5 research outputs found

    Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows

    Full text link
    In this work, we consider the discretization of nonlinear hyperbolic systems in nonconservative form with the high-order discontinuous Galerkin spectral element method (DGSEM) based on collocation of quadrature and interpolation points (Kopriva and Gassner, J. Sci. Comput., 44 (2010), pp.136--155; Carpenter et al., SIAM J. Sci. Comput., 36 (2014), pp.~B835-B867). We present a general framework for the design of such schemes that satisfy a semi-discrete entropy inequality for a given convex entropy function at any approximation order. The framework is closely related to the one introduced for conservation laws by Chen and Shu (J. Comput. Phys., 345 (2017), pp.~427--461) and relies on the modification of the integral over discretization elements where we replace the physical fluxes by entropy conservative numerical fluxes from Castro et al. (SIAM J. Numer. Anal., 51 (2013), pp.~1371--1391), while entropy stable numerical fluxes are used at element interfaces. Time discretization is performed with strong-stability preserving Runge-Kutta schemes. We use this framework for the discretization of two systems in one space-dimension: a 2×22\times2 system with a nonconservative product associated to a linearly-degenerate field for which the DGSEM fails to capture the physically relevant solution, and the isentropic Baer-Nunziato model. For the latter, we derive conditions on the numerical parameters of the discrete scheme to further keep positivity of the partial densities and a maximum principle on the void fractions. Numerical experiments support the conclusions of the present analysis and highlight stability and robustness of the present schemes

    In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems - Second-order extension

    Get PDF
    We are interested in the numerical approximation of discontinuous solutions in non conservative hyperbolic systems. An extension to second-order of a new strategy based on in-cell discontinuous reconstructions to deal with this challenging topic is presented. This extension is based on the combination of the first-order in-cell reconstruction with the standard MUSCL-Hancock reconstruction. The first-order strategy allowed in particular to capture exactly the isolated shocks and this new second-order extension keep this property. Moreover, the well-balanced property of the method is also studied. Several numerical tests are proposed to validate the methods for the Coupled-Burgers system, Gas dynamics equations in Lagrangian coordinates and the modified shallow water system.The research of CP, MC and EPG was partially supported by the Spanish Government (SG), the European Regional Development Fund (ERDF), the Regional Government of Andalusia (RGA), and the University of Málaga (UMA) through the projects of reference RTI2018-096064-B-C21 (SG-ERDF), UMA18-Federja-161 (RGA-ERDF-UMA), and P18-RT-3163 (RGA-ERDF). EPG was also financed by the Junior Scientific Visibility Program from the Foundation Mathématiques Jacques Hadamard for a stay of three month in the Laboratoire de Mathématiques de Versailles (LMV) with reference ANR-11-LABX-0056-LMH, LabEx LMH. TML was supported by the Spanish Government (SG) through the projects of reference RTI2018-096064-B-C22. The authors thank the anonymous reviewer whose comments helped to improve the paper. Funding for open access charge: Universidad de Málaga / CBU

    A new comment on the computation of non conservative products using Roe-type path conservative schemes

    No full text
    We are interested in the numerical approximation of the discontinuous solutions of non conservative hyperbolic systems. We more precisely consider a non conservative formulation of the usual gas dynamics equations and show how to slightly modify the so-called Roe-type path-conservative schemes to properly capture the underlying shock discontinuities. Numerical evidences are proposed. The present note follows a first comment on the computation of non conservative products in [1]

    On adomian based numerical schemes for euler and navier-stokes equations, and application to aeroacoustic propagation

    Get PDF
    140 p.En esta tesis se ha desarrollado un nuevo método de integración en tiempo de tipo derivadas sucesivas (multiderivative), llamado ABS y basado en el algoritmo de Adomian. Su motivación radica en la reducción del coste de simulación para problemas en aeroacústica, muy costosos por su naturaleza transitoria y requisitos de alta precisión. El método ha sido satisfactoriamente empleado en ambas partes de un sistema híbrido, donde se distinguen la parte aerodinámica y la acústica.En la parte aerodinámica las ecuaciones de Navier-Stokes incompresibles son resueltas con unmétodo de proyección clásico. Sin embargo, la fase de predicción de velocidad ha sido modificadapara incluir el método ABS en combinación con dos métodos: una discretización espacial MAC devolúmenes finitos, y también con un método de alto orden basado en ADER. El método se ha validado respecto a los problemas (en 2D) de vórtices de Taylor-Green, y el desarrollo de vórticesde Karman en un cilindro cuadrado. La parte acústica resuelve la propagación de ondas descritaspor las ecuaciones linearizadas de Euler, empleando una discretización de Galerkin discontinua. El método se ha validado respecto a la ecuación de Burgers.El método ABS es sencillo de programar con una formulación recursiva. Los resultados demuestran que su sencillez junto con sus altas capacidades de adaptación lo convierten en un método fácilmente extensible a órdenes altos, a la vez que reduce el coste comparado con otros métodos clásicos
    corecore