Alternative façade designs, including louvers, geometric forms and balconies, were explored and optimized for the maximization of annual solar irradiation using DIVA. Partial shading impacts on rooftops and façades were addressed through SOL simulations and the interconnections between PV modules were optimized using a custom Multi-Objective Genetic Algorithm. The contribution of PV façades to the solar potential of two dissimilar neighbourhoods in Lisbon was quantified using SOL, considering local electricity consumption. Cost-efficient rooftop/façade PV mixes are proposed based on combined payback times. Impacts of larger scale PV deployment on the spare capacity of power distribution transformers were studied through LadyBug and SolarAnalyst simulations. A new empirical solar factor was proposed to account for PV potential in future upgrade interventions. The combined effect of aggregating building demand, photovoltaic generation and storage on the self-consumption of PV and net load variance was analysed using irradiation results from DIVA, metered distribution transformer loads and custom optimization algorithms. SOL is shown to be an accurate LiDAR-based model (nMBE ranging from around 7% to 51%, nMAE from 20% to 58% and nRMSE from 29% to 81%), being the isotropic diffuse radiation algorithm its current main limitation. In addition, building surface material properties should be regarded when handling façades, for both irradiance simulation and PV glare evaluation. The latter appears to be negligible in comparison to glare from typical glaze/mirror skins used in high-rises. Irradiation levels in the more sunlit façades reach about 50-60% of the rooftop levels. Latitude biases the potential towards the vertical surfaces, which can be enhanced when the proportion of diffuse radiation is high. Façade PV potential can be increased in about 30% if horizontal folded louvers becomes a more common design and in another 6 to 24% if the interconnection of PV modules are optimized. In 2030, a mix of PV systems featuring around 40% façade and 60% rooftop occupation is shown to comprehend a combined financial payback time of 10 years, if conventional module efficiencies reach 20%. This will trigger large-scale PV deployment that might overwhelm current grid assets and lead to electricity grid instability. This challenge can be resolved if the placement of PV modules is optimized to increase self-sufficiency while keeping low net load variance. Aggregated storage within solar communities might help resolving the conflicting interests between prosumers and grid, although the former can achieve self-sufficiency levels above 50% with storage capacities as small as 0.25kWh/kWpv. Business models ought to adapt in order to create conditions for both parts to share the added value of peak power reduction due to optimized solar façades.Fundação para a Ciência e a Tecnologia (FCT), SFRH/BD/52363/201

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Indoor air Quality and Its Effects on Health in Urban Houses of Indonesia: A case study of Surabaya

    Get PDF
    There is a possibility that the sick building syndrome has already spread widely among the newly constructed apartments in major cities of Indonesia. This study investigates the current conditions of indoor air quality, focusing especially on formaldehyde and TVOC, and their effects on health among occupants in the urban houses located in the city of Surabaya. A total of 471 respondents were interviewed and 82 rooms were measured from September 2017 to January 2018. The results indicated that around 50% of the respondents in the apartments showed some degrees of chemical sensitivity risk. More than 60% of the measured formaldehyde levels in the apartments exceeded the WHO standard, 0.08 ppm. The respondents living in rooms with higher mean formaldehyde values tended to have higher multiple chemical sensitivity risk scores. KEYWORDS: Indoor air quality, Sick building syndrome, QEESI, Formaldehyde, Developing countrie

    Spatially optimised sustainable urban development

    Get PDF
    PhD ThesisTackling urbanisation and climate change requires more sustainable and resilient cities, which in turn will require planners to develop a portfolio of measures to manage climate risks such as flooding, meet energy and greenhouse gas reduction targets, and prioritise development on brownfield sites to preserve greenspace. However, the policies, strategies and measures put in place to meet such objectives can frequently conflict with each other or deliver unintended consequences, hampering long-term sustainability. For example, the densification of cities in order to reduce transport energy use can increase urban heat island effects and surface water flooding from extreme rainfall events. In order to make coherent decisions in the presence of such complex multi-dimensional spatial conflicts, urban planners require sophisticated planning tools to identify and manage potential trade-offs between the spatial strategies necessary to deliver sustainability. To achieve this aim, this research has developed a multi-objective spatial optimisation framework for the spatial planning of new residential development within cities. The implemented framework develops spatial strategies of required new residential development that minimize conflicts between multiple sustainability objectives as a result of planning policy and climate change related hazards. Five key sustainability objectives have been investigated, namely; (i) minimizing risk from heat waves, (ii) minimizing the risk from flood events, (iii) minimizing travel costs in order to reduce transport emissions, (iv) minimizing urban sprawl and (v) preventing development on existing greenspace. A review identified two optimisation algorithms as suitable for this task. Simulated Annealing (SA) is a traditional optimisation algorithm that uses a probabilistic approach to seek out a global optima by iteratively assessing a wide range of spatial configurations against the objectives under consideration. Gradual ‘cooling’, or reducing the probability of jumping to a different region of the objective space, helps the SA to converge on globally optimal spatial patterns. Genetic Algorithms (GA) evolve successive generations of solutions, by both recombining attributes and randomly mutating previous generations of solutions, to search for and converge towards superior spatial strategies. The framework works towards, and outputs, a series of Pareto-optimal spatial plans that outperform all other plans in at least one objective. This approach allows for a range of best trade-off plans for planners to choose from. ii Both SA and GA were evaluated for an initial case study in Middlesbrough, in the North East of England, and were able to identify strategies which significantly improve upon the local authority’s development plan. For example, the GA approach is able to identify a spatial strategy that reduces the travel to work distance between new development and the central business district by 77.5% whilst nullifying the flood risk to the new development. A comparison of the two optimisation approaches for the Middlesbrough case study revealed that the GA is the more effective approach. The GA is more able to escape local optima and on average outperforms the SA by 56% in in the Pareto fronts discovered whilst discovering double the number of multi-objective Pareto-optimal spatial plans. On the basis of the initial Middlesbrough case study the GA approach was applied to the significantly larger, and more computationally complex, problem of optimising spatial development plans for London in the UK – a total area of 1,572km2. The framework identified optimal strategies in less than 400 generations. The analysis showed, for example, strategies that provide the lowest heat risk (compared to the feasible spatial plans found) can be achieved whilst also using 85% brownfield land to locate new development. The framework was further extended to investigate the impact of different development and density regulations. This enabled the identification of optimised strategies, albeit at lower building density, that completely prevent any increase in urban sprawl whilst also improving the heat risk objective by 60% against a business as usual development strategy. Conversely by restricting development to brownfield the ability of the spatial plan to optimise future heat risk is reduced by 55.6% against the business as usual development strategy. The results of both case studies demonstrate the potential of spatial optimisation to provide planners with optimal spatial plans in the presence of conflicting sustainability objectives. The resulting diagnostic information provides an analytical appreciation of the sensitivity between conflicts and therefore the overall robustness of a plan to uncertainty. With the inclusion of further objectives, and qualitative information unsuitable for this type of analysis, spatial optimization can constitute a powerful decision support tool to help planners to identify spatial development strategies that satisfy multiple sustainability objectives and provide an evidence base for better decision making

    The development of object oriented Bayesian networks to evaluate the social, economic and environmental impacts of solar PV

    Get PDF
    Domestic and community low carbon technologies are widely heralded as valuable means for delivering sustainability outcomes in the form of social, economic and environmental (SEE) policy objectives. To accelerate their diffusion they have benefited from a significant number and variety of subsidies worldwide. Considerable aleatory and epistemic uncertainties exist, however, both with regard to their net energy contribution and their SEE impacts. Furthermore the socio-economic contexts themselves exhibit enormous variability, and commensurate uncertainties in their parameterisation. This represents a significant risk for policy makers and technology adopters. This work describes an approach to these problems using Bayesian Network models. These are utilised to integrate extant knowledge from a variety of disciplines to quantify SEE impacts and endogenise uncertainties. A large-scale Object Oriented Bayesian network has been developed to model the specific case of solar photovoltaics (PV) installed on UK domestic roofs. Three specific model components have been developed. The PV component characterises the yield of UK systems, the building energy component characterises the energy consumption of the dwellings and their occupants and a third component characterises the building stock in four English urban communities. Three representative SEE indicators, fuel affordability, carbon emission reduction and discounted cash flow are integrated and used to test the model s ability to yield meaningful outputs in response to varying inputs. The variability in the percentage of the three indicators is highly responsive to the dwellings built form, age and orientation, but is not just due to building and solar physics but also to socio-economic factors. The model can accept observations or evidence in order to create scenarios which facilitate deliberative decision making. The BN methodology contributes to the synthesis of new knowledge from extant knowledge located between disciplines . As well as insights into the impacts of high PV penetration, an epistemic contribution has been made to transdisciplinary building energy modelling which can be replicated with a variety of low carbon interventions

    Advanced Automation for Space Missions

    Get PDF
    The feasibility of using machine intelligence, including automation and robotics, in future space missions was studied

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available
    corecore