47 research outputs found

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    15th Conference on Dynamical Systems Theory and Applications DSTA 2019 ABSTRACTS

    Get PDF
    From Preface: This is the fifteen time when the conference „Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 255 persons from 47 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 338 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference edited books.Technical editor and cover design: Kaźmierczak, MarekCover design: Ogińska, Ewelina; Kaźmierczak, Mare

    Soft Biomimetic Finger with Tactile Sensing and Sensory Feedback Capabilities

    Get PDF
    The compliant nature of soft fingers allows for safe and dexterous manipulation of objects by humans in an unstructured environment. A soft prosthetic finger design with tactile sensing capabilities for texture discrimination and subsequent sensory stimulation has the potential to create a more natural experience for an amputee. In this work, a pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic tactile sensor array for a texture discrimination task. The tactile sensor outputs were converted into neuromorphic spike trains, which emulate the firing pattern of biological mechanoreceptors. Spike-based features from each taxel compressed the information and were then used as inputs for the support vector machine (SVM) classifier to differentiate the textures. Our soft biomimetic finger with neuromorphic encoding was able to achieve an average overall classification accuracy of 99.57% over sixteen independent parameters when tested on thirteen standardized textured surfaces. The sixteen parameters were the combination of four angles of flexion of the soft finger and four speeds of palpation. To aid in the perception of more natural objects and their manipulation, subjects were provided with transcutaneous electrical nerve stimulation (TENS) to convey a subset of four textures with varied textural information. Three able-bodied subjects successfully distinguished two or three textures with the applied stimuli. This work paves the way for a more human-like prosthesis through a soft biomimetic finger with texture discrimination capabilities using neuromorphic techniques that provides sensory feedback; furthermore, texture feedback has the potential to enhance the user experience when interacting with their surroundings. Additionally, this work showed that an inexpensive, soft biomimetic finger combined with a flexible tactile sensor array can potentially help users perceive their environment better

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle:application to mobile microrobots

    Get PDF
    A mobile microrobot is defined as a robot with a size ranging from 1 in3 down to 100 µm3 and a motion range of at least several times the robot's length. Mobile microrobots have a great potential for a wide range of mid-term and long-term applications such as minimally invasive surgery, inspection, surveillance, monitoring and interaction with the microscale world. A systematic study of the state of the art of locomotion for mobile microrobots shows that there is a need for efficient locomotion solutions for mobile microrobots featuring several degrees of freedom (DOF). This thesis proposes and studies a new locomotion concept based on stepping motion considering a decoupling of the two essential functions of a locomotion principle: slip generation and slip variation. The proposed "Modulated Friction Inertial Drive" (MFID) principle is defined as a stepping locomotion principle in which slip is generated by the inertial effect of a symmetric, axial vibration, while the slip variation is obtained from an active modulation of the friction force. The decoupling of slip generation and slip variation also has lead to the introduction of the concept of a combination of on-board and off-board actuation. This concept allows for an optimal trade-off between robot simplicity and power consumption on the one hand and on-board motion control on the other hand. The stepping motion of a MFID actuator is studied in detail by means of simulation of a numeric model and experimental characterization of a linear MFID actuator. The experimental setup is driven by piezoelectric actuators that vibrate in axial direction in order to generate slip and in perpendicular direction in order to vary the contact force. After identification of the friction parameters a good match between simulation and experimental results is achieved. MFID motion velocity has shown to depend sinusoidally on the phase shift between axial and perpendicular vibration. Motion velocity also increases linearly with increasing vibration amplitudes and driving frequency. Two parameters characterizing the MFID stepping behavior have been introduced. The step efficiency ηstep expresses the efficiency with which the actuator is capable of transforming the axial vibration in net motion. The force ratio qF evaluates the ease with which slip is generated by comparing the maximum inertial force in axial direction to the minimum friction force. The suitability of the MFID principle for mobile microrobot locomotion has been demonstrated by the development and characterization of three locomotion modules with between 2 and 3 DOF. The microrobot prototypes are driven by piezoelectric and electrostatic comb drive actuators and feature a characteristic body length between 20 mm and 10 mm. Characterization results include fast locomotion velocities up to 3 mm/s for typical driving voltages of some tens of volts and driving frequencies ranging from some tens of Hz up to some kHz. Moreover, motion resolutions in the nanometer range and very low power consumption of some tens of µW have been demonstrated. The advantage of the concept of a combination of on-board and off-board actuation has been demonstrated by the on-board simplicity of two of the three prototypes. The prototypes have also demonstrated the major advantage of the MFID principle: resonance operation has shown to reduce the power consumption, reduce the driving voltage and allow for simple driving electronics. Finally, with the fabrication of 2 × 2 mm2 locomotion modules with 2 DOF, a first step towards the development of mm-sized mobile microrobots with on-board motion control is made

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    A Flexible, Low-Power, Programmable Unsupervised Neural Network Based on Microcontrollers for Medical Applications

    Get PDF
    We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (μC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) and electromyograph (EMG) biomedical signals. The proposed device will be used as a base station in the WBSN, acquiring and analysing the signals from the sensors placed on the human body. The proposed system is equiped with an analog-todigital converter (ADC), and allows for multi-channel acquisition of analog signals, preprocessing (filtering) and further analysis

    Fiber Bragg Grating Based Sensors and Systems

    Get PDF
    This book is a collection of papers that originated as a Special Issue, focused on some recent advances related to fiber Bragg grating-based sensors and systems. Conventionally, this book can be divided into three parts: intelligent systems, new types of sensors, and original interrogators. The intelligent systems presented include evaluation of strain transition properties between cast-in FBGs and cast aluminum during uniaxial straining, multi-point strain measurements on a containment vessel, damage detection methods based on long-gauge FBG for highway bridges, evaluation of a coupled sequential approach for rotorcraft landing simulation, wearable hand modules and real-time tracking algorithms for measuring finger joint angles of different hand sizes, and glaze icing detection of 110 kV composite insulators. New types of sensors are reflected in multi-addressed fiber Bragg structures for microwave–photonic sensor systems, its applications in load-sensing wheel hub bearings, and more complex influence in problems of generation of vortex optical beams based on chiral fiber-optic periodic structures. Original interrogators include research in optical designs with curved detectors for FBG interrogation monitors; demonstration of a filterless, multi-point, and temperature-independent FBG dynamical demodulator using pulse-width modulation; and dual wavelength differential detection of FBG sensors with a pulsed DFB laser
    corecore