17 research outputs found

    The Effects of Individual Differences on Cued Antisaccade Performance

    Get PDF
    In the antisaccade task, pre-cueing the location of a correct response has the paradoxical effect of increasing errors. It has been suggested that this effect occurs because participants adopt an "antisaccade task set" and treat the cue as if was a target - directing attention away from the precue and towards the location of the impending target. This hypothesis was tested using a mixed pro / antisaccade task. In addition the effects of individual differences in working memory capacity and schizotypal personality traits on performance were examined. Whilst we observed some modest relationships between these individual differences and antisaccade performance, the strongest predictor of antisaccade error rate was uncued prosaccade latency

    False memory guided eye movements::insights from a DRM-Saccade paradigm

    Get PDF
    The Deese-Roediger and McDermott (DRM) paradigm and visually guided saccade tasks are both prominent research tools in their own right. This study introduces a novel DRM-Saccade paradigm, merging both methodologies. We used rule-based saccadic eye movements whereby participants were presented with items at test and were asked to make a saccade to the left or right of the item to denote a recognition or non-recognition decision. We measured old/new recognition decisions and saccadic latencies. Experiment 1 used a pro/anti saccade task to a single target. We found slower saccadic latencies for correct rejection of critical lures, but no latency difference between correct recognition of studied items and false recognition of critical lures. Experiment 2 used a two-target saccade task and also measured corrective saccades. Findings corroborated those from Experiment 1. Participants adjusted their initial decisions to increase accurate recognition of studied items and rejection of unrelated lures but there were no such corrections for critical lures. We argue that rapid saccades indicate cognitive processing driven by familiarity thresholds. These occur before slower source-monitoring is able to process any conflict. The DRM-saccade task could effectively track real-time cognitive resource use during recognition decisions

    Working memory capacity and the antisaccade task: A microanalytic–macroanalytic investigation of individual differences in goal activation and maintenance

    Get PDF
    The association between working memory capacity (WMC) and the antisaccade task, which requires subjects to move their eyes and attention away from a strong visual cue, supports the claim that WMC is partially an attentional construct (Kane, Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, & Engle, 2004). Specifically, the WMC-antisaccade relation suggests that WMC helps maintain and execute task goals despite interference from habitual actions. Related work has recently shown that mind wandering (McVay & Kane, 2009, 2012a, 2012b) and reaction time (RT) variability (Unsworth, 2015) are also related to WMC and they partially explain WMC’s prediction of cognitive abilities. Here, we tested whether mind-wandering propensity and intraindividual RT variation account for WMC’s associations with 2 antisaccade-cued choice RT tasks. In addition, we asked whether any influences of WMC, mind wandering, or intraindividual RT variation on antisaccade are moderated by (a) the temporal gap between fixation and the flashing location cue, and (b) whether targets switch sides on consecutive trials. Our quasi-experimental study reexamined a published dataset (Kane et al., 2016) comprising 472 subjects who completed 6 WMC tasks, 5 attentional tasks with mind-wandering probes, 5 tasks from which we measured intraindividual RT variation, and 2 antisaccade tasks with varying fixation-cue gap durations. The WMC-antisaccade association was not accounted for by mind wandering or intraindividual RT variation. WMC’s effects on antisaccade performance were greater with longer fixation-to-cue intervals, suggesting that goal activation processes—beyond the ability to control mind wandering and RT variability—are partially responsible for the WMC-antisaccade relation

    Interference between smooth pursuit and color working memory

    Get PDF
    Spatial working memory (WM) and spatial attention are closely related, but the relationship between non-spatial WM and spatial attention still remains unclear. The present study aimed to investigate the interaction between color WM and smooth pursuit eye movements. A modified delayed-match-to-sample paradigm (DMS) was applied with 2 or 4 items presented in each visual field. Subjects memorized the colors of items in the cued visual field and smoothly moved eyes towards or away from memorized items during retention interval despite that the colored items were no longer visible. The WM performance decreased with higher load in general. More importantly, the WM performance was better when subjects pursued towards rather than away from the cued visual field. Meanwhile, the pursuit gain decreased with higher load and demonstrated a higher result when pursuing away from the cued visual field. These results indicated that spatial attention, guiding attention to the memorized items, benefits color WM. Therefore, we propose that a competition for attention resources exists between color WM and smooth pursuit eye movements

    False memory-guided eye movements: insights from a DRM-Saccade paradigm

    Get PDF
    The Deese-Roediger and McDermott (DRM) paradigm and visually guided saccade tasks are both prominent research tools in their own right. This study introduces a novel DRM-Saccade paradigm, merging both methodologies. We used rule-based saccadic eye movements whereby participants were presented with items at test and were asked to make a saccade to the left or right of the item to denote a recognition or non-recognition decision. We measured old/new recognition decisions and saccadic latencies. Experiment 1 used a pro/anti saccade task to a single target. We found slower saccadic latencies for correct rejection of critical lures, but no latency difference between correct recognition of studied items and false recognition of critical lures. Experiment 2 used a two-target saccade task and also measured corrective saccades. Findings corroborated those from Experiment 1. Participants adjusted their initial decisions to increase accurate recognition of studied items and rejection of unrelated lures but there were no such corrections for critical lures. We argue that rapid saccades indicate cognitive processing driven by familiarity thresholds. These occur before slower source-monitoring is able to process any conflict. The DRM-Saccade task could effectively track real-time cognitive resource use during recognition decisions

    Individual differences in human eye movements: An oculomotor signature?

    Get PDF
    Human eye movements are stereotyped and repeatable, but how specific to a normal individual are the quantitative properties of his or her eye movements? We recorded saccades, anti-saccades and smooth-pursuit eye movements in a sample of over 1000 healthy young adults. A randomly selected subsample (10%) of participants were re-tested on a second occasion after a median interval of 18.8 days, allowing us to estimate reliabilities. Each of several derived measures, including latencies, accuracies, velocities, and left-right asymmetries, proved to be very reliable. We give normative means and distributions for each measure and describe the pattern of correlations amongst them. We identify several measures that exhibit significant sex differences. The profile of our oculomotor measures for an individual constitutes a personal oculomotor signature that distinguishes that individual from most other members of the sample of 1000.This research was funded by the Gatsby Charitable Foundation (GAT2903). PTG was supported by the Cambridge Commonwealth and Overseas Trusts and the Overseas Research Students Awards Scheme, and JMB by a Research Fellowship at Gonville and Caius College, Cambridge

    Saccadic Inhibition Reveals the Timing of Automatic and Voluntary Signals in the Human Brain

    Full text link

    Saccadic inhibition reveals the timing of automatic and voluntary signals in the human brain

    Get PDF
    Neurophysiological and phenomenological data on sensorimotor decision making are growing so rapidly that it is now necessary and achievable to capture it in biologically inspired models, for advancing our understanding in both research and clinical settings. However, the main impediment in moving from elegant models with few free parameters to more complex biological models in humans lies in constraining the more numerous parameters with behavioral data (without human single-cell recording). Here we show that a behavioral effect called “saccadic inhibition” (1) is predicted by existing complex (neuronal field) models, (2) constrains crucial temporal parameters of the model, precisely enough to address individual differences, and (3) is not accounted for by current simple decision models, even after significant additions. Visual onsets appearing while an observer plans a saccade knock out a subpopulation of saccadic latencies that would otherwise occur, producing a clear dip in the latency distribution. This overlooked phenomenon is remarkably well time locked across conditions and observers, revealing and characterizing a fast automatic component of visual input to oculomotor competition. The neural field model not only captures this but predicts additional features that are borne out: the dips show spatial specificity, are lawfully modulated in contrast, and occur with S-cone stimuli invisible to the retinotectal route. Overall, we provide a way forward for applying precise neurophysiological models of saccade planning in humans at the individual level

    Time Course and Hazard Function: A Distributional Analysis of Fixation Duration in Reading

    Get PDF
    Reading processes affect not only the mean of fixation duration but also its distribution function. This paper introduces a set of hypotheses that link the timing and strength of a reading process to the hazard function of a fixation duration distribution. Analyses based on large corpora of reading eye movements show a surprisingly robust hazard function across languages, age, individual differences, and a number of processing variables. The data suggest that eye movements are generated stochastically based on a stereotyped time course that is independent of reading variables. High-level reading processes, however, modulate eye movement programming by increasing or decreasing the momentary saccade rate during a narrow time window. Implications to theories and analyses of reading eye movement are discussed

    Saccade-like behavior in the fast-phases of optokinetic nystagmus: An illustration of the emergence of volitional actions from automatic reflexes

    Get PDF
    As a potential exemplar for understanding how volitional actions emerged from reflexes, we studied the relationship between an ancient reflexive gaze stabilization mechanism (optokinetic nystagmus [OKN]) and purposeful eye movements (saccades) that target an object. Traditionally, these have been considered distinct (except in the kinematics of their execution) and have been studied independently. We find that the fast-phases of OKN clearly show properties associated with saccade planning: (a) They are characteristically delayed by irrelevant distractors in an indistinguishable way to saccades (the saccadic inhibition effect), and (b) horizontal OKN fast-phases produce curvature in vertical targeting saccades, just like a competing saccade plan. Thus, we argue that the saccade planning network plays a role in the production of OKN fast-phases, and we question the need for a strict distinction between eye movements that appear to be automatic or volitional. We discuss whether our understanding might benefit from shifting perspective and considering the entire “saccade” system to have developed from an increasingly sophisticated OKN system
    corecore