2,924 research outputs found

    Carbon, land and water: a global analysis of the hydrologic dimensions of climate change mitigation through afforestation / reforestation

    Get PDF
    Climate change / Water supply / Forests / Land use / Afforestation / Reforestation / Water balance / Models / Evapotranspiration / Precipitation / Water use / Ecosystems

    Physiological Characterization of the SoyNAM Parental Lines under Field Conditions

    Get PDF
    The narrow genetic pool of soybean (Glycine max L. Merr.) in North America can limit its future yield gains. Among the worldwide germplasm collection of 45,000 unique landraces, only 80 contribute 99% to the collective parentage of North American soybean cultivars. Among these 80 landraces, just 17 contribute to 86% of the collective parentage of the modern cultivars. The Soybean Nested Association Mapping population (SoyNAM) was therefore developed with the objective of diversifying the soybean gene pool. Forty diverse soybean genotypes from maturity groups (MG) 1 through 5 were crossed with a common MG 3 parent to develop 40 recombinant inbred populations. Each of these populations has 140 recombinant inbred lines (RILs) and have been genotyped with molecular markers and characterized for few important traits. This experiment was conducted during three consecutive summers, in Fayetteville, Arkansas with the objective to phenotype the SoyNAM parental lines for yield and drought-related traits. And, then identify the extreme genotypes among these parental genotypes, which have either not been mapped previously or if mapped have not been mapped very extensively. Canopy coverage was estimated through aerial digital images taken 3 to 4 times until canopy closure. After canopy closure, during late vegetative or early R1 stage, shoot samples were taken that were used to determine N2 derived from the atmosphere (NDFA), shoot nitrogen and ureide concentrations, and δ13C (an indirect measure of water use efficiency). Two harvests were made at mid-R5 and two weeks later, to calculate seed growth rate and effective filling period. Wilting measurements were taken towards the end of irrigation cycles when drought symptoms started appearing. Yield and harvest index (HI) were determined from a bordered section of each plot at maturity. Statistical analysis indicated that several parents differed statistically from the hub parent. Some genotypes were also identified as common extreme parents for more than one trait. Identification of such divergent parental lines will aid in selecting recombinant inbred populations for future quantitative trait loci mapping studies

    Experimental analysis of drainage and water storage of litter layers

    No full text
    International audienceMany hydrological studies of forested ecosystems focus on the study of the forest canopy and have partitioned gross precipitation into throughfall and stemflow. However, the presence of forest litter can alter the quantities of water available for soil infiltration and runoff. Little information exists regarding the value of storage and drainage parameters for litter layers. Vegetation parameters of this kind are required in physically-based and lumped conceptual models to quatify the availabilty and distribution of water. Using a rainfall simulator and laboratory conditions two main objectives were investigated using layers of recently seneced poplar leaves, fresh grass or woodchips: 1) Effect of rain intensity on storage. With this respect we found that: maximum storage (Cmax), defined as the detention of water immediately before rainfall cessation, increased with rainfall intensity. The magnitude of the increment was up to 0.5 mm kg?1 m?2 between the lowest (9.8 mm h?1) and highest (70.9 mm h?1) rainfall intensities for poplar leaves. Minimum storage (Cmin), defined as the detention of water after drainage ceased, was not influenced by rainfall intensity. Repeated wetting-draining cycles or layer thickness have no effect on Cmax or Cmin. 2) The evaluation of drainage coefficient for the Rutter model. This model was found accurate to predict storage and drainage in the case of poplar leaves, was less accurate for fresh grass and resulted in overestimations for woodchips. Additionally, the effect of an underlaying soil matrix on lateral movement of water and storage of poplar leaves was studied. Results indicated that the soil matrix have no effect on Cmax or Cmin of the litter layer. Lateral movement of water in the poplar layer was observed at intermediate rainfall intensities (30.2 and 40.4 mm h?1), but not a the lowest or highest rates

    Simplified Interception/Evaporation Model

    Get PDF
    It is known that at the event scale, evaporation losses of rainfall intercepted by canopy are a few millimeters, which is often not much in comparison to other stocks in the water balance. Nevertheless, at yearly scale, the number of times that the canopy is filled by rainfall and then depleted can be so large that the interception flux may become an important fraction of rainfall. Many accurate interception models and models that describe evaporation by wet canopy have been proposed. However, they often require parameters that are difficult to obtain, especially for large-scale applications. In this paper, a simplified interception/evaporation model is proposed, which considers a modified Merrian model to compute interception during wet spells, and a simple power-law equation to model evaporation by wet canopy during dry spells. Thus, the model can be applied for continuous simulation, according to the sub hourly rainfall data that is appropriate to study both processes. It is shown that the Merrian model can be derived according to a simple linear storage model, also accounting for the antecedent intercepted stored volume, which is useful to consider for the suggested simplified approach. For faba bean cover crop, an application of the suggested procedure, providing reasonable results, is performed and discussed

    Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Get PDF
    Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i) compare different methods for determining soil hydraulic parameters and ii) evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone) simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a) laboratory measured retention and hydraulic conductivity data and b) field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c) Rawls and Brakensiek, d) HYPRES, and e) ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter a of the van Genuchten curve. This is reflected in a variability of the modeling results which is, as expected, different for each model and each variable analysed. The variability of the simulated water content in the root zone and of the bottom flux for different soil hydraulic parameter sets is found to be often larger than the difference between modeling results of the two models using the same soil hydraulic parameter set. Also we found that a good agreement in simulated soil moisture patterns may occur even if evapotranspiration and percolation fluxes are significantly different. Therefore multiple output variables should be considered to test the performances of methods and model

    Has Trade Openness Increased all Portuguese Public Expenditures? A Detailed Time-Series Study

    Get PDF
    This work aims at identifying the public outlays that has been influenced by the growth of Portuguese trade openness since the end of World War II. For the Portuguese reality, it is one of the first attempts to discuss a large set of simultaneously tested control variables. For this purpose, the methodology started from a model that tries to the public expenditures to a system of simultaneous macroeconomic forces and, for testing, it followed the steps associated with cointegration analysis. Using the most convenient techniques, a restrictive set of four expenditures (subsidies, interest payments, other current expenditures, and total public expenditures as a proportion of GDP) was found among the wider set suggested by the Literature. The nature of these expenditures supports the claim that, for the Portuguese case, a particular validity of the compensation hypothesis has been observed. The achieved evidence promotes an important rule: in addition to there being a long-term relation between (some) public expenditures and trade openness, short-term relations may also appear.globalization, economic policy, government expenditure composition

    Experimental analysis of drainage and water storage of litter layers

    Get PDF

    Low-Density Static Granular Media Filter Bed Turbidity Removal Model

    Get PDF
    The scattering of light within a fluid, referred to as its turbidity, was investigated against the presence of suspended solids. A linear regression analysis was conduced against turbidity and the total count, combined surface area, and combined volume of the suspended particles for various surface water sources (lakes, rivers, indoor aquaculture systems). It was found that the total combined surface area of suspended particles had the best linear correlation to turbidity, with an adjusted R2 of 81.79%. This correlation was integrated with a current theoretical model for predicting solids removal across a granular bed to yield an Integrated Turbidity Removal Model. This model was then calibrated against three different media types at three different flux rates, and proved to be a reasonably accurate at predicting the effectiveness of the granular bed on removing turbidity. A sensitivity analysis was conducted using the newly calibrated Integrated Turbidity Removal Model and it found that the variables that impact the effectiveness of the bed to remove turbidity the most are the particle density, filtration rate (flux rate), and media size

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg
    • …
    corecore